1. The area under one arch of the cycloid given by the parametric equations: $x=2(\theta-\sin\theta)$ and $y=2(1-\cos\theta)$ is equal to

(a) 12π _____(correct)

- (b) 6π
- (c) 10π
- (d) 9π
- (e) 8π

2. The polar coordinates (r, θ) of the point (-6, 0) where r < 0 and $0 \le \theta \le 2\pi$ is

- (a) (-6,0) _____(correct)
- (b) $(-6, \pi)$
- (c) (-5,0)
- (d) $(-5, 2\pi)$
- (e) $(6, \pi)$

- 3. The unit vector in the direction of $2\vec{u} \vec{v}$, where $\vec{u} = \langle 1, 0, -1 \rangle$ and $\vec{v} = \langle 2, -1, 0 \rangle$ is:
 - (a) $\left\langle 0, \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}} \right\rangle$ (correct)
 - (b) $\left\langle \frac{1}{\sqrt{5}}, 0, -\frac{2}{\sqrt{5}} \right\rangle$
 - (c) $\left\langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0 \right\rangle$
 - (d) $\left\langle -\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}, 0 \right\rangle$
 - (e) $\left\langle \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right\rangle$

- 4. If $\vec{a} = \langle 2, -3, 1 \rangle$, $\vec{b} = \langle \sqrt{2}, -2\sqrt{2}, -\sqrt{2} \rangle$, $\vec{c} = \langle -1, 1, -2 \rangle$ and $\vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b})\vec{c} = \langle x, y, z \rangle$, then x + y + z =
 - (a) $14\sqrt{2}$ _____(correct)
 - (b) $7\sqrt{2}$
 - (c) $-14\sqrt{2}$
 - (d) $-7\sqrt{2}$
 - (e) 0

5. The line through the points (-3,1,0) and (-1,5,6) intersects the plane x+y+z=4 at

(a) (-2, 3, 3) _____(correct)

- (b) (1, 2, 1)
- (c) (-1,4,1)
- (d) (0,3,1)
- (e) (4,1,-1)

6. $\lim_{(x,y)\to(0,0)} \frac{x^6y}{x^6+y^6} =$

(a) 0 _____(correct

- (b) DNE
- (c) ∞
- (d) 1
- (e) 2

7. The tangent plane to the surface $z=2x-y^2$ at the point (2,1,3) contains the point

(correct) (a) (-1, -2, -3)

- (b) (0,0,3)
- (c) (0, -1, 0)
- (d) (1,0,6)
- (e) (1,0,0)

8. The rate of change of $f(x, y, z) = x^2yz - xyz^3$ at the point (2, -1, 1) in the direction of $\vec{u} = \left\langle 0, \frac{4}{5}, -\frac{3}{5} \right\rangle$ is

(correct)

- (a) $\frac{2}{5}$ (b) $\frac{1}{5}$ (c) $\frac{4}{5}$ (d) $\frac{1}{4}$ (e) $\frac{3}{4}$

9. The shortest distance between the point (1,0,-1) and the surface $y^2=9+xz$ is

(a) $\sqrt{7}$ ____(correct)

- (b) $\sqrt{17}$
- (c) $\sqrt{10}$
- (d) 3
- (e) 4

- 10. The function f(x,y) = xy(1-x-y) has
 - (a) one local maximum and three saddle points _____(correct)
 - (b) one local minimum and three saddle points
 - (c) one local maximum, one local minimum and two saddle points
 - (d) one local minimum and two saddle points
 - (e) one local maximum, one local minimum and three saddle points

11. If M is the maximum value and m is the minimum value of the function $f(x,y)=2x+y^2$ on the region $D=\{(x,y)|x^2+y^2\leq 1\}$, then M+m=

- (b) 1
- (c) 2
- (d) -1
- (e) 3

- 12. If the maximum value and the minimum value of the function $f(x,y) = y^2 x^2$ on the ellipse $x^2 + 4y^2 = 4$ are M and m respectively, then M m =
 - (a) 5 _____(correct)
 - (b) 4
 - (c) 6
 - (d) 3
 - (e) 0

13. The maximum value of the function f(x, y, z) = x + 2y + 3z on the curve of intersection of the plane x + y + z = 1 and the cylinder $x^2 + y^2 = 1$ is

(a) $3+\sqrt{5}$ _____(correct)

- (b) $3 \sqrt{5}$
- (c) $3 + \frac{\sqrt{5}}{5}$
- (d) $3 \frac{\sqrt{5}}{5}$
- (e) 4

14. An estimate of the volume of the solid that lies below the surface $z = 1 + x^2 + 2y$ and above the rectangle $R = [1,3] \times [0,3]$ using a Riemann sum with m = n = 2 and sample points to be the lower left corner of each rectangle is

(a) 30 _____(correct)

