1. [Q. # 43 p. 747]

The slope of the parametric curve $x = e^t, y = e^{-t}$ at t = 1 is

- (a) $-\frac{1}{e^2}$
- (b) e^2
- (c) $-\frac{1}{e}$
- (d) $\frac{1}{e}$
- (e) e

2. [Q. # 101 p. 748]

The number of intersection points of the two polar curves $r=1-\cos\theta$ and $r=1+\sin\theta$ over $[0,2\pi)$ is

- (a) 3
- (b) 2
- (c) 4
- (d) 1
- (e) 0

[Q. # 86 p. 796] 3.

Let (a, b, c) be the intersection point of the plane 5x + 3y = 17 and the line $\frac{x-4}{2} = \frac{y+1}{-3} = \frac{z+2}{5}$. Then a+b+c=

- (a) 1 (correct)
- (b) -2
- (c)
- (d) -3
- (e) 0

[Q. # 24 p. 982] 4.

The directional derivative of the function f(x, y, z) = xy + yz + xz at the point P(1,2,-1) in direction of $\vec{v}=\langle 2,1,-1\rangle$ is

- (a) $-\frac{1}{\sqrt{6}}$ (b) $\frac{2}{\sqrt{6}}$ (c) $-\frac{2}{\sqrt{6}}$ (d) $\frac{3}{\sqrt{6}}$ (e) $-\frac{5}{\sqrt{6}}$ (correct)

[Q. # 40 p. 937] 5.

The x-coordinate of the point on the surface

$$z = 4x^2 + 4xy - 2y^2 + 8x - 5y - 4$$

at which the tangent plane is horizontal is

- (correct)
- (a) $-\frac{1}{4}$ (b) $-\frac{1}{3}$ (c) -1(d) $\frac{1}{12}$

- (e) $-\frac{5}{12}$

[Example # 7 p. 926] 6.

A normal vector to the level curve of $f(x,y)=y-\sin x$ at the point $(\pi,0)$ is

- (a) $\langle 1, 1 \rangle$ (correct)
- (b) $\langle -1, 1 \rangle$
- (c) $\langle 2, 1 \rangle$
- (d) $\langle 1, 2 \rangle$
- (e) $\langle -1, 2 \rangle$

7. [Q. # 17 p. 785]

A vector orthogonal to both $\mathbf{u} = -3\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}$ and $\mathbf{v} = \mathbf{i} - \mathbf{j} + 4\mathbf{k}$, is

(a) $-3\mathbf{i} - 7\mathbf{j} - \mathbf{k}$

(correct)

- (b) $3\mathbf{i} 7\mathbf{j} \mathbf{k}$
- (c) $3\mathbf{i} \mathbf{j} 3\mathbf{k}$
- $(d) \quad \mathbf{i} + 7\mathbf{j} 3\mathbf{k}$
- (e) $7\mathbf{i} + \mathbf{j} 3\mathbf{k}$

- 8. [Q. # 50 p. 893] $\lim_{(x,y)\to(0,0)} \frac{x^2 + 2xy^2 + y^2}{x^2 + y^2} =$
 - (a) 1 (correct)
 - (b) 0
 - (c) -1
 - (d) 2
 - (e) DNE

9. [Q. #20 sec. 13.8] The function $f(x,y) = \sqrt[3]{x^2 + y^2} + 2$ has

- (a) a relative minimum at (0,0)
- (b) a relative maximum at (0,0)
- (c) a saddle point at (0,0)
- (d) no extrema
- (e) a critical point at (0,1)

10. [Q. #42 sec. 13.8]

Let T be the triangular region in the xy-plane with vertices (2,0), (0,1), and (1,2) respectively. If M and m represent respectively the absolute maximum and absolute minimum of the function $f(x,y) = (2x - y)^2$ over the region T, then M + m =

- (a) 16
- (b) 17
- (c) 18
- (d) 19
- (e) 14

11. $[\simeq Q. \#12 \text{ sec. } 13.9]$

A box without a top is to be made, where the material for the base costs twice as much per square unit as the material for the sides. If the sides cost \$4 per square unit and the total cost of materials is \$600, then the sum of length, width, and height of the largest possible box is:

- (a) 15 units
- (b) 30 units
- (c) 20 units
- (d) 60 units
- (e) 35 units

12. [Q. # 16 sec. 13.10]

