1. If the plane containing the point (2,1,2) and the line given by

$$\frac{x-1}{3} = \frac{y-2}{4} = z+1$$

passes through the point (-1, b, 1) then b =

- (a) -3 _____(correct)
- (b) 3
- (c) 2
- (d) -2
- (e) 1

2. The distance between the planes

$$2x - 3y + 6z = 6$$
 and $-4x + 6y - 12z = 2$

is equal to

- (a) 1 _____(correct)
- (b) 2
- (c) 3
- (d) 6
- (e) 8

3. The distance between the two lines

$$L_1: -2x = y - 3 = 2z - 8$$
 and $L_2: 2x = 1 - y = 8 - 2z$,

is equal to

- (a) $\frac{\sqrt{12}}{3}$ _____(correct)
- (b) $\frac{\sqrt{22}}{3}$
- (c) $\frac{\sqrt{66}}{3}$
- (d) $\frac{4}{3}$
- (e) $\frac{2}{3}$

4. The surface

$$4x^2 - 3y^2 + 12z^2 + 12 = 0$$

is

(a) a hyperboloid of two sheets with the y-axis as its axis _____

____(correct)

- (b) a hyperboloid of two sheets with the x-axis as its axis
- (c) a hyperboloid of one sheet with the z-axis as its axis
- (d) a hyperboloid of one sheet with the y-axis as its axis
- (e) a hyperboloid of one sheet with the x-axis as its axis

5. An equation of the surface that consists of all points equidistant from the point (2,2,2) and the xy-plane is

(a)
$$z = \frac{(x-2)^2}{4} + \frac{(y-2)^2}{4} + 1$$
 _____(correct)

(b)
$$\frac{(z-1)^2}{2} = \frac{(x-2)^2}{4} + \frac{(y-2)^2}{4}$$

(c)
$$\frac{(z-2)^2}{4} = (x-2)^2 + (y-2)^2$$

(d) $z = (x-2)^2 + (y-2)^2 + 2$

(d)
$$z = (x-2)^2 + (y-2)^2 + 2$$

(e)
$$y = \frac{(x+2)^2}{4} + \frac{(z+2)^2}{4} + 2$$

- 6. The level curves of $f(x,y) = e^{1-x^2+y^2}$ are
 - (correct) (a) hyperbolas
 - (b) parabolas
 - (c) ellipses
 - (d) circles
 - (e) lines

7.
$$\lim_{(x,y)\to(0,0)} e^{\left(\frac{1-\sec(x^2+y^2)}{x^2+y^2}\right)} =$$

- (correct) (a) 1 _
- (b) e
- (c) 0
- (d) ∞
- (e) $-\infty$

8.
$$\lim_{(x,y)\to(0,1)} \tan^{-1}\left(\frac{x^2-1}{x^2+(y-1)^2}\right) =$$

- (a) $-\frac{\pi}{2}$ (b) $\frac{\pi}{2}$ (correct)
- (c) 0
- (d) DNE
- (e) $-\frac{\pi}{4}$

- 9. Let $f(x, y, z) = ye^x + x \ln z$, then $x f_{xz} f_{zx} + f_{zz} =$
 - (a) 0 _____(correct)
 - (b) $\frac{-x}{x^2}$
 - (c) 1
 - (d) $\frac{x}{z^2}$
 - (e) $\frac{-x}{x}$

- 10. Let $f(x, y) = x^y$, then $f_y(e, 1) =$
 - (a) e _____(correct)
 - (b) 1
 - (c) e^2
 - (d) ee
 - (e) 0

11. If the radius and height of a right circular cylinder are respectively measured as $10 \, cm$ and $30 \, cm$ with possible errors $\pm 0.02 \, cm$ and $\pm 0.04 \, cm$, respectively, then the error in calculating the volume of the cylinder is approximately

(a) $\pm 16 \pi cm^3$ _____(correct)

(b) $\pm 18 \pi \, cm^3$

(c) $\pm 15 \pi \, cm^3$

(d) $\pm 20 \pi cm^3$

(e) $\pm 12 \pi \, cm^3$

12. If (x, y) moves from the point (2, 2) to the point (2.04, 1.98), then, using differentials, we find that the change in $z = \sqrt{3x^2 + y^2}$ is approximately

(a) 0.05 _____(correct)

