(correct)

(correct)

1. $\left[Q_{1} + \frac{24}{x^{2}} + \frac{4}{x^{2}} + \frac{4}{x^{2}} dx dy = \frac{1}{x^{2}} \right]$

- (a) π
- (b) $\frac{\pi}{2}$
- (c) 2π
- (d) 3π
- (e) 4π

2. [Q. 63 sec. 14.1] $\int_0^1 \int_{2x}^2 4e^{y^2} dy dx =$

- (a) $e^4 1$
- (b) $e^3 1$
- (c) $e^2 1$
- (d) e^4
- (e) $e^4 + 1$

3. [Q. 56 sec. 14.2]

The average value of $f(x, y) = \sin(x + y)$ over the rectangular region with vertices (0, 0), $(\pi, 0)$, (π, π) and $(0, \pi)$ is equal to

- (a) 0 (correct)
- (b) π
- (c) 2π
- (d) 3π
- (e) 1

4. [Q. 25 sec. 14.2]

The volume of the solid bounded by z = 8(1 - xy), z = 0, y = x, y = 1 and x = 0 is equal to

- (a) 3
- (b) 1
- (c) 5
- (d) 2
- (e) 7

5. [Q. 35 sec. 14.2]

The volume of the solid region bounded above by the paraboloid $z = 4 - x^2 - y^2$ and the plane z = 4 - 2x is equal to

(a)
$$\int_{0}^{2} \int_{-\sqrt{2x-x^{2}}}^{\sqrt{2x-x^{2}}} (2x - x^{2} - y^{2}) \, dy \, dx$$
(correct)

(b)
$$\int_{-2}^{2} \int_{0}^{\sqrt{2x-x^2}} (2x - x^2 - y^2) \, dy \, dx$$

(c)
$$\int_{0}^{4} \int_{-\sqrt{2x-x^{2}}}^{\sqrt{2x-x^{2}}} (4-x^{2}-y^{2}) \, dy \, dx$$

(d)
$$\int_{-4}^{4} \int_{-\sqrt{2x-x^2}}^{\sqrt{2x-x^2}} (2x - x^2 + y^2) \, dy \, dx$$

(e)
$$\int_0^{\sqrt{2}} \int_{-\sqrt{2}}^{\sqrt{2}} (2x - x^2 - y^2) \, dy \, dx$$

6. [Q. 27 sec. 14.3] $\int_{0}^{2} \int_{0}^{x} \sqrt{x^{2} + y^{2}} \, dy \, dx + \int_{2}^{2\sqrt{2}} \int_{0}^{\sqrt{8-x^{2}}} \sqrt{x^{2} + y^{2}} \, dy \, dx =$

(a)
$$\frac{4\sqrt{2}\pi}{3}$$
 (correct)

- (b) $\frac{8\sqrt{2}\pi}{3}$
- (c) $4\sqrt{2}\pi$
- (d) $\frac{2\sqrt{2}\pi}{3}$
- (e) $\frac{\sqrt{2}\pi}{3}$

$\simeq Q.31 sec. 14.7$ 7.

The volume of the solid inside the sphere $x^2 + y^2 + z^2 = 4$, outside the cone $z = \sqrt{x^2 + y^2}$, and above the xy-plane is

- (correct)
- (b) $\frac{16\sqrt{2}\pi}{3}$ (c) $\frac{8\pi}{3}$
- $(d) \quad \frac{4\sqrt{2}\pi}{3}$
- (e) $8\sqrt{2}\pi$

$[\simeq Q. 15]$ 8.

The volume of the solid inside both $x^2 + y^2 + z^2 = 4$ and $(x-1)^2 + y^2 = 1$ is equal to

- (a) $\frac{16}{9}(3\pi 4)$ (correct)
- (b) $\frac{4}{9}(3\pi 4)$
- (c) $\frac{16}{3}(\pi-2)$
- (d) $\frac{32}{9}(\pi 1)$
- (e) $\frac{16}{9}(\pi 4)$

9. [Q. 7 sec. 14.6]

$$\int_{1}^{4} \int_{0}^{1} \int_{0}^{x} 2z e^{-x^{2}} dy dx dz =$$

- (a) $\frac{15}{2}(1-e^{-1})$
- (b) $15(e^{-1}-1)$
- (c) $\frac{7}{2}(1-e^{-1})$
- (d) $\frac{15}{2}(1+e^{-1})$
- (e) $8(1-e^{-1})$

