King Fahd University of Petroleum and Minerals Department of Mathematics Math 106 Exam II TERM 232 May 01, 2024 Net Time Allowed: 120 Minutes

USE THIS AS A TEMPLATE

Write your questions, once you are satisfied upload this file.

1. Which statement is **FALSE** about the function $f(x) = (x^2 + 1) e^{-x}$?

- (a) f has relative minimum at x = 1
- (b) f is decreasing on $(-\infty, 1)$ and $(1, \infty)$
- (c) f is never increasing
- (d) f has no relative extremum
- (e) f has only one critical point

2. The slope of the tangent line to $y = \frac{x^2(5+x^2)}{\sqrt{x^2+3}}$ at x = 1 is equal to (HINT: You may use Logarithmic differentiation)

(e) $\frac{5}{3}$

Simililar to 10/12.5 (suggested problem)

52/13.1

3. If
$$xy + y - x = 4$$
, then $\frac{d^2y}{dx^2}$ when $x = 2$ and $y = 2$ is

(a)
$$\frac{2}{9}$$

(b) 2 229/12.7
(c) 4
(d) $\frac{7}{11}$
(e) $\frac{12}{13}$

- 4. The function $f(x) = 2x^2 x^4$ has
 - (a) only three relative extrema
 - (b) only one relative maximum
 - (c) only two relative minimum
 - (d) only two critical points
 - (e) only one critical point

Example 4/3.1

- 5. The absolute minimum of $f(x) = 3x^4 x^6$ over the interval [-1, 2] is equal to
 - (a) -16(b) 3(c) 4
 - (d) 6
 - (e) 43

9/13.2

6. The function $f(x) = x^{2/3}$ over the interval [-8, 8] has the absolute minimum at x =

- (a) 0 (b) 1 (c) -3 (d) -1 (d) -1
- (e) -2

- 7. The curve of the function $f(x) = x^3 30x^2$ concave up on the interval
 - (a) $(10, \infty)$
 - (b) $(-\infty, 10)$
 - (c) (0, 20)
 - (d) (-10, 10)
 - (e) (0, 100)

similar to 40/13.3

8. The number of inflection points of the function $f(x) = 1 - \frac{1}{x^2}$ is equal to

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4

24/13.3

- 9. The number of relative minimum of the function $f(x) = (x^2 + 7x + 10)^2$ is equal to
 - (a) 2
 - (b) 1
 - (c) 0
 - (d) 3
 - (e) 4

13 /sec13.4

- 10. At x = 2, the function $y = -2x^4 + 64x$ has
 - (a) an absolute maximum
 - (b) a relative minimum
 - (c) neither maximum nor minimum
 - (d) an absolute minimum
 - (e) an inflection point

similar to 3 and 8 /sec13.4

231, Math 106, Exam II

11. The function $f(x) = \frac{x^4 + 1}{1 - x^4}$ has

- (a) two vertical and one horizontal asymptotes
- (b) only one vertical asymptotes
- (c) only two horizontal asymptotes
- (d) no asymptotes
- (e) one horizontal and one oblique asymptote

20/13.5

12. The equation of the oblique asymptote of the graph of

$$f(x) = \frac{3x^2 - 5x - 1}{x - 2}$$

is

(a) y = 3x + 1(b) y = 3x - 5(c) y = x - 2(d) y = -5x - 1(e) $y = \frac{3}{2}x - \frac{5}{2}$

30/sec13.5

- 13. Suppose that the demand equation for a monopolist's is p = 200 0.5q and the average-cost function is $\bar{c} = 0.5q + 8 + (200/q)$, where q is number of units, and both p and \bar{c} are expressed in dollars per unit. The maximum profit occur when q =
 - (a) 96
 - (b) 200
 - (c) 104
 - (d) 86
 - (e) 108

similar to Example 8/sec13.6

14. The demand equation for a manufacturer's product is

$$p = \frac{80 - q}{4}, \qquad 0 \le q \le 80$$

where q is the number of units and p is the price per unit. The absolute maximum revenue is equal to

- (a) 400
- (b) 480
- (c) 380
- (d) 840
- (e) 390

Example 2/sec13.6

15. Let $y(x) = e^{8-2x}$, then by using differentials $y(4.01) \approx$

- (a) 0.980
- (b) 0.982
- (c) 1.020
- (d) 1.080
- (e) 0.990

similar to 32/sec14.1

16.

$$\int \left(\frac{1}{2x^3} - \frac{1}{x^4}\right) dx =$$

(a)
$$-\frac{1}{4x^2} + \frac{1}{3x^3} + C$$

(b) $\frac{x^2}{2} - \frac{3}{x^4} + C$
(c) $-\frac{3}{x^2} + \frac{2}{x^3} + C$
(d) $\frac{x^4}{4} + \frac{2}{x^2} + C$
(e) $-\frac{2}{x^4} - \frac{4}{x^2} + C$

30/14.2

17.

$$\int \frac{e^x + e^{2x}}{e^x} \, dx =$$

(a)
$$x + e^{x} + C$$

(b) $x + x^{2} + C$
(c) $x + 2 \ln x + C$
(d) $1 + 2e^{x} + C$
(e) $e^{x} + e^{2x} + C$

51/sec14.2

18. A manufacturer has determined that the marginal-cost function is

$$\frac{dc}{dq} = 0.003q^2 - 0.4q + 40.$$

where q is the number of units produced. If the fixed costs are \$5000, what is the average cost of producing 100 units?

- (a) \$80
- (b) \$30
- (c) \$90
- (d) \$70
- (e) \$110

21 /sec14.3

19. If $y^{\prime\prime}=-12x^2+12x$, y(1)=0, and $y^\prime(1)=0$ then y(2)=

(a) -3(b) 2

- (c) 1(d) 4
- (e) -5

similar to 5/sec14.3

20. If
$$y = \frac{1}{x}$$
, then $y'''(3) =$

(a)
$$-\frac{2}{27}$$

(b) $-\frac{5}{16}$
(c) $\frac{1}{3}$
(d) $-\frac{5}{9}$
(e) $\ln 3$

8/12.7