1. The equation of the tangent line to the curve represented by the parametric equations $x = t^4 + 2$, $y = t^3 + t$ at the point (3, -2) is

(a) y = 1 - x _____(correct)

- (b) y = 5 + x
- (c) y = 7 + 2x
- (d) 2y + 3x = 0
- (e) 2y = -x + 4

2. The arc length of the curve represented by the parametric equations

$$x = e^{-t} \, \cos t, \, y = e^{-t} \, \sin t, \, \, 0 \le t \le \frac{\pi}{2}$$

is

- (a) $\sqrt{2}(1 e^{-\frac{\pi}{2}})$ _____(correct)
- (b) $2(1+e^{-\frac{\pi}{2}})$
- (c) $3(1+e^{\frac{\pi}{2}})$
- (d) $\sqrt{3}(1+e^{\frac{\pi}{2}})$
- (e) $2 2e^{-\frac{\pi}{2}}$

3. The area of the surface formed by revolving the curve represented by the equations

$$x=2\cos t,\ y=2\sin t,\ 0\leq t\leq \frac{\pi}{3}$$

about the x-axis is

- (correct) (a) 4π
- (b) 5π
- (c) 6π
- (d) 2π
- (e) π

- 4. The slope of the tangent line to the polar curve $r = 3\sin\theta$ at the point $\left(\frac{3}{2}, \frac{\pi}{6}\right)$ is equal to
 - (correct) (a) $\sqrt{3}$

 - (a) $\sqrt{3}$ (b) $-\sqrt{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{-2}{\sqrt{3}}$
 - (e) $\frac{1}{2}$

- 5. The polar coordinates (r, θ) corresponding to the rectangular coordinates $(5, -5\sqrt{3})$ with r < 0 and $0 \le \theta < 2\pi$ is
 - (a) $\left(-10, \frac{2\pi}{3}\right)$ _____(correct)
 - (b) $\left(-10, \frac{\pi}{3}\right)$
 - (c) $\left(-5, \frac{2\pi}{3}\right)$
 - (d) $\left(-5, \frac{\pi}{3}\right)$
 - (e) $\left(-10, \frac{5\pi}{3}\right)$

- 6. The area of the region that lies inside $r=4\sin\theta$ and outside r=2 is equal to
 - (a) $4 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (4 \sin^2 \theta 1) d\theta$ ______(correct)
 - (b) $8 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (4\sin^2\theta 1) d\theta$
 - (c) $4 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1 4\sin^2\theta) d\theta$
 - (d) $\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (4\sin^2\theta 1) d\theta$
 - (e) $8 \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (1 4\sin^2\theta) d\theta$

- 7. The arc length of the polar curve $r=2\cos\,\theta,\,0\leq\theta\leq\frac{\pi}{2}$ is equal to
 - (a) π _____(correct)
 - (b) $\frac{3\pi}{2}$
 - (c) 2 π
 - (d) $\frac{2\pi}{3}$
 - (e) 3π

- 8. A unit vector that is perpendicular to the graph of the function $f(x) = -x^2 + 5$ at the point (1,4) is
 - (a) $\left\langle -\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right\rangle$ _____(correct)
 - (b) $\left\langle \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right\rangle$
 - (c) $\left\langle -\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right\rangle$
 - (d) $\left\langle \frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}} \right\rangle$
 - (e) $\left\langle \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}} \right\rangle$

9. The equation of the sphere that has a diameter with end points (5,0,-1) and (1,-4,1) is

(a)
$$(x-3)^2 + (y+2)^2 + z^2 = 9$$
 _____(correct)

(b)
$$(x+3)^2 + (y+2)^2 + z^2 = 9$$

(c)
$$(x-3) + y^2 + z^2 = 9$$

(d)
$$(x-3)^2 + (y-2)^2 + z^2 = 9$$

(e)
$$(x-3) + y^2 + (z-1)^2 = 9$$

10. If \vec{w} is a vector with length 6 and has the same direction as $\vec{v}=<2,0,\sqrt{12}>,$ then $\vec{w}=$

(a)
$$< 3, 0, 3\sqrt{3} >$$
 _____(correct)

- (b) $< 12, 0, 12\sqrt{12} >$
- (c) $<\sqrt{6}, 0, \sqrt{30}>$
- (d) $< 0, 3, 3\sqrt{3} >$
- (e) $< 3\sqrt{3}, 0, 3 >$

11. Let \vec{u} and \vec{v} be two vectors such that $\vec{u} \cdot \vec{v} = -6$ and $\vec{v} = <1, 2, k>$. If $\operatorname{proj}_{\vec{v}}\vec{u} = -\vec{v}$ and k > 0, then k =

(correct) (a) 1 _

(b) $\sqrt{2}$

(c) $\sqrt{3}$

(d) $\frac{1}{2}$ (e) $\frac{1}{3}$

12. The angle between the vectors $\vec{u}=<-2,0,1>$ and $\vec{v}=<4,0,-2>$ is equal to

(correct) (a) π .

