King Fahd University of Petroleum and Minerals Department of Mathematics

Math 106 Final Exam 232

May 30, 2024 Net Time Allowed: 180 Minutes

USE THIS AS A TEMPLATE

Write your questions, once you are satisfied upload this file.

- 1. Find $\lim_{x \to 0} \frac{(x+2)^2 4}{x}$ 34/10.1
 - (a) 4
 - (b) 2
 - (c) -2
 - (d) 3
 - (e) 16

2. For products A and B, the joint-cost function for a manufacturer is

$$c = \frac{3}{2} \ q_A^2 + 3 \ q_B^2$$

and the demand functions are

$$p_A = 60 - q_A^2$$
 and $p_B = 36 - 2q_B^2$

Find the values of q_A and q_B that maximize profit. similar to 7/17.6

- (a) $q_A = 4$ and $q_B = 2$
- (b) $q_A = 5 \text{ and } q_B = 2$
- (c) $q_A = 4$ and $q_B = 6$
- (d) $q_A = 5 \text{ and } q_B = 3$
- (e) $q_A = 2$ and $q_B = 6$

- 3. Find the slope of the curve $y = \frac{4x^3}{x^4 + 1}$ at $(-1, -\frac{1}{2})$ 50/11.4
 - (a) 2
 - (b) 4
 - (c) -1
 - (d) -2
 - (e) 8

- 4. If $y = \sqrt[3]{(x^2 8)^2}$, find $\frac{dy}{dx}$ when x = 3. 59/11.5
 - (a) 4
 - (b) -3
 - (c) -8
 - (d) 3
 - (e) 2

5. Find an equation of the tangent line to the curve $f(x) = \ln(x^2 + 6x + 1)$ when x = 0? similar to 6/12.1

(a)
$$y = 6 x$$

(b)
$$y = 2 x + 1$$

(c)
$$y = 6 x + 1$$

(d)
$$y = (\ln 2) x + 1$$

(e)
$$y = 2e x + 1$$

- 6. Let $f(x,y) = \frac{1}{3}(x^3 + 8y^3) 2(x^2 + y^2) + 1$. Then f has $\frac{13}{17.6}$
 - (a) one relative minimum, one relative maximum, and two saddle points.
 - (b) only one relative maximum and no saddle point.
 - (c) only one saddle point and one relative maximum.
 - (d) two relative minima
 - (e) two relative maxima

- 7. For the cost function $c=q-\frac{1}{q}$, the average-cost function is increasing when similar to 68/13.3
 - (a) q > 0
 - (b) q > 1
 - (c) q > 2
 - (d) q > 3
 - (e) q > 4

8. Which of the following statements is **FALSE** for the graph of

$$f(x) = \frac{x^2 - 1}{2x^2 - 9x + 4}?$$

16/13.5

- (a) The graph has one vertical asymptote and one horizontal asymptote
- (b) The line $x = \frac{1}{2}$ is a vertical asymptote
- (c) The line x = 4 is a vertical asymptote
- (d) The graph has two vertical asymptotes and one horizontal asymptote
- (e) The line $y = \frac{1}{2}$ is a horizontal asymptote

9. If the marginal revenue functions is $\frac{dr}{dq} = 4000 - 20q - 3q^2$, find the demand function. similar to Example 4/14.3

(a)
$$p = 4000 - 10q - q^2$$

(b)
$$p = 4000 - q - q^2$$

(c)
$$p = 400 - q^2$$

(d)
$$p = 2000 - q - q^2$$

(e)
$$p = 1000 - 10q - q^2$$

10. Find $\int x^3 e^{4x^4} dx = \frac{22}{14.4}$

(a)
$$\frac{1}{16} \cdot e^{4x^4} + c$$

(b)
$$2xe^{x^2} + c$$

(c)
$$x^2e^{x^2} + c$$

(d)
$$2x + c$$

(e)
$$2x^2 + e^{x^2} + c$$

11. Find
$$\int \frac{6s^2 + 2s + 1}{s + s^2 + 2s^3} ds = \frac{26}{14.4}$$

- (a) $\ln |s + s^2 + 2s^3| + C$
- (b) $\ln |3s^2| + C$
- (c) $\ln(s^3+5) \ln|2s+1| + C$
- (d) $\ln |6s^2 + 2s + 1| + C$
- (e) $\ln \left| \frac{3s}{s^2 + 5} \right| + C$

12. Find
$$\int_0^1 e^{\ln(3x^2+1)} dx = \frac{\sin(3x^2+1)}{4x^2} dx = \frac{\sin(3x^2+1)}{4x^2} dx$$

- (a) 2
- (b) 3
- (c) $3e^2$
- (d) e^4
- (e) -3

- 13. If $\frac{dr}{dq} = \frac{300}{(q+3)^2}$ is a margina-revenue function, then the demand function is similar to $\frac{57}{14.5}$
 - (a) $p = \frac{100}{q+3}$
 - (b) $p = \frac{300}{(q+3)^3}$
 - (c) $p = \frac{100}{(q+3)^2}$
 - (d) $p = \frac{-100}{(q+3)^2}$
 - (e) $p = \frac{200 \ q}{q+3}$

