King Fahd University of Petroleum and Minerals Department of Mathematics Math 201 Exam II 231 November 14, 2023 Net Time Allowed: 120 Minutes

MASTER VERSION

- 1. The area of the region that lies in the first quadrant as well as in the domain of the function $f(x, y) = \ln(6 x y)$ is equal to
 - (a) 18 _____(correct) (b) 30 (c) 23
 - (d) 12
 - (e) 34

2. The level surfaces of $f(x, y, z) = \ln(4x^2 + 4y^2 - z^2)$ are

(a) hyperboloids of one sheet _____(correct)

(b) ellipsoids

(c) elliptic cones

(d) hyperbolic paraboloids

(e) hyperboloids of two sheets

3. The range of

$$f(x,y) = 4\ln(3 - 2x^2 - y^2)$$

is

(a)
$$(-\infty, 4 \ln 3]$$
 _____(correct)
(b) $(-1, 1)$
(c) $(-\ln 4, 0]$
(d) $(-\infty, \infty)$
(e) $[-1, \ln 4)$

4.
$$\lim_{(x,y)\to(0,0)} \frac{e^{-x^2-y^2}-1}{x^2+y^2} =$$

- (d) 0
- (e) does not exist

- 5. If the maximum increase of the function $f(x,y) = x^2 + y^2 4x 2y$ at the point (5,c) occurs in the direction of $\vec{i} + 2\vec{j}$, then c =
 - (a) 7 _____(correct) (b) 0 (c) 4
 - (d) 5
 - (e) 3

6.
$$\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^4 + y^2} =$$

(a) does not exist _____(correct)

- (b) 1
- (c) 0
- (d) -1
- (e) ∞

- 7. Let $z = \tan^{-1}(xy)$ where $x = s + \sin t$ and $y = \cos t$. Then $\frac{\partial z}{\partial s} + \frac{\partial z}{\partial t}$ at (s, t) = (1, 0) is equal to

 - (e) 0

8. Let

(c) 2

(e) 0

(d) -4

$$f(x,y) = \begin{cases} \frac{\sin(xy)}{xy}, & xy \neq 0\\ c, & xy = 0 \end{cases}$$
 The value of c that makes $f(x,y)$ continuous at $(0,0)$ is
(a) 1 _____(correct)
(b) -1

.

9. The normal line to the surface .

$$\ln\left(\frac{x}{y-z}\right) = x - 1$$

at the point (1, 4, 3) passes through the point

(a) (1,3,4) _____ (correct)(b) (0, 3, 3)(c) (1, 2, 1)(d) (1, 2, 3)(e) (2,3,3)

- 10. If the radius and height of a right circular cone are measured as 10 cm and 25 cm, respectively, with a possible error in measurement of as much as 0.1 cm in each. The maximum error in the calculated volume of the cone is estimated as (**Hint:** The volume V of a cone with radius r and height h is $V = \frac{1}{3}\pi r^2 h$).
 - (a) 20π _____ (correct)(b) 2π (c) 10π (d) 4π
 - (e) 12π

MASTER

11. Let $f(x, y, z) = xe^{xy} \sin^2 z$. Then $f_{xyz}(-1, 0, \pi/4) =$

- (d) 4
- (e) −1

12. Let W(s,t) = F(u(s,t), v(s,t)), where F, u and v are differentiable functions, and

 $F_u(2,-3) = 1,$ $F_v(2,-3) = 3,$ u(1,0) = 2, v(1,0) = -3, $u_s(1,0) = -2,$ $v_s(1,0) = 5,$ $u_t(1,0) = -6,$ $v_t(1,0) = 4,$

Then $W_s(1,0) + W_t(1,0) =$

- (b) 22
- (c) 0
- (d) 20
- (e) 11

MASTER

13. If $2yz + x \ln y = z^2$, then $\frac{\partial z}{\partial y}$ at (2, 1, 2) equals

(e) 1

14. The distance between the parallel planes

10x + 2y - 2z = 5 and 5x + y - z = 1

is equal to

- 15. If the directional derivative of $f(x,y) = \ln(1+xy)$ at (a,4) in the direction of $\vec{v} = \langle 1, -2 \rangle$ is 0, then a =
 - (a) 2 _____(correct) (b) -1 (c) 0 (d) 4
 - (e) 1

16. If the line that passes through the points P(1,3,4) and Q(0,5,7) passes also through the point R(2,1,a), then a =

(a) 1	(correct)
(b) 3	
(c) 2	
(d) -2	

(e) 5

(correct)

17. If the equation of the plane containing the point (1, 2, 3) and passing through the line of intersection of the planes

x + y + z = 1, 2x - y + 2z = 2

is given by 2x + ay + 2z = b, then a + b =

18. Consider the surface

 $x^2 - 3y^2 - 9z^2 = 0.$

Which of the following is/are correct?

- (I) The vertical trace in the xz-plane is the lines $x = \pm 3z$.
- (II) The traces in the plane parallel to the yz-plane are ellipses.

(III) The surface represents a hyperboloid of two sheets.

- (a) (I) and (II) only _____
- (b) (I) only
- (c) (II) only
- (d) (II) and (III) only
- (e) (III) only

Page 10 of 10

MASTER

19. If the line with symmetric equations

 $x - 2 = z - 1, \qquad y = 1$

is perpendicular to the surface $3x^2 - 2xy + z^2 = 1$ at the point (x_0, y_0, z_0) , then $x_0 + y_0 + z_0 =$

- (a) 0 ______(correct)
 (b) 2
 (c) 1
 (d) 3
- (e) 4

20. Let
$$w = \sqrt{x^2 + y^2 + z^2}$$
, where
 $x = \cos \theta$, $y = \sin \theta$, $z = \tan \theta$.
Then $\frac{dw}{d\theta}$ at $\theta = \frac{\pi}{4}$ is equal to
(a) $\sqrt{2}$ (correct)
(b) $\sqrt{3}$
(c) 1
(d) $3\sqrt{2}$
(e) $2\sqrt{3}$