1. [Example 2 p: 702]

The curve represented by the parametric equations

$$x = \frac{1}{\sqrt{t+1}}$$
 and $y = \frac{t}{t+1}; -1 < t \le 0$

is given by the rectangular equation

(a)
$$y = 1 - x^2, \quad x \ge 1$$
 (correct)
(b) $y = 1 - x^2, \quad 0 \le x \le 1$

(c)
$$y = x^2 - 1$$
, $x > 0$
(d) $y = -1 - x^2$, $0 < x < 1$

(d)
$$y = -1 - x$$
, $0 < x < 1$
(a) $y = \frac{x}{1 < x < 0}$

(e)
$$y = \frac{x}{1+x}, -1 < x \le 0$$

2. [Question #43 p: 707]

A possible set of parametric equations for the line through (0,0) and (4,-7) is

(a)
$$x = 4 + 4t, \quad y = -7 - 7t$$

(b)
$$x = 1 - 4t, \quad y = 1 + 7t$$

(c)
$$x = -4 + 4t, \quad y = -7t$$

(d)
$$x = 4 - 4t, \quad y = 7 - 7t$$

(e)
$$x = -7t, \quad y = 4t$$

3. [Question # 38 p: 715]

Let C be the curve given by the parametric equations

$$x = \cos \theta, y = 2\sin 2\theta$$
 on $[0, 2\pi)$

Let m be the number of **points** on the curve at which the tangent line is horizontal, and n be the number of **points** on the curve at which the tangent line is vertical. Then

- (a) m = 4 and n = 2
- (b) m = 4 and n = 0
- (c) m = 2 and n = 0
- (d) m = 2 and n = 4
- (e) m = 0 and n = 4

4. [Question # 45 p: 716]

The parametric curve given by

$$x = 2t + \ln t$$
, and $y = 2t - \ln t$

is

(a) concave upward when
$$t > 0$$

(b) concave downward when $t > 0$
(c) concave upward when $0 < t < \frac{1}{2}$ and downward when $t > \frac{1}{2}$
(d) concave downward when $0 < t < \frac{1}{2}$ and upward when $t > \frac{1}{2}$
(e) concave downward when $0 < t < \frac{1}{4}$

(correct)

(a)
$$[0, \pi)$$

(b) $[0, \frac{2\pi}{3})$
(c) $[\frac{\pi}{3}, \frac{2\pi}{3})$
(d) $[\frac{\pi}{3}, \pi)$
(e) $[0, 2\pi)$

6. [Question # 64 p: 727] The slope of the tangent line to the graph of $r = 2 + 3 \sin \theta$ at $\theta = \pi$, is

(correct)

Page 3 of 8

MASTER

MASTER

7. [Similar to Question # 13 p: 735]
The area of the region interior of
$$r = 2 + \sin \theta$$
 and below the polar axis is

(a)
$$\frac{9\pi}{4} - 4$$
 (correct)
(b)
$$\frac{9\pi}{2}$$
(c)
$$\frac{9\pi}{4}$$
(d)
$$\frac{9\pi}{2} - 4$$
(e)
$$\frac{9\pi}{4} - 8$$

8. [Question # 45 p: 736] The area of the region that lies inside $r = 1 + \cos \theta$ and outside $r = \cos \theta$ is

9. [Question # 47 p: 760] Let $\vec{v} = \langle a, b \rangle$ be the vector of magnitude 5 and in the same direction as the vector $\langle -1, 2 \rangle$. Then a + b =

- (a) $\sqrt{5}$
- (b) 5
- (c) $2\sqrt{5}$
- (d) $-\sqrt{5}$
- (e) $3\sqrt{5}$

10. [Question # 71 p:768]

The four vertices of a parallelogram ABCD taken in order are A(2,9,1), B(3,11,4), C(1,12,a) and D(0,b,2). Then a + b =

- (a) 15
- (b) 5
- (c) 20
- (d) -15
- (e) 6

(correct)

MASTER

- is obtuse (a)
- (b) is acute
- (c) is right
- (d) is equilateral
- (e) has zero area

12. [Question # 44 p:777]

(

(

The vector component of $\vec{u} = \langle 5, -1, -1 \rangle$ orthogonal to $\vec{v} = \langle -1, 5, 8 \rangle$ is

(a)
$$\vec{u} + \frac{1}{5}\vec{v}$$
 (correct)
(b) $\vec{u} - \frac{1}{5}\vec{v}$
(c) $-\vec{u} + \frac{1}{5}\vec{v}$
(d) $\vec{u} + \frac{6}{\sqrt{10}}\vec{v}$
(e) $\vec{0}$

MASTER

- (a) $\sqrt{11}$
- (b) $\sqrt{13}$
- (c) $\sqrt{7}$
- (d) $\sqrt{5}$
- (e) $\sqrt{3}$

- 14. [Similar to Example # 5 p: 784] Consider the three vectors $\vec{u} = \langle 1, 3, 1 \rangle$, $\vec{v} = \langle 0, 6, 6 \rangle$ and $\vec{w} = \langle -4, 0, -4 \rangle$. Then $\vec{u} \cdot (\vec{v} \times \vec{w}) =$
 - (a) -72
 - (b) 64
 - (c) 72
 - (d) 24
 - (e) -64

(correct)

15. [Question # 41 p: 767]

If the standard equation of the sphere with center (-7, 7, 6) and tangent to the *xy*- plane is $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$, then $a+b+c+r^2 =$

- (a) 42
- (b) 6
- (c) 12
- (d) 14
- (e) 26