10. $[\simeq Q. 8 Sec. 13.10]$

The minimum value of $f(x,y) = \frac{3}{2}x + y + 1$ subject to the constraint $x^2y = 6$ is equal to

- $(a) \qquad \frac{11}{2} \tag{correct}$
- (b) 9
- (c) $\frac{17}{2}$
- (d) 14
- (e) $\frac{15}{2}$

11. \simeq Example 1, sec. 13.9

A rectangular box is resting on the xy-plane with one vertex at the origin and its opposite vertex lying in the plane 5x+3y+2z=30. The maximum possible volume of the box is equal to

- 100 (a) (correct) 3
- (b) 50
- 90 (c)
- 200 (d) 3
- (e)

[Q. 40 sec. 13.8]12.

Let $f(x,y) = x^2 + xy$, and $R = \{(x,y) : |x| \le 2, |y| \le 1\}$. If M and m represent respectively the absolute maximum and absolute minimum of fover R, then m + M =

- (a) (correct)
- $\frac{23}{4} \\
 \frac{21}{4} \\
 \frac{11}{2} \\
 \frac{25}{4}$ (b)
- (c)
- (d)
- (e)

13. [Q. 83 review]

The graph of the function

$$f(x,y) = xy + \frac{1}{x} + \frac{1}{y}$$

has

- (a) a relative minimum at (1,1) (correct)
- (b) a relative maximum at (1,1)
- (c) a saddle point at (1,1)
- (d) no relative extreme values
- (e) a relative maximum at (1,1) and a relative minimum at (-1,-1)

14. [Q. 51 sec. 13.7]

Let P(a, b, c), with a > 0 be the point on the ellipsoid $x^2 + 4y^2 + z^2 = 9$ where the tangent plane is perpendicular to the line

$$L: x = 2 - 4t, y = 1 + 8t, z = 3 - 2t.$$

Then a + b + c =

- (a) 2 (correct)
- $(b) \quad 0$
- (c) 1
- (d) 5
- (e) 6

15. [Q. 35 Sec. 13.6]

The maximum value of the directional derivative of $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at the point P(1, 4, 2) is

- (a) 1 (correct)
- (b) 0
- (c) $\frac{1}{\sqrt{21}}$
- (d) $\sqrt{21}$
- (e) 2

16. [Q. 58 sec. 13.2]

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} =$$

- (a) 1 (correct)
- (b) 0
- (c) -1
- (d) π
- (e) $-\pi$

17. $[\simeq \text{Example 1 sec. 13.1}]$

The domain of the function $f(x,y) = \frac{\sqrt{x^2 + y^2 - 9}}{e^{x+y}}$ is

- (a) $\{(x,y): x^2 + y^2 \ge 9\}$
- (b) $\{(x,y): x^2 + y^2 \ge 9, x + y \ne 0\}$
- (c) $\{(x,y): x^2 + y^2 \ge 9, x = 0\}$
- (d) $\{(x,y): x^2 + y^2 > 9, y = 0\}$
- (e) $\{(x,y): x^2 + y^2 \le 9\}$

18. [Q. 42 sec. 11.3]

The vector component of $\vec{u} = \langle 8, 2, 0 \rangle$ orthogonal to $\vec{v} = \langle 2, 1, -1 \rangle$ is

- (a) $\langle 2, -1, 3 \rangle$
- (b) (6, 3, -3)
- (c) $\langle 8, 2, 0 \rangle$
- (d) $\langle -2, 1, -3 \rangle$
- (e) $\langle 4, 1, 1 \rangle$

19. $[\simeq Q. 34 \text{ Review}]$

The area of the parallelogram that has the vectors $\vec{u}=\langle 1,2,2\rangle$ and $\vec{v}=\langle 2,1,-2\rangle$ as adjacent sides is equal to

- (a) 9 (correct)
- (b) 4
- (c) 6
- (d) 8
- (e) 10

20. [Q. 91. sec. 10.3]

The slope of the parametric curve $x = 2(\theta - \sin \theta)$, $y = 2(1 - \cos \theta)$ at the point corresponding to $\theta = \frac{\pi}{6}$ is equal to

(a) $2 + \sqrt{3}$

(correct)

- (b) $1 + \sqrt{3}$
- (c) $\sqrt{3}$
- (d) $2 \sqrt{3}$
- (e) 10