King Fahd University of Petroleum and Minerals Department of Mathematics

 $\begin{array}{c} {\rm Math} \ 201 \\ {\rm Major} \ {\rm Exam} \ {\rm I} \\ 243 \end{array}$

Wednesday, 2 July 2025 Net Time Allowed: 90 minutes

MASTER VERSION

1. [Q.34, p.747]

A rectangular equation of the parametric curve

$$x = 2 \cot \theta$$
 and $y = 4 \sin \theta \cos \theta$, $0 < \theta < \pi$

is

(a)
$$y(4+x^2) = 8x$$

(correct)

- (b) $y(4+x^2) = 16x$
- (c) $y(4-x^2) = -8x$
- (d) $4 + x^2 = y^2$
- (e) $4 + y^2 = x^2$

2. [Q.44, p.707]

A set of parametric equations of the line passing through (-3,1) and (1,9) is

(a)
$$x = -3 + t, y = 1 + 2t$$

(correct)

- (b) x = -3 + 2t, y = 1 + t
- (c) x = 1 + 4t, y = 9 + t
- (d) x = 1 t, y = 9 + 2t
- (e) x = -3t, y = t

3. [Q.13, p.715]

The slope of the parametric curve

$$x = -4\cos\theta, \ y = 4\sin\theta$$

at
$$\theta = \frac{\pi}{4}$$
 is

- (a) 1 (correct)
- (b) -1
- (c) 4
- (d) -4
- (e) $\frac{\sqrt{2}}{2}$

4. [Q.31, p.715]

The parametric curve $x = \cos \theta + \theta \sin \theta$, $y = \sin \theta - \theta \cos \theta$ has

(a) a horizontal tangent at $\theta = \pi$

(correct)

- (b) a vertical tangent at $\theta = -\frac{\pi}{4}$
- (c) a horizontal tangent at $\theta = \frac{\pi}{2}$
- (d) a vertical tangent at $\theta = \frac{\pi}{4}$
- (e) a horizontal tangent at $\theta = \frac{3\pi}{2}$

5. [Q.51, p.715]

The length of the parametric curve

$$x = e^{-t}\cos t, \ y = e^{-t}\sin t, \ 0 \le t \le 1$$

is equal to

(a)
$$\sqrt{2}(1-e^{-1})$$

(correct)

- (b) $2\sqrt{2}e^{-1}$
- (c) 1 + e
- (d) $1 e^{-1}$
- (e) $1 + e^{-1}$

6. [Q.38, p.726]

The polar curve $r = 5\cos\theta$ is a circle with center C(a,b) and radius c. Then a+b+c=

(a) 5

(correct)

- (b) $\frac{5}{2}$
- (c) 10
- $(d) \qquad \frac{15}{2}$
- (e) 20

7. [Q.7, p.748]

A rectangular equation of the polar curve $\theta = \frac{3\pi}{4}$ is

- (a) y = -x
- (b) y = x
- (c) $y = \frac{\sqrt{2}}{2}x$
- (d) $y = -\frac{\sqrt{2}}{2}x$
- (e) y = -x + 1

8. [\sim Example 5, p.734]

The area of the surface formed by revolving the circle $r=2\cos\theta,\,\theta\in[0,\pi]$ about the line $\theta=\frac{\pi}{2}$ is

- (a) $4\pi^2$
- (b) π^2
- (c) π
- (d) 2π
- (e) 4π

9. [Q.21, p.735]

The area of the inner loop of $r = 1 + 2\sin\theta$ is

(a)
$$\int_{\frac{7\pi}{6}}^{\frac{3\pi}{2}} (1+2\sin\theta)^2 d\theta$$
 (correct)

(b)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1 + 2\sin\theta)^2 d\theta$$

(c)
$$\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (1 + 2\sin\theta)^2 d\theta$$

(d)
$$\frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} (1 + 2\sin\theta)^2 d\theta$$

(e)
$$\frac{1}{2} \int_0^{2\pi} (1 + 2\sin\theta)^2 d\theta$$

10. [\sim Q.71, p.760]

Which one of the following vectors is perpendicular to the tangent to the graph of $f(x) = \sqrt{25 - x^2}$ at the point (4,3)?

(a)
$$\langle 4, 3 \rangle$$
 (correct)

- (b) $\langle -4, 3 \rangle$
- (c) $\langle 3, 4 \rangle$
- (d) $\langle -3, 4 \rangle$
- (e) $\langle 4, 4 \rangle$

11. [Q.48, p.760]

Let $\vec{u} = \langle a, b \rangle$ be the vector of magnitude 2 in the same direction as $\langle \sqrt{3}, 3 \rangle$. Then $a + b^2 =$

- (a) 4
- (b) 3
- (c) 2
- (d) 1
- (e) $\sqrt{3}$

- 12. [\sim Q.90, p.768] If R(a,b,c) is the point that lies one-third of the way from P(1,2,5) to Q(6,8,2), then 3a+b+c=
 - (a) 16
 - (b) $\frac{8}{3}$
 - $(c) \quad 0$
 - (d) $\frac{4}{3}$
 - (e) 8

[\sim Example 6, p.775] 13.

Let $\langle a, b, c \rangle$ be the vector projection of $\vec{u} = \langle 3, -5, 2 \rangle$ onto $\vec{v} = \langle 7, 1, -2 \rangle$. Then a + b + c =

(a)

(correct)

- (b)
- $\frac{4}{3} \\
 \frac{7}{9} \\
 \frac{14}{9} \\
 \frac{1}{9}$ (c)
- (d)
- (e)

[\sim Example 5, p.784] 14.

Consider the following three vectors

$$\vec{u} = \langle b, -5, 1 \rangle, \quad \vec{v} = \langle 0, 1, -1 \rangle, \quad \vec{w} = \langle 3, 1, 1 \rangle.$$

If $\vec{u} \cdot (\vec{v} \times \vec{w}) = 36$, then b =

- 12 (a) (correct)
- (b) 6
- (c) 10
- (d) 3
- (e) 4

15. [Q.17, p.785]

A vector orthogonal to both $\vec{u} = \langle -3, 2, -5 \rangle$ and $\vec{v} = \langle 1, -1, 4 \rangle$ is

- (a) $\langle 3, 7, 1 \rangle$ (correct)
- (b) $\langle -3, -2, 1 \rangle$
- (c) $\langle 3, 7, 3 \rangle$
- (d) $\langle -1, 1, 1 \rangle$
- (e) $\langle -4, 0, 1 \rangle$