(b) 2π

(c) 3π

(d) $\frac{\pi}{2}$ (e) $\frac{\pi}{3}$

13. Let $\vec{u}=<1,2,-1>$ and $\vec{v}=<-1,1,k>$. If \vec{u} is orthogonal to $2\vec{u}-\vec{v}$, then k=

(a) -11 _____(correct)

- (b) -8
- (c) 11
- (d) 8
- (e) -9

- 14. The area of the parallelogram with vectors < 1, 2, 0 >and < -1, -3, 4 >as adjacent sides is equal to
 - (a) 9 _____(correct)
 - (b) 8
 - (c) 7
 - (d) 10
 - (e) 6

- 15. If $\vec{u}=< a,1,0>,$ $\vec{v}=<0,a,1>,$ $\vec{w}=<1,0,a>$ are such that $\vec{u}\cdot(\vec{v}\times\vec{w})=9,$ then a=
 - (a) 2 _____(correct)
 - (b) 1
 - (c) 3
 - (d) 4
 - (e) 0

- 16. Suppose that the three vectors $\vec{u}=3\vec{i}+c\vec{j}+\vec{k},\ \vec{v}=2\vec{j}-2\vec{k},$ and $\vec{w}=<3,1,1>$ are coplanar then c=
 - (a) 1 _____(correct)
 - (b) 2
 - (c) -1
 - (d) 0
 - (e) -2

17. Which of the following has the same graph as the graph of the parametric equations

$$x = 2t, y = 4t - 3?$$

- (a) $x = \theta^3, y = 2\theta^3 3$ ______(correct)
- (b) $x = 2t^2$, $y = 4t^2 3$
- (c) $x = 2\cos\theta$, $y = 4\cos\theta 3$
- (d) $x = e^t$, $y = 2e^t 3$
- (e) $x = \frac{2}{\theta}, y = \frac{4}{\theta} 3$

18. The parametric equations

$$x = 3\csc\theta - 1, y = 4\cot\theta - 1$$

represent

- (a) A hyperbola _____(correct)
- (b) An ellipse
- (c) A parabola
- (d) A pair of intersecting lines
- (e) A line

- 19. The area of the surface formed by revolving the right part of the cardioid $r=1+\sin(\theta),\ \theta\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ about the line $\theta=\frac{\pi}{2}$ is
 - (a) $\frac{32\pi}{5}$ _____(correct)
 - (b) $\frac{16\pi}{5}$
 - (c) $\frac{8\pi}{5}$
 - (d) $\frac{4\pi}{5}$
 - (e) $\frac{2\pi}{5}$

- 20. Consider the following statements about vectors:
 - (I) If \vec{u} and \vec{v} have the same magnitude and direction, then \vec{u} and \vec{v} are equivalent.
 - (II) If \vec{u} and \vec{v} are non-zero vectors sharing the same direction, then $\vec{v} = ||\vec{v}|| \vec{u}$.
 - (III) If a = b, then $||a\vec{i} + b\vec{j}|| = \sqrt{2}a$.
 - (IV) If \vec{u} and \vec{v} have the same magnitude but opposite directions, then $\vec{u} + \vec{v} = \vec{0}$. Then
 - (a) I and IV are true _____(correct)
 - (b) I and II are true
 - (c) I and III are true
 - (d) II and IV are true
 - (e) Only I is true

						COPPOL	
Q	MASTER	CODE01	CODE	02 CODI	E03	CODE04	
1	A	C 2	C 16	A 1	2	A 7	
2	A	A 17	A 20	В 18	5	Εσ	
3	A	E s	D 2	E 2		D 12	
4	A	В 19	E 10	D s		E 1	
5	A	В ,	D 3	D ,		C 16	
6	A	E 18	D 19	В 4		A 3	
7	A	В 15	A 14	D 14		C 10	
8	A	E 12	C 4	E 18		В 19	
9	A	E 6	C 8	В 6		E 11	
10	A	C 5	D 18	A 3		A 8	
11	A	E 14	E 15	A 17		A 18	
12	A	E 11	В 13	A 10		B 13	
13	A	E 10	A 17	A 19		A 4	
14	A	В 16	С 6	D 7	I		
15	A	A 20	E 5	Въ			
16	A	D 7	C ,	D 1	E		
17	A	D 13	A 12	A 11	C	15	
18	A	D 3	A 7	B 16	D	17	
19	A	E 1	D 1	D	17	20	
20	A	D 4	В 11	B 20			