(correct)

1. $[\mathbf{Q}\#\mathbf{12}\,\mathbf{p}.\mathbf{794}]$

Consider a line that passes through the point (5, -3, -4) and is parallel to the vector $\vec{u} = \langle 2, -1, 3 \rangle$. If this line also passes through the point (7, -4, a), then a is equal to

- (a) -1
- (b) 4
- (c) = 0
- (d) -2
- (e) -3

2. $[\mathbf{Q}\#49\,\mathbf{p}.\mathbf{795}]$

An equation of the plane passing through the point (1, 2, 3) and parallel to the *xy*-plane is

- (a) z = 3 (correct)
- (b) x = 1(c) y = 2
- (d) x + y + z 6 = 0
- (e) x + y 3 = 0

3. [Example #3 p.802]

The surface given by the equation $x - y^2 - 4z^2 = 2$ is:

- (a) Elliptic paraboloid
- (b) Ellipsoid
- (c) Hyperboloid of one sheet
- (d) Hyperboloid of two sheets
- (e) Elliptic cone

4. $[\mathbf{Q} \# \mathbf{27 p. 880}]$

The range of $f(x, y) = \sqrt{4 - x^2 - y^2}$ is

- (a) [0,2]
- (b) $[0,\infty)$
- (c) $[2,\infty)$
- (d) $(-\infty,\infty)$
- (e) (0, 4)

(correct)

(correct)

MASTER

5. [**Q**#60 p.893]

$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2) =$$

- (a) 0
- (b) $\ln(2)$
- (c) 2
- (d) 1
- (e) ∞

6. $[\mathbf{Q}\#\mathbf{54\,p.881}]$

The level curve of the function $f(x,y) = \sqrt{9 - x^2 - y^2}$ passing through the point $(2,\sqrt{5}, f(2,\sqrt{5}))$ is a circle of radius:

- (a) 3 (b) 1 (c) 2 (d) $\sqrt{5}$
- (e) 9

(correct)

7. $[\mathbf{Q}\#\mathbf{36\, p.891}]$

Consider the following statements about the function

$$f(x,y,z) = \frac{xy + yz^2 + xz^2}{x^2 + y^2 + z^2}$$

(I)
$$\lim_{(x,y)\to(0,0)} f(x,y,0) = 0$$

(II)
$$\lim_{(x,z)\to(0,0)} f(x,0,z) = 0$$

(III)
$$\lim_{x \to 0} f(x, x, x) = \frac{1}{3}$$

Then

- (b) (I) and (II) are true
- (c) (I) and (III) are true
- (d) only (III) is true
- (e) only (I) is true

8.
$$[\mathbf{Q} \# \mathbf{93} \, \mathbf{p}. \mathbf{901}]$$

If
$$f(x, y, z) = e^{-x} \sin(yz)$$
, then $f_{xyy} =$

(a)
$$e^{-x}z^2\sin(yz)$$

(b) $e^{-x}\cos(yz)$

(b)
$$e^{-x}\cos(yz)$$

(c)
$$-e^{-x}z^2\cos(yz)$$

(d)
$$e^{-x}y^2\cos(yz)$$

(e)
$$-e^{-x}\sin(yz)$$

$\left[\mathbf{Q}\#\mathbf{18}\,\mathbf{p.909} ight]$ 9.

Using total differential, the expression $5\sqrt{(4.03)^2 + (3.1)^2} - 5\sqrt{4^2 + 3^2}$ is approximately equal to

- 0.42(a)
- (b) 0.50
- (c)0.35
- (d) 0.30
- (e) 0.60

 $[Q\#18\,p.917]$ 10.

> Let $w = x^2 - y^2$, where $x = s \cos t$ and $y = s \sin t$. The value of $\frac{\partial w}{\partial t}$ when s = 3 and $t = \frac{\pi}{4}$ is equal to

- (a) -18(b) -12(c) 9
- (d)3
- (e) 6

11. [**Q**#31 p.917]

If
$$\tan(x+y) + \cos z = 2$$
, then $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} =$

(a)
$$\frac{2 \sec^2(x+y)}{\sin z}$$
(b)
$$-\frac{\sec^2(x+y)}{\sin z}$$
(c)
$$\frac{2 \tan(x+y)}{\cos z}$$
(d)
$$\frac{\tan^2(x+y)}{\cos z}$$
(e)
$$\frac{\csc^2(x+y)}{\sin z}$$

12. $[\mathbf{Q}\#\mathbf{13}\,\mathbf{p}.\mathbf{928}]$

The directional derivative of $f(x, y) = e^y \sin x$ at the point P(0, 0) in the direction of the vector \overrightarrow{PQ} , where Q(2, 1), is equal to

(a)
$$\frac{2}{\sqrt{5}}$$

(b) $\frac{3}{\sqrt{5}}$
(c) $\frac{1}{\sqrt{5}}$
(d) 2
(e) $-\sqrt{5}$
(correct)

13. [Example 2 p.933]

An equation of the tangent plane to the surface $z^2 - 2x^2 - 2y^2 = 12$ at the point (1, -1, 4) is given by x + ay + bz + c = 0, then a + b + c =

- (a) 3
- (b) 6
- (c) 9
- (d) 12
- (e) 1

14. **[Q#31 p.937]**

A set of symmetric equations for the tangent line to the curve of intersection of the surfaces

$$x^{2} + y^{2} + z^{2} = 14$$
 and $x - y - z = 0$

at the point (3, 1, 2) is

(a)
$$x-3 = \frac{y-1}{5} = \frac{z-2}{-4}$$

(b) $x-3 = \frac{y-1}{-5} = \frac{z-2}{4}$
(c) $\frac{x-3}{2} = \frac{y-1}{5} = \frac{z-2}{-4}$
(d) $\frac{x-3}{2} = \frac{y-1}{10} = \frac{z-2}{-7}$
(e) $\frac{x-3}{4} = y-1 = \frac{z-3}{5}$

(correct)

Page 8 of 8

15. $[\mathbf{Q}\#\mathbf{94}\,\mathbf{p}.\mathbf{796}]$

The distance between the planes given by the equations

$$-x + 6y + 2z = 3$$
 and $-\frac{1}{2}x + 3y + z = 4$

is