- (b) 20
- (c) 40
- (d) 25
- (e) 35

15. The volume of the solid that lies under the plane 4x + 6y - 2z + 15 = 0 and above the rectangle

$$R = \{(x, y) | -1 \le x \le 2, -1 \le y \le 1\}$$

is

- (a) 51 _____(correct)
- (b) 45
- (c) 52
- (d) 49
- (e) 56

16.
$$\int_{-1}^{1} \int_{0}^{1} x^{6} \sin x \sqrt{1 + e^{y}} \, dy \, dx =$$

- (a) 0 _____(correct)
- (b) 1
- (c) $\sqrt{1+e}$
- (d) $\sqrt{1+e} \sin 1$
- (e) -1

17.
$$\int_0^1 \int_{x^2}^1 \sqrt{y} \sin(\pi y) \, dy \, dx =$$

- (correct)
- (b) 0
- (c) π
- (d) $-\frac{1}{\pi}$
- (e) 2π

18. The volume of the solid bounded by

$$y^2 + z^2 = 4$$
, $x = 2y$, $x = 0$, and $z = 0$

in the first octant is

- (a) $\frac{16}{3}$ (b) $\frac{8}{3}$ (c) $\frac{4}{3}$ (d) $\frac{3}{8}$ (e) $\frac{3}{2}$ (correct)

- 19. The volume of the solid bounded by the plane z=0 and the paraboloid $z=1-x^2-y^2$ is
 - (a) $\frac{\pi}{2}$ _____(correct)
 - (b) $\frac{\pi}{4}$
 - (c) $\frac{\pi}{3}$
 - (d) π
 - (e) 2π

20. The average value of the function $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$ on the region

$$R = \{(x, y) | 1 \le x^2 + y^2 \le 4\}$$

is

- (a) $\frac{2}{3}$ _____(correct)
- (b) $\frac{3}{4}$
- (c) $\frac{1}{2}$
- (d) $\frac{3}{5}$
- (e) $\frac{2}{5}$

21.
$$\int_0^2 \int_0^{\sqrt{4-x^2}} e^{-x^2-y^2} \, dy \, dx =$$

- (a) $\frac{\pi}{4}(1-e^{-4})$ _____ (correct)
- (b) $\frac{\pi}{4}(e^{-4}-1)$
- (c) $\frac{\pi}{2}(1 e^{-4})$ (d) $\frac{\pi}{2}(e^{-4} 1)$
- (e) $\frac{\pi}{2}(e^4-1)$

- 22. The volume of the solid enclosed by the cylinder $y = x^2$ and the planes z = 0 and y + z = 1 equals
 - (a) $\frac{8}{15}$ (correct)
 - (b) $\frac{8}{25}$ (c) $\frac{7}{15}$ (d) $\frac{7}{25}$ (e) $\frac{13}{30}$

- 23. The volume of the solid enclosed by the paraboloids $y = x^2 + z^2$ and $y = 8 x^2 z^2$
 - _(correct) (a) 16π
 - (b) $\frac{15\pi}{2}$
 - (c) 8π
 - (d) $\frac{33\pi}{2}$
 - (e) 50

24. Let E be the solid bounded by the parabolic cylinder $z=1-x^2$, the plane y=1-xand the coordinate planes. The value of

$$\iiint\limits_E \, x \, dV$$

is

- (correct)

- (b) $\frac{7}{30}$ (c) $\frac{7}{15}$ (d) $\frac{7}{90}$ (e) $\frac{7}{20}$

- 25. Using cylindrical coordinates, we find that $\int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^{4-x^2-y^2} x dz dy dx$ is equal
 - (correct)

 - (c) $\frac{128}{15}$ (d) $\frac{256}{15}$

 - (e) 0

- 26. The volume of the solid that lies between the paraboloid $z=16-x^2-y^2$ and the cone $z=6\sqrt{x^2+y^2}$ is equal to
 - (a) 24π (correct)
 - (b) 16π
 - (c) 8π
 - (d) 30π
 - (e) 12π

- 27. The integral $\iiint_E \sqrt{x^2 + y^2 + z^2} \, dV$ where E is the region above $z = \sqrt{x^2 + y^2}$ and between $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$, is equal to
 - (a) $\frac{15\pi}{2} \left(1 \frac{1}{\sqrt{2}} \right)$ _____(correct)
 - (b) $\frac{7\pi}{2\sqrt{2}}$
 - (c) $\frac{\pi}{2}(\sqrt{2}-1)$
 - (d) $\frac{15\pi}{4} \left(1 + \frac{1}{\sqrt{2}} \right)$
 - (e) $\frac{\pi}{4} \left(1 \frac{1}{\sqrt{2}} \right)$

- 28. The surface whose equation is $\rho = \cos \phi$ is
 - (a) a sphere of radius $\frac{1}{2}$ _____(correct)
 - (b) a sphere of radius $\frac{1}{4}$
 - (c) a plane
 - (d) a cone centered at $\left(0,0,\frac{1}{2}\right)$
 - (e) a cone centered at $\left(\frac{1}{4},0,0\right)$