King Fahd University of Petroleum and Minerals Department of Mathematics
Math 106
Exam II
TERM 232
May 01, 2024

Net Time Allowed: 120 Minutes

USE THIS AS A TEMPLATE

Write your questions, once you are satisfied upload this file.

1. Which statement is FALSE about the function $f(x)=\left(x^{2}+1\right) e^{-x}$?
(a) f has relative minimum at $x=1$
(b) f is decreasing on $(-\infty, 1)$ and $(1, \infty)$
(c) f is never increasing

52/13.1

(d) f has no relative extremum
(e) f has only one critical point
2. The slope of the tangent line to $y=\frac{x^{2}\left(5+x^{2}\right)}{\sqrt{x^{2}+3}}$ at $x=1$ is equal to (HINT: You may use Logarithmic differentiation)
(a) $\frac{25}{4}$
(b) $\frac{36}{7}$
(c) 3
(d) 5

Simililar to 10/12.5
 (suggested problem)

(e) $\frac{5}{3}$
3. If $x y+y-x=4$, then $\frac{d^{2} y}{d x^{2}}$ when $x=2$ and $y=2$ is
(a) $\frac{2}{9}$
(b) 2

29/12.7
(c) 4
(d) $\frac{7}{11}$
(e) $\frac{12}{13}$
4. The function $f(x)=2 x^{2}-x^{4}$ has
(a) only three relative extrema
(b) only one relative maximum
(c) only two relative minimum
(d) only two critical points
(e) only one critical point
5. The absolute minimum of $f(x)=3 x^{4}-x^{6}$ over the interval $[-1,2]$ is equal to
(a) -16
(b) 3
(c) 4

9/13.2

(d) -6
(e) -43
6. The function $f(x)=x^{2 / 3}$ over the interval $[-8,8]$ has the absolute minimum at $x=$
(a) 0
(b) 1

6/13.2

(c) -3
(d) -1
(e) -2
7. The curve of the function $f(x)=x^{3}-30 x^{2}$ concave up on the interval
(a) $(10, \infty)$
(b) $(-\infty, 10)$
(c) $(0,20)$

similar to 40/13.3

(d) $(-10,10)$
(e) $(0,100)$
8. The number of inflection points of the function $f(x)=1-\frac{1}{x^{2}}$ is equal to
(a) 0
(b) 1
(c) 2
(d) 3

24/13.3
(e) 4
9. The number of relative minimum of the function $f(x)=\left(x^{2}+7 x+10\right)^{2}$ is equal to
(a) 2
(b) 1
(c) 0
(d) 3
(e) 4
10. At $x=2$, the function $y=-2 x^{4}+64 x$ has
(a) an absolute maximum
(b) a relative minimum
(c) neither maximum nor minimum
(d) an absolute minimum
(e) an inflection point
11. The function $f(x)=\frac{x^{4}+1}{1-x^{4}}$ has
(a) two vertical and one horizontal asymptotes
(b) only one vertical asymptotes
(c) only two horizontal asymptotes
(d) no asymptotes
(e) one horizontal and one oblique asymptote

20/13.5

12. The equation of the oblique asymptote of the graph of

$$
f(x)=\frac{3 x^{2}-5 x-1}{x-2}
$$

is
(a) $y=3 x+1$
(b) $y=3 x-5$
(c) $y=x-2$
(d) $y=-5 x-1$
(e) $y=\frac{3}{2} x-\frac{5}{2}$

30/sec13.5

13. Suppose that the demand equation for a monopolist's is $p=200-0.5 q$ and the average-cost function is $\bar{c}=0.5 q+8+(200 / q)$, where q is number of units, and both p and \bar{c} are expressed in dollars per unit. The maximum profit occur when $q=$
(a) 96
(b) 200
(c) 104
(d) 86
(e) 108

similar to Example 8/sec13.6

14. The demand equation for a manufacturer's product is

$$
p=\frac{80-q}{4}, \quad 0 \leq q \leq 80
$$

where q is the number of units and p is the price per unit. The absolute maximum revenue is equal to
(a) 400
(b) 480
(c) 380
(d) 840
(e) 390

Example 2/sec13.6

15. Let $y(x)=e^{8-2 x}$, then by using differentials $y(4.01) \approx$
(a) 0.980
(b) 0.982
(c) 1.020
(d) 1.080
(e) 0.990

similar to 32/sec14.1

16.

$$
\int\left(\frac{1}{2 x^{3}}-\frac{1}{x^{4}}\right) d x=
$$

(a) $-\frac{1}{4 x^{2}}+\frac{1}{3 x^{3}}+C$
(b) $\frac{x^{2}}{2}-\frac{3}{x^{4}}+C$
(c) $-\frac{3}{x^{2}}+\frac{2}{x^{3}}+C$
(d) $\frac{x^{4}}{4}+\frac{2}{x^{2}}+C$
(e) $-\frac{2}{x^{4}}-\frac{4}{x^{2}}+C$

$30 / 14.2$

17.

$$
\int \frac{e^{x}+e^{2 x}}{e^{x}} d x=
$$

(a) $x+e^{x}+C$
(b) $x+x^{2}+C$
(c) $x+2 \ln x+C$
(d) $1+2 e^{x}+C$
(e) $e^{x}+e^{2 x}+C$

51/sec14.2

18. A manufacturer has determined that the marginal-cost function is

$$
\frac{d c}{d q}=0.003 q^{2}-0.4 q+40
$$

where q is the number of units produced. If the fixed costs are $\$ 5000$, what is the average cost of producing 100 units?
(a) $\$ 80$
(b) $\$ 30$
(c) $\$ 90$
(d) $\$ 70$
(e) $\$ 110$

$21 / \sec 14.3$

19. If $y^{\prime \prime}=-12 x^{2}+12 x, y(1)=0$, and $y^{\prime}(1)=0$ then $y(2)=$
(a) -3
(b) 2
(c) 1
(d) 4
(e) -5

similar to $5 / \sec 14.3$

20. If $y=\frac{1}{x}, \quad$ then $\quad y^{\prime \prime \prime}(3)=$
(a) $-\frac{2}{27}$
(b) $-\frac{5}{16}$
(c) $\frac{1}{3}$
(d) $-\frac{5}{9}$
(e) $\ln 3$

8/12.7

