King Fahd University of Petroleum and Minerals Department of Mathematics

Math 201
Major Exam I
231
October 04, 2023
Net Time Allowed: 120 Minutes

MASTER VERSION

1. Let C be the portion of the parametric curve $x=3 \cos t$ and $y=3 \sin t$ from the point $(3,0)$ to $\left(\frac{3}{2}, \frac{3 \sqrt{3}}{2}\right)$. The area of the surface obtained by rotating C about the x-axis is
(a) 9π
(b) $\frac{2}{3}$
(c) 3π
(d) $\frac{3}{2}$
(e) $\frac{4}{5} \pi$
2. If \vec{a} and \vec{b} are unit vectors in space and the angle between them is $\frac{2 \pi}{3}$, then $(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{a})$ is equal to
(a) $-\frac{3}{4}$
(b) $\frac{2}{3}$
(c) -3
(d) 0
(e) $\frac{4}{5}$
3. If the equation $x^{2}+y^{2}+z^{2}+2 x-4 y+6 z+5=0$ represents a sphere with center (a, b, c) and radius r, then $a+b+c+r=$
(a) 1
(b) -2
(c) -3
(d) 0
(e) 2
4. A set of parametric equations for the rectangular equation $y=2 x-5$ that represents the point $(3,1)$ when $t=0$ is
(a) $x=3-t, \quad y=1-2 t$
(b) $x=3+2 t, \quad y=1+2 t$
(c) $x=3-t, \quad y=2+t$
(d) $x=3+t, \quad y=1-t$
(e) $x=3-2 t, \quad y=1+t$
5. The parametric curve

$$
x=t^{2}, \quad y=t^{3}-3 t
$$

is concave upward on the interval
(a) $t \in(0, \infty)$
(b) $t \in(-\infty, \infty)$
(c) $t \in(-\infty, 1)$
(d) $t \in(-\infty, 0)$
(e) $t \in(-1, \infty)$
6. The slope of the tangent line to the curve

$$
x=2 t-1, \quad y=t+t^{2}
$$

at the point $(1,2)$ is
(a) $\frac{3}{2}$
(b) 1
(c) $\frac{1}{3}$
(d) 0
(e) $-\frac{1}{2}$
7. If $\vec{u}=\langle 2,-4\rangle, \vec{v}=\langle 2,-3\rangle$ and a, b are scalars such that $a \vec{u}+b \vec{v}=\langle-4,1\rangle$, then $2 a+b=$
(a) 3
(b) -2
(c) 2
(d) 0
(e) 1
8. The sum of all possible values of m such that the points $(0,2,1),(m-1,0, m)$, $(5,-m, 6)$ are collinear is equal to
(a) -1
(b) -2
(c) 2
(d) 0
(e) 3
9. The area of the triangle with vertices $A(0,2,2), B(2,0,-1), C(3,4,0)$ is
(a) $\frac{15}{2}$
(b) $\frac{5}{4}$
(c) 5
(d) $\frac{13}{3}$
(e) 1
10. The slope of the tangent line to the cardioid $r=1+\sin \theta$ when $\theta=\frac{\pi}{3}$ is equal to
(a) -1
(b) -2
(c) 2
(d) 3
(e) $-\frac{1}{3}$
11. The area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$ is equal to
(a) $\frac{\pi}{8}$
(b) 8π
(c) $\frac{2 \pi}{3}$
(d) $\frac{5 \pi}{8}$
(e) π
12. The exact length of the polar curve

$$
r=2 \cos \theta, \quad 0 \leq \theta \leq \pi
$$

is equal to
(a) 2π
(b) 5π
(c) $\frac{3 \pi}{2}$
(d) $\frac{5 \pi}{7}$
(e) 3π
13. If the vectors $\vec{a}=\langle 2,2,-1\rangle$ and $\vec{b}=\langle 5,-4, m\rangle$ are orthogonal. Then $m=$
(a) 2
(b) -1
(c) 0
(d) 3
(e) -3
14. Consider the vectors $\vec{u}=\langle-3,1,2\rangle$ and $\vec{v}=\langle 1,2,-3\rangle$. If the vector projetion of \vec{u} onto \vec{v} is $\langle a, b, c\rangle$, then $a+b+c=$
(a) 0
(b) -1
(c) 2
(d) 3
(e) 1
15. The area of the region that lies inside the polar curve $r=2+\sin \theta$ and outside the circle $r=3 \sin \theta$ is
(a) $\frac{9 \pi}{4}$
(b) $\frac{4 \pi}{3}$
(c) $\frac{5 \pi}{2}$
(d) π
(e) 3π
16. The Cartesian equation of the parametric curve

$$
x=\ln t \quad y=\sqrt{t}, \quad t \geq 1
$$

is given by
(a) $y=e^{x / 2}, \quad x \geq 0$
(b) $y=e^{x}, \quad x \geq 0$
(c) $y=e^{2 x}, \quad x \geq 1$
(d) $y=e^{x}, \quad x \geq 1$
(e) $y=e^{2 x}, \quad x \geq 0$
17. Consider the points $A(2,1,-1), B(3,0,2), C(4,-2,-1)$ and $D(3, m, 0)$. If the volume of the parallelepiped determined by the vectors $\overrightarrow{A B}, \overrightarrow{A C}$, and $\overrightarrow{A D}$ is 4 , then the sum of all possible values of m is
(a) $-\frac{2}{3}$
(b) $\frac{3}{2}$
(c) $-\frac{4}{3}$
(d) $\frac{3}{5}$
(e) $\frac{3}{7}$
18. The parametric curve

$$
x=t^{2}+4 t, \quad y=6 t^{2}
$$

has a vertical tangent line at the point
(a) $(-4,24)$
(b) $(0,0)$
(c) $(5,6)$
(d) $(-3,6)$
(e) $(2,-24)$
19. A vector \vec{v} of length 3 that has the direction opposite to the vector $\vec{a}=\langle 1,2,-3\rangle$ is
(a) $\frac{1}{\sqrt{14}}\langle-3,-6,9\rangle$
(b) $\frac{1}{\sqrt{11}}\langle 3,6,-9\rangle$
(c) $\frac{1}{\sqrt{14}}\langle-1,-2,9\rangle$
(d) $\frac{1}{\sqrt{11}}\langle 1,2,-3\rangle$
(e) $\frac{1}{\sqrt{14}}\langle 2,4,-6\rangle$
20. If $\|\vec{u}\|=\sqrt{3},\|\vec{v}\|=2$ and $\vec{u} \cdot \vec{v}=\sqrt{6}$. The angle θ between the two vectors \vec{u} and \vec{v} is
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{3}$
(c) $\frac{3 \pi}{2}$
(d) $\frac{\pi}{5}$
(e) $\frac{5 \pi}{4}$

