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1. If the differential equation

(

g(x)y3 −
1

1 + 9x2

)

dx

dy
+ x3y2 = 0

is exact, then g(1) =

(a) 1 (correct)

(b) 2

(c) −2

(d) 3

(e) −3

2. The solution of the differential equation

dy

dx
= (x+ y + 1)2

is given by

(a) y = −x− 1 + tan(x+ c) (correct)

(b) y = x− 1 + tan(x+ c)

(c) y = 2x− 1 + tan(x+ c)

(d) y = −2x+ 1 + tan(x+ c)

(e) y = x+ 1− tan(2x+ c)
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3. The function y1 = x+ 1 is a solution of the differential equation

(1− 2x− x2)y′′ + 2(1 + x)y′ − 2y = 0

The method of Reduction of order produces the second solution y2 =

(a) x2 + x+ 2 (correct)

(b) 2x2 − x+ 1

(c) x2 − x+ 3

(d) x2 + x+ 3

(e) x2 + 2

4. A linear differential operator that annihilates the function

e−x sin x− e2x cos x

is give by

(a) D4 − 2D3 −D2 + 2D + 10 (correct)

(b) D4 + 2D3 −D2 + 2D + 10

(c) D4 − 2D3 +D2 − 2D + 10

(d) D4 + 2D3 +D2 + 2D + 10

(e) D4 − 2D3 +D2 + 2D − 10
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5. The solution y(x) of the third order initial value problem

y′′′ + 36y′ = 0, y(0) = 0, y′(0) = −6, y′′(0) = −36

satisfies y
(

π

2

)

=

(a) −2 (correct)

(b) 2

(c) 3

(d) −3

(e) 0

6. If the particular solution of the differential equation

y′′ + 3y′ + 2y =
1

1 + ex

has the form yp(x) = e−xu1(x) + e−2xu2(x), then u1(0) =

(a) ln 2 (correct)

(b) − ln 2

(c) − ln 3

(d) ln 3

(e) 0
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7. The general solution of the Cauchy-Euler differential equation
x3y′′′ − 6y = 0 is given by

(a) c1x
3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x) (correct)

(b) c1x
3 + c2 cos(ln x) + c3 sin(ln x)

(c) c1x
−3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(d) c1x
−3 + c2 cos(ln x) + c3 sin(ln x)

(e) c1x
3 + c2 cos(2 ln x) + c3 sin(2 ln x)

8. The indicial roots of the singular point x0 = 0 of the differential equation

3x2y′′ + 9xy′ − (5x+ 9) y = 0

are

(a) r = 1 and r = −3 (correct)

(b) r = 1 and r = 2

(c) r = 1 and r = −2

(d) r = 2 and r = 3

(e) r = 2 and r = −3
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9. If y =
∞
∑

n=0

cnx
n is a power series solution about the ordinary point x0 = 0

of the differential equation y′′−(3+x)y = 0, then the coefficients cn satisfy

(a) cn+2 =
3cn + cn−1

(n+ 1)(n+ 2)
, n ≥ 1 (correct)

(b) cn+1 =
3cn + cn−1

(n+ 1)(n+ 2)
, n ≥ 1

(c) cn+2 =
3cn+1 + cn−1

n(n+ 2)
, n ≥ 1

(d) cn+1 =
3cn+1 + cn−1

n(n+ 2)
, n ≥ 1

(e) cn+1 =
3cn + cn−1

(n+ 2)(n+ 3)
, n ≥ 1

10. Consider the nonhomogeneous system

X ′ = AX +





4

−1





If the general solution of the associated homogeneous system is

Xc = c1





1
1



+ c2





3
2



 et,

then the particular solution, Xp(t) at t = 1 equals:

(a)
(

−26
−21

)

(correct)

(b)

(

13
12

)

(c)

(

11
13

)

(d)

(

−21
−3

)

(e)

(

3
12

)
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11. (10 points) Solve the following initial-value problem

X ′ =





3 −2

4 −1



X, X(0) =





2

1



 .
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12. (10 points) Use the matrix exponential method to find the general solu-
tion of the following system

X ′ =











1 1 1
1 1 1

−2 −2 −2











X.
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13. (12 points) Find the general solution of the system

X ′ =











1 1 1

1 1 0
0 0 2











X.
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14. (13 points) Find the first three nonzero terms of the series solution of
the equation 2xy′′ − y′ + 2y = 0 which corresponds to the larger indicial

root of the differential equation around the regular singular point x = 0.
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1. The indicial roots of the singular point x0 = 0 of the differential equation