(b) 0.04

(c) 0.03

(d) 0.02

(e) 0.06

13. If $x \cos 3y + x^3y^5 = 3x - e^{xy}$, then the value of $\frac{dy}{dx}$ at the point (1,0) is

- (a) 2 _____(correct
- (b) -2
- (c) 1
- (d) -1
- (e) 0

14. Let $w = xy^2 + yz^2 + zx^2$, $x = t^2$, $y = t^2 - 2s$, $z = s^2 - 2t$. The value of $\frac{\partial w}{\partial s}$ when t = 1, s = 1 is equal to

- (a) 8 _____(correct)
- (b) 4
- (c) 6
- (d) 2
- (e) 0

- 15. The directional derivative of $f(x,y)=e^{-(x^2+y^2)}$ at (0,0) in the direction of $\vec{v}=<1,1>$ is
 - (a) 0 _____(correct)
 - (b) 1
 - (c) 2
 - (d) -1
 - (e) -2

- 16. If the temperature at the point (x,y) on a metal plate is $T(x,y) = \frac{x}{x^2 + 2y^2}$, the direction of the greatest increase in heat from the point (1,-1) is
 - (a) $\left\langle \frac{1}{9}, \frac{4}{9} \right\rangle$ _____(correct)
 - (b) $\left\langle \frac{1}{9}, \frac{-2}{9} \right\rangle$
 - (c) $\left\langle \frac{2}{9}, \frac{-1}{9} \right\rangle$
 - (d) $\left\langle \frac{4}{9}, \frac{1}{9} \right\rangle$
 - (e) $\left\langle \frac{1}{25}, \frac{-4}{25} \right\rangle$

17. If $f(x,y) = x - y^2$, then the tangent line to the level curve f(x,y) = 3 at point (4,-1) is

- (a) 2y = -x + 2 _____(correct)
- (b) 7y = -2x + 1
- (c) y = -x + 3
- (d) -7y = -x + 11
- (e) y = x + 1

18. The domain of the function $f(x, y, z) = \frac{\sqrt{x^2 + y^2 + z^2 - 64}}{y}$ is

- (a) The set of all points lying on or outside the sphere with center at the origin and radius 8 and are not on the xz-plane. ____(correct)
- (b) The set of all points lying on or inside the sphere with center at the origin and radius 8 and are not on the xz-plane.
- (c) The set of all points lying on or outside the sphere with center the origin and radius 4 and are not on the x-axis.
- (d) The set of all points lying on or inside the sphere with center at the origin and radius 4 and are not on the y-axis.
- (e) The set of all points lying on or outside the sphere with center at the origin and radius 8 and are not on the x-axis.

19. Let
$$f(x,y) = \begin{cases} \frac{3x^2y}{x^4 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Which one of the following statements is FALSE?

- (a) $\lim_{(x,y)\to(0,0)} f(x,y)$ exists _____(correct)
- (b) f is not differentiable at (0,0)
- (c) f is not continuous at (0,0)
- (d) The domain of f is \mathbb{R}^2
- (e) $f_x(0,0) = 0$

20. If z is defined implicitly as a differentiable function of x and y by the equation

$$x \ln y + y^2 z - z^2 x = 10$$

then
$$\frac{\partial z}{\partial x} =$$

- (a) $\frac{z^2 \ln y}{y^2 2xz}$ ______(correct)
- (b) $\frac{z^2 \ln y}{y^2 + 2xz}$
- $(c) \frac{z^2 + \ln y}{y^2 + 2xz}$
- $(d) \frac{z^2 x}{y^2 2xz}$
- (e) $\frac{y^2 \ln y}{y^2 2xz}$

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	A	C 18	В 3	D 3	C 10
2	A	В 12	E 5	A 1	A 7
3	A	A 19	E 18	D 19	В 19
4	A	A 1	D 13	E 14	В 13
5	A	A 20	D 16	D 10	C 16
6	A	D 17	D 15	A 20	С 6
7	A	В 15	C ₈	A 7	C ,
8	A	В 5	E ,	D 13	Вв
9	A	В 11	Α,	D 12	A 15
10	A	C 2	D 2	A 6	E 4
11	A	A 13	C 4	E 8	В 11
12	A	В 16	E 6	D 4	D 2
13	A	E 14	В 19	A 18	В 17
14	A	E 4	A 12	A 16	E 5
15	A	С 3	C 17	A 17	E 12
16	A	Е,	С 1	D ,	A 14
17	A	D ,	E 20	В 2	A 20
18	A	D 8	E 14	D 15	С 1
19	A	D 6	E 10	В 11	D 3
20	A	A 10	E 11	C 5	E 18