King Fahd University of Petroleum and Minerals Department of Mathematics **Math 201 Major Exam I** 231 October 04, 2023 Net Time Allowed: 120 Minutes

MASTER VERSION

- 1. Let C be the portion of the parametric curve $x = 3\cos t$ and $y = 3\sin t$ from the point (3,0) to $(\frac{3}{2}, \frac{3\sqrt{3}}{2})$. The area of the surface obtained by rotating C about the x-axis is
 - (a) 9π
 - (b) $\frac{2}{3}$

 - (c) 3π
 - (d) $\frac{3}{2}$ (e) $\frac{4}{5}\pi$

2. If \vec{a} and \vec{b} are unit vectors in space and the angle between them is $\frac{2\pi}{3}$, then $(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{a})$ is equal to

(a)
$$-\frac{3}{4}$$

(b) $\frac{2}{3}$
(c) -3
(d) 0
(e) $\frac{4}{5}$

- 3. If the equation $x^2 + y^2 + z^2 + 2x 4y + 6z + 5 = 0$ represents a sphere with center (a, b, c) and radius r, then a + b + c + r =
 - (a) 1
 - (b) -2
 - (c) -3
 - (d) 0
 - (e) 2

- 4. A set of parametric equations for the rectangular equation y = 2x-5 that represents the point (3, 1) when t = 0 is
 - (a) x = 3 t, y = 1 2t(b) x = 3 + 2t, y = 1 + 2t(c) x = 3 - t, y = 2 + t(d) x = 3 + t, y = 1 - t(e) x = 3 - 2t, y = 1 + t

5. The parametric curve

$$x = t^2, \qquad y = t^3 - 3t$$

is concave upward on the interval

- (a) $t \in (0, \infty)$ (b) $t \in (-\infty, \infty)$ (c) $t \in (-\infty, 1)$ (d) $t \in (-\infty, 0)$
- (e) $t \in (-1, \infty)$

6. The slope of the tangent line to the curve

 $x = 2t - 1, \qquad y = t + t^2$

at the point (1,2) is

(a)
$$\frac{3}{2}$$

(b) 1
(c) $\frac{1}{3}$
(d) 0
(e) $-\frac{1}{2}$

- 7. If $\vec{u} = \langle 2, -4 \rangle$, $\vec{v} = \langle 2, -3 \rangle$ and a, b are scalars such that $a\vec{u} + b\vec{v} = \langle -4, 1 \rangle$, then 2a + b =
 - (a) 3
 - (b) -2
 - (c) 2
 - (d) 0
 - (e) 1

- 8. The sum of all possible values of m such that the points (0, 2, 1), (m 1, 0, m), (5, -m, 6) are collinear is equal to
 - (a) −1
 - (b) -2
 - (c) 2
 - (d) 0
 - (e) 3

- 9. The area of the triangle with vertices A(0, 2, 2), B(2, 0, -1), C(3, 4, 0) is
 - (a) $\frac{15}{2}$ (b) $\frac{5}{4}$ (c) 5 (d) $\frac{13}{3}$
 - (e) 1

10. The slope of the tangent line to the cardioid $r = 1 + \sin \theta$ when $\theta = \frac{\pi}{3}$ is equal to

(a) -1(b) -2(c) 2 (d) 3 (e) $-\frac{1}{3}$

- 11. The area enclosed by one loop of the four-leaved rose $r = \cos 2\theta$ is equal to
 - (a) $\frac{\pi}{8}$ (b) 8π (c) $\frac{2\pi}{3}$ (d) $\frac{5\pi}{8}$

(e) π

12. The exact length of the polar curve

 $r = 2\cos\theta, \qquad 0 \le \theta \le \pi$

is equal to

- (b) 5π
- (c) $\frac{3\pi}{2}$ (d) $\frac{5\pi}{7}$
- (e) 3π

13. If the vectors $\vec{a} = \langle 2, 2, -1 \rangle$ and $\vec{b} = \langle 5, -4, m \rangle$ are orthogonal. Then m =

- (a) 2
- (b) -1
- (c) 0
- (d) 3
- (e) -3

- 14. Consider the vectors $\vec{u} = \langle -3, 1, 2 \rangle$ and $\vec{v} = \langle 1, 2, -3 \rangle$. If the vector projetion of \vec{u} onto \vec{v} is $\langle a, b, c \rangle$, then a + b + c =
 - (a) 0
 - (b) -1
 - (c) 2
 - (d) 3
 - (e) 1

15. The area of the region that lies inside the polar curve $r = 2 + \sin \theta$ and outside the circle $r = 3 \sin \theta$ is

(a)
$$\frac{9\pi}{4}$$

(b)
$$\frac{4\pi}{3}$$

(c)
$$\frac{5\pi}{2}$$

(d) π

(e) 3π

16. The Cartesian equation of the parametric curve

 $x = \ln t$ $y = \sqrt{t},$ $t \ge 1$

is given by

(a)
$$y = e^{x/2}$$
, $x \ge 0$
(b) $y = e^x$, $x \ge 0$
(c) $y = e^{2x}$, $x \ge 1$
(d) $y = e^x$, $x \ge 1$
(e) $y = e^{2x}$, $x \ge 0$

17. Consider the points A(2, 1, -1), B(3, 0, 2), C(4, -2, -1) and D(3, m, 0). If the volume of the parallelepiped determined by the vectors \vec{AB} , \vec{AC} , and \vec{AD} is 4, then the **sum** of all possible values of m is

(a)
$$-\frac{2}{3}$$

(b) $\frac{3}{2}$
(c) $-\frac{4}{3}$
(d) $\frac{3}{5}$
(e) $\frac{3}{7}$

18. The parametric curve

 $x = t^2 + 4t, \qquad y = 6t^2$

has a vertical tangent line at the point

(a) (-4, 24)

- (b) (0,0)
- (c) (5,6)
- (d) (-3, 6)
- (e) (2, -24)

19. A vector \vec{v} of length 3 that has the direction opposite to the vector $\vec{a} = \langle 1, 2, -3 \rangle$ is

(a)
$$\frac{1}{\sqrt{14}} \langle -3, -6, 9 \rangle$$

(b) $\frac{1}{\sqrt{11}} \langle 3, 6, -9 \rangle$
(c) $\frac{1}{\sqrt{14}} \langle -1, -2, 9 \rangle$
(d) $\frac{1}{\sqrt{11}} \langle 1, 2, -3 \rangle$
(e) $\frac{1}{\sqrt{14}} \langle 2, 4, -6 \rangle$

20. If $\|\vec{u}\| = \sqrt{3}$, $\|\vec{v}\| = 2$ and $\vec{u} \cdot \vec{v} = \sqrt{6}$. The angle θ between the two vectors \vec{u} and \vec{v} is

(a)
$$\frac{\pi}{4}$$

(b) $\frac{\pi}{3}$
(c) $\frac{3\pi}{2}$
(d) $\frac{\pi}{5}$
(e) $\frac{5\pi}{4}$