3x2y′′ + 9xy′ − (5x+ 9) y = 0

are

(a) r = 1 and r = 2

(b) r = 2 and r = −3

(c) r = 1 and r = −3

(d) r = 2 and r = 3

(e) r = 1 and r = −2

2. The solution y(x) of the third order initial value problem

y′′′ + 36y′ = 0, y(0) = 0, y′(0) = −6, y′′(0) = −36

satisfies y
(

π

2

)

=

(a) 3

(b) −2

(c) 2

(d) −3

(e) 0
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3. Consider the nonhomogeneous system

X ′ = AX +





4

−1





If the general solution of the associated homogeneous system is

Xc = c1





1

1



+ c2





3

2



 et,

then the particular solution, Xp(t) at t = 1 equals:

(a)
(

−21
−3

)

(b)

(

11
13

)

(c)

(

3
12

)

(d)

(

−26
−21

)

(e)

(

13
12

)

4. If the particular solution of the differential equation

y′′ + 3y′ + 2y =
1

1 + ex

has the form yp(x) = e−xu1(x) + e−2xu2(x), then u1(0) =

(a) − ln 2

(b) − ln 3

(c) 0

(d) ln 3

(e) ln 2
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5. The general solution of the Cauchy-Euler differential equation
x3y′′′ − 6y = 0 is given by

(a) c1x
−3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(b) c1x
3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(c) c1x
−3 + c2 cos(ln x) + c3 sin(ln x)

(d) c1x
3 + c2 cos(2 ln x) + c3 sin(2 ln x)

(e) c1x
3 + c2 cos(ln x) + c3 sin(ln x)

6. If the differential equation

(

g(x)y3 −
1

1 + 9x2

)

dx

dy
+ x3y2 = 0

is exact, then g(1) =

(a) 3

(b) −3

(c) −2

(d) 2

(e) 1
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7. The solution of the differential equation

dy

dx
= (x+ y + 1)2

is given by

(a) y = −2x+ 1 + tan(x+ c)

(b) y = 2x− 1 + tan(x+ c)

(c) y = −x− 1 + tan(x+ c)

(d) y = x+ 1− tan(2x+ c)

(e) y = x− 1 + tan(x+ c)

8. The function y1 = x+ 1 is a solution of the differential equation

(1− 2x− x2)y′′ + 2(1 + x)y′ − 2y = 0

The method of Reduction of order produces the second solution y2 =

(a) 2x2 − x+ 1

(b) x2 + x+ 3

(c) x2 − x+ 3

(d) x2 + x+ 2

(e) x2 + 2



Term 211, Math 202, Final Exam Page 5 of 9 CODE01

9. A linear differential operator that annihilates the function

e−x sin x− e2x cos x

is give by

(a) D4 + 2D3 +D2 + 2D + 10

(b) D4 − 2D3 +D2 − 2D + 10

(c) D4 + 2D3 −D2 + 2D + 10

(d) D4 − 2D3 −D2 + 2D + 10

(e) D4 − 2D3 +D2 + 2D − 10

10. If y =
∞
∑

n=0

cnx
n is a power series solution about the ordinary point x0 = 0

of the differential equation y′′−(3+x)y = 0, then the coefficients cn satisfy

(a) cn+1 =
3cn + cn−1

(n+ 1)(n+ 2)
, n ≥ 1

(b) cn+2 =
3cn + cn−1

(n+ 1)(n+ 2)
, n ≥ 1

(c) cn+1 =
3cn+1 + cn−1

n(n+ 2)
, n ≥ 1

(d) cn+1 =
3cn + cn−1

(n+ 2)(n+ 3)
, n ≥ 1

(e) cn+2 =
3cn+1 + cn−1

n(n+ 2)
, n ≥ 1
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11. (10 points) Solve the following initial-value problem

X ′ =





3 −2

4 −1



X, X(0) =





2

1



 .
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12. (10 points) Use the matrix exponential method to find the general solu-
tion of the following system

X ′ =











1 1 1
1 1 1

−2 −2 −2











X.
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13. (12 points) Find the general solution of the system

X ′ =











1 1 1

1 1 0
0 0 2











X.
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14. (13 points) Find the first three nonzero terms of the series solution of
the equation 2xy′′ − y′ + 2y = 0 which corresponds to the larger indicial

root of the differential equation around the regular singular point x = 0.
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1. If the particular solution of the differential equation

y′′ + 3y′ + 2y =
1

1 + ex

has the form yp(x) = e−xu1(x) + e−2xu2(x), then u1(0) =

(a) 0

(b) − ln 3

(c) ln 2

(d) − ln 2

(e) ln 3

2. The general solution of the Cauchy-Euler differential equation

x3y′′′ − 6y = 0 is given by

(a) c1x
3 + c2 cos(2 ln x) + c3 sin(2 ln x)