- 14. $\int_{-1}^{2} (3x^2 4x + 6) dx = \frac{\text{similar to Example 1/14.7}}{14.7}$
 - (a) 21
 - (b) 34
 - (c) -8
 - (d) 49
 - (e) -58

- 15. $\int_{1/2}^{3} \frac{1}{x^2} \, dx = \frac{15/14.7}{}$
 - (a) $\frac{5}{3}$
 - (b) 3
 - (c) $\frac{1}{2}$
 - (d) 1
 - (e) $\frac{3}{2}$

- 16. Find the area of the region bounded by the curve $y = x^2 1$ and y = x 1. similar to 41/14.9

 - (a) $\frac{1}{6}$ (b) $\frac{1}{2}$ (c) 2 (d) $\frac{2}{3}$ (e) $\frac{3}{8}$

17. Find $\int_{-1}^{0} x e^{x} dx =$ Illustration after the integration by parts formula/15.1

- (a) $\frac{2}{e} 1$
- (b) $\frac{1}{e} 2$
- (c) -1
- (d) e 1
- (e) e + 1

18. Find $\int_{1}^{e} 9 x^{2} \ln x \, dx$ by using integration by parts. similar to 6/15.1

- (a) $1 + 2e^3$
- (b) $\frac{1}{2}e + \frac{1}{2}$
- (c) e^2
- (d) $-4 e^2$
- (e) -2 e

19. Let $f(x, y, z) = z^2(3x^2 - 4xy^3)$ then $f_{xyyz}(10, 1, -1) =$ similar to $\frac{12}{17.4}$

- (a) 48
- (b) 26
- (c) 52
- (d) 78
- (e) 46

20. Use the following formula $\int \frac{du}{\sqrt{u^2 - a^2}} = \ln \left| u + \sqrt{u^2 - a^2} \right| + C$, to find the integral $\int \frac{dx}{\sqrt{9x^2 - 4}} = \frac{\sinh(x^2 - a^2)}{\sinh(x^2 - a^2)} = \frac{\sinh(x^2 - a^2)}{\sinh(x^2 - a^$

(a)
$$\frac{1}{3} \ln \left| 3x + \sqrt{9x^2 - 4} \right| + C$$

(b)
$$\ln |3x - \sqrt{9x^2 + 4}| + C$$

(c)
$$\ln |x - \sqrt{x^2 - 4}| + C$$

(d)
$$\frac{1}{2} \ln \left| 3x - \sqrt{9x^2 + 4} \right| + C$$

(e)
$$\frac{1}{\sqrt{9x^2-4}} + C$$

21. Let $g(x,y) = 3x^2 + 5x\cos(y) + y\sin(x)$ then $g_x(0,0) + g_y(\frac{\pi}{2}, 0) =$ Handout and 17.1

- (a) 6
- (b) 3
- (c) 5
- (d) 4
- (e) 9

22. If $g(x, y, z) = e^{3x} \sqrt{y + 18z}$, then $g_z(0, -9, 1) =$ similar to 29/17.1

- (a) 3
- (b) $\frac{1}{8}$
- (c) $\frac{1}{2}$
- (d) \bar{e}
- (e) 9

23. If $y = (x - 2) \tan x$, find $y'(0) = \frac{\text{similar to 3/Handout}}{2}$

- (a) -2
- (b) 2
- (c) -1
- (d) π
- (e) $-\pi$

24. Let $f(x,y) = 3x^2 - y^3 + 18x + 3y + 9$. Which of the following statements is **FALSE?** similar to 12/17.6

- (a) f has a relative maximum at (-3,1)
- (b) f has a relative minimum at (-3, -1)
- (c) f has a saddle point at (-3,1)
- (d) $f_{xx}(-3,-1) = 6$
- (e) $f_{yy}(-3, -1) = 6$

25. Let f(x,y) = 2xy - 9x - 7y. If f has a critical point at (c,d), then $c+d = \frac{\text{similar}}{\text{to } 4/17.6}$

- (a) 8
- (b) 7
- (c) 9
- (d) 1
- (e) 2

26. If $z^2 - 3x^2 + y^2 = -1$, find $\frac{\partial^2 z}{\partial x^2}$ at x = 1, y = 1, z = 1 (Hint: use implicit differentiation) similar to $\frac{23}{17.4}$

- (a) -6
- (b) 2
- (c) 4
- (d) -4
- (e) 8

27.
$$\int \sin(2x) dx = 1/\text{ Handout (integral part)}$$

- $(a) \frac{1}{2}\cos(2x) + C$
- (b) $\sin(2x) + C$
- (c) $2\cos(2x) + C$
- (d) $2x \cos(2x) + C$
- (e) $-\frac{1}{2}\sin(2x) + C$

28. If $f(x) = 3x^5 - 5x^3$, then f(x) has relative maximum when x = 23/13.1

- (a) -1
- (b) 1
- (c) 0
- (d) 3
- (e) -5