The minimum value of $f(x,y) = e^{-xy/4}$ subject to the constraint $x^2 + y^2 = 1$ is equal to

(a) $e^{-\frac{1}{8}}$

(correct)

- (b) $e^{\frac{1}{8}}$
- (c) e^{-1}
- (d) e
- (e) 1

13. [Q. # 14 sec. 14.1]
$$\int_0^{\ln 4} \int_0^{\ln 3} e^{x+y} \, dy dx =$$

- (a) 6
- (b) 5
- (c) 4
- (d) 3
- (e) 1

- 14. [Q. # 65 sec. 14.1] $\int_0^1 \int_x^1 \cos(y^2) \, dy dx =$
 - (a) $\frac{1}{2}\sin(1)$
 - (b) $\sin(1)$
 - (c) $\cos(1)$
 - $(d) \qquad \frac{1}{2}\cos(1)$
 - $(e) \quad 0$

[Q. # 22 sec. 14.3]
$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \sqrt{x^2 + y^2} \, dx \, dy =$$

(a)

(correct)

- $\frac{2\pi}{3} \\ \frac{4\pi}{3} \\ 2\pi$ (b)
- (c)
- (d)
- (e)

$[Q.~\#~24~{\rm sec.}~14.2]$ 16.

The volume of the solid bounded by z = 4 - x - y, z = 0, y = 2, y = x, and x = 0 is equal to

- (a) 4 (correct)
- (b) 3
- (c) 2
- (d) 1
- (e) 5

17.
$$[Q. \# 27 \text{ sec. } 14.6]$$

[Q. # 27 sec. 14.6]
If
$$\int_0^4 \int_0^{(4-x)/2} \int_0^{(12-3x-6y)/4} dz dy dx = \int_0^a \int_0^b \int_0^c dy dx dz$$
, then

(a)
$$a = 3, b = \frac{12 - 4z}{3}, c = \frac{12 - 4z - 3x}{6}$$

(b)
$$a = \frac{12 - 4z}{3}, b = 3, c = \frac{12 - 4z - 3x}{6}$$

(c)
$$a = \frac{12 - 4z}{3}, b = \frac{12 - 4z - 3x}{6}, c = 3$$

(d)
$$a = 3, b = \frac{12 - 4z - 3x}{6}, c = \frac{12 - 4z}{3}$$

(e)
$$a = 12, b = 4, c = \frac{12 - 4z}{3}$$

[Q. # 46 sec. 11.7] 18.

An equation in spherical coordinates for the surface $x^2 + y^2 - 3z^2 = 0$ is

(a)
$$\phi = \frac{\pi}{3} \text{ or } \phi = \frac{2\pi}{3}$$

(b)
$$\phi = \frac{\pi}{6} \text{ or } \phi = \frac{5\pi}{6}$$

(c)
$$\phi = \frac{\pi}{4} \text{ or } \phi = \frac{3\pi}{4}$$

(d)
$$\phi = \frac{\pi}{4} \text{ or } \phi = \frac{\pi}{3}$$

(e)
$$\phi = \frac{\pi}{2} \text{ or } \phi = \frac{3\pi}{2}$$

19. [Q. # 16 sec. 14.7]

The volume of the solid inside $x^2 + y^2 + z^2 = 16$ and outside $z = \sqrt{x^2 + y^2}$ is equal to

- (a) $\frac{64\pi}{3}(2+\sqrt{2})$
- (b) $\frac{32\pi}{3}(2+\sqrt{2})$
- (c) $\frac{64\pi}{3}(1+\sqrt{2})$
- (d) $\frac{32\pi}{3}(1+\sqrt{2})$
- (e) $\frac{\pi}{3}$

20. [\simeq Example # 1, sec. 14.7 p. 1025]

If the volume of the solid region cut from the sphere $x^2 + y^2 + z^2 = 4$ by the cylinder $x^2 + y^2 - 2y = 0$ is given by

$$\int_0^{a\pi} \int_0^{b\sin\theta} \int_{-\sqrt{c-r^2}}^{\sqrt{c-r^2}} r dz dr d\theta.$$

Then a + b + c =

- (a) 7
- (b) 8
- (c) 5
- (d) 6
- (e) 10