King Fahd University of Petroleum and Minerals Department of Mathematics

Math 201
Exam II
231
November 14, 2023
Net Time Allowed: 120 Minutes

MASTER VERSION

1. The area of the region that lies in the first quadrant as well as in the domain of the function $f(x, y)=\ln (6-x-y)$ is equal to
(a) 18 \qquad (correct)
(b) 30
(c) 23
(d) 12
(e) 34
2. The level surfaces of $f(x, y, z)=\ln \left(4 x^{2}+4 y^{2}-z^{2}\right)$ are
(a) hyperboloids of one sheet \qquad (correct)
(b) ellipsoids
(c) elliptic cones
(d) hyperbolic paraboloids
(e) hyperboloids of two sheets
3. The range of

$$
f(x, y)=4 \ln \left(3-2 x^{2}-y^{2}\right)
$$

is
(a) $(-\infty, 4 \ln 3]$
(b) $(-1,1)$
(c) $(-\ln 4,0]$
(d) $(-\infty, \infty)$
(e) $[-1, \ln 4)$
4. $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{-x^{2}-y^{2}}-1}{x^{2}+y^{2}}=$
(a) -1 \qquad (correct)
(b) 3
(c) -2
(d) 0
(e) does not exist
5. If the maximum increase of the function $f(x, y)=x^{2}+y^{2}-4 x-2 y$ at the point $(5, c)$ occurs in the direction of $\vec{i}+2 \vec{j}$, then $c=$
(a) 7 \qquad
(b) 0
(c) 4
(d) 5
(e) 3
6. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}=$
(a) does not exist (correct)
(b) 1
(c) 0
(d) -1
(e) ∞
7. Let $z=\tan ^{-1}(x y)$ where $x=s+\sin t$ and $y=\cos t$. Then $\frac{\partial z}{\partial s}+\frac{\partial z}{\partial t}$ at $(s, t)=(1,0)$ is equal to
(a) 1
(b) -4
(c) -2
(d) 8
(e) 0
8. Let
$f(x, y)=\left\{\begin{array}{ll}\frac{\sin (x y)}{x y}, & x y \neq 0 \\ c, & x y=0\end{array}\right.$ The value of c that makes $f(x, y)$ continuous at $(0,0)$ is
(a) 1 (correct)
(b) -1
(c) 2
(d) -4
(e) 0
9. The normal line to the surface

$$
\ln \left(\frac{x}{y-z}\right)=x-1
$$

at the point $(1,4,3)$ passes through the point
(a) $(1,3,4)$
(b) $(0,3,3)$
(c) $(1,2,1)$
(d) $(1,2,3)$
(e) $(2,3,3)$
10. If the radius and height of a right circular cone are measured as 10 cm and 25 cm , respectively, with a possible error in measurement of as much as 0.1 cm in each. The maximum error in the calculated volume of the cone is estimated as (Hint: The volume V of a cone with radius r and height h is $V=\frac{1}{3} \pi r^{2} h$).
(a) 20π \qquad (correct)
(b) 2π
(c) 10π
(d) 4π
(e) 12π
11. Let $f(x, y, z)=x e^{x y} \sin ^{2} z$. Then $f_{x y z}(-1,0, \pi / 4)=$
(a) -2 \qquad (correct)
(b) 1
(c) 0
(d) 4
(e) -1
12. Let $W(s, t)=F(u(s, t), v(s, t))$, where F, u and v are differentiable functions, and

$$
\begin{array}{ll}
F_{u}(2,-3)=1, & F_{v}(2,-3)=3,
\end{array} \quad u(1,0)=2, \quad v(1,0)=-3, ~\left(v_{s}(1,0)=5, \quad u_{t}(1,0)=-6, \quad v_{t}(1,0)=4, ~ l\right.
$$

Then $W_{s}(1,0)+W_{t}(1,0)=$
(a) 19
(b) 22
(c) 0
(d) 20
(e) 11
13. If $2 y z+x \ln y=z^{2}$, then $\frac{\partial z}{\partial y}$ at $(2,1,2)$ equals
(a) 3
(b) 5
(c) 0
(d) 4
(e) 1
14. The distance between the parallel planes

$$
10 x+2 y-2 z=5 \quad \text { and } \quad 5 x+y-z=1
$$

is equal to
(a) $\frac{\sqrt{3}}{6}$
(b) $\sqrt{7}$
(c) $\frac{1}{\sqrt{3}}$
(d) $\sqrt{13}$
(e) $\frac{1}{\sqrt{2}}$
15. If the directional derivative of $f(x, y)=\ln (1+x y)$ at $(a, 4)$ in the direction of $\vec{v}=\langle 1,-2\rangle$ is 0, then $a=$
(a) 2 \qquad (correct)
(b) -1
(c) 0
(d) 4
(e) 1
16. If the line that passes through the points $P(1,3,4)$ and $Q(0,5,7)$ passes also through the point $R(2,1, a)$, then $a=$
(a) 1 \qquad (correct)
(b) 3
(c) 2
(d) -2
(e) 5
17. If the equation of the plane containing the point $(1,2,3)$ and passing through the line of intersection of the planes

$$
x+y+z=1, \quad 2 x-y+2 z=2
$$

is given by $2 x+a y+2 z=b$, then $a+b=$
(a) -1
(b) 2
(c) 0
(d) 3
(e) -2
18. Consider the surface

$$
x^{2}-3 y^{2}-9 z^{2}=0 .
$$

Which of the following is/are correct?
(I) The vertical trace in the $x z$-plane is the lines $x= \pm 3 z$.
(II) The traces in the plane parallel to the $y z$-plane are ellipses.
(III) The surface represents a hyperboloid of two sheets.
(a) (I) and (II) only (correct)
(b) (I) only
(c) (II) only
(d) (II) and (III) only
(e) (III) only
19. If the line with symmetric equations

$$
x-2=z-1, \quad y=1
$$

is perpendicular to the surface $3 x^{2}-2 x y+z^{2}=1$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$, then $x_{0}+y_{0}+z_{0}=$
(a) 0 \qquad (correct)
(b) 2
(c) 1
(d) 3
(e) 4
20. Let $w=\sqrt{x^{2}+y^{2}+z^{2}}$, where

$$
x=\cos \theta, \quad y=\sin \theta, \quad z=\tan \theta
$$

Then $\frac{d w}{d \theta}$ at $\theta=\frac{\pi}{4}$ is equal to
(a) $\sqrt{2}$ \qquad (correct)
(b) $\sqrt{3}$
(c) 1
(d) $3 \sqrt{2}$
(e) $2 \sqrt{3}$