(b) c1x
−3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(c) c1x
3 + c2 cos(ln x) + c3 sin(ln x)

(d) c1x
−3 + c2 cos(ln x) + c3 sin(ln x)

(e) c1x
3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)
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3. If y =
∞
∑

n=0

cnx
n is a power series solution about the ordinary point x0 = 0

of the differential equation y′′−(3+x)y = 0, then the coefficients cn satisfy

(a) cn+1 =
3cn + cn−1

(n+ 1)(n+ 2)
, n ≥ 1

(b) cn+2 =
3cn + cn−1

(n+ 1)(n+ 2)
, n ≥ 1

(c) cn+1 =
3cn + cn−1

(n+ 2)(n+ 3)
, n ≥ 1

(d) cn+2 =
3cn+1 + cn−1

n(n+ 2)
, n ≥ 1

(e) cn+1 =
3cn+1 + cn−1

n(n+ 2)
, n ≥ 1

4. A linear differential operator that annihilates the function

e−x sin x− e2x cos x

is give by

(a) D4 + 2D3 +D2 + 2D + 10

(b) D4 − 2D3 −D2 + 2D + 10

(c) D4 + 2D3 −D2 + 2D + 10

(d) D4 − 2D3 +D2 + 2D − 10

(e) D4 − 2D3 +D2 − 2D + 10
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5. The indicial roots of the singular point x0 = 0 of the differential equation

3x2y′′ + 9xy′ − (5x+ 9) y = 0

are

(a) r = 1 and r = −3

(b) r = 2 and r = 3

(c) r = 1 and r = −2

(d) r = 1 and r = 2

(e) r = 2 and r = −3

6. If the differential equation

(

g(x)y3 −
1

1 + 9x2

)

dx

dy
+ x3y2 = 0

is exact, then g(1) =

(a) −2

(b) 3

(c) 2

(d) −3

(e) 1
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7. Consider the nonhomogeneous system

X ′ = AX +





4

−1





If the general solution of the associated homogeneous system is

Xc = c1





1

1



+ c2





3

2



 et,

then the particular solution, Xp(t) at t = 1 equals:

(a)
(

3
12

)

(b)

(

−26
−21

)

(c)

(

−21
−3

)

(d)

(

11
13

)

(e)

(

13
12

)

8. The solution y(x) of the third order initial value problem

y′′′ + 36y′ = 0, y(0) = 0, y′(0) = −6, y′′(0) = −36

satisfies y
(

π

2

)

=

(a) 2

(b) 3

(c) 0

(d) −2

(e) −3
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9. The function y1 = x+ 1 is a solution of the differential equation

(1− 2x− x2)y′′ + 2(1 + x)y′ − 2y = 0

The method of Reduction of order produces the second solution y2 =

(a) x2 − x+ 3

(b) x2 + 2

(c) x2 + x+ 3

(d) 2x2 − x+ 1

(e) x2 + x+ 2

10. The solution of the differential equation

dy

dx
= (x+ y + 1)2

is given by

(a) y = x− 1 + tan(x+ c)

(b) y = 2x− 1 + tan(x+ c)

(c) y = x+ 1− tan(2x+ c)

(d) y = −x− 1 + tan(x+ c)

(e) y = −2x+ 1 + tan(x+ c)
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11. (10 points) Solve the following initial-value problem

X ′ =





3 −2

4 −1



X, X(0) =





2

1



 .



Term 211, Math 202, Final Exam Page 7 of 9 CODE02

12. (10 points) Use the matrix exponential method to find the general solu-
tion of the following system

X ′ =











1 1 1
1 1 1

−2 −2 −2











X.
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13. (12 points) Find the general solution of the system

X ′ =











1 1 1

1 1 0
0 0 2











X.
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14. (13 points) Find the first three nonzero terms of the series solution of
the equation 2xy′′ − y′ + 2y = 0 which corresponds to the larger indicial

root of the differential equation around the regular singular point x = 0.
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9. For the written part, show all your work. No points for answers without justification.



Term 211, Math 202, Final Exam Page 1 of 9 CODE03

1. Consider the nonhomogeneous system

X ′ = AX +





4
−1





If the general solution of the associated homogeneous system is

Xc = c1





1
1



+ c2





3
2



 et,

then the particular solution, Xp(t) at t = 1 equals:

(a)
(

13
12

)

(b)

(

11
13

)

(c)

(

−21
−3

)

(d)

(

−26
−21

)

(e)

(

3
12

)

2. If y =
∞
∑

n=0
cnx

n is a power series solution about the ordinary point x0 = 0

of the differential equation y′′−(3+x)y = 0, then the coefficients cn satisfy

(a) cn+2 =
3cn + cn−1

(n+ 1)(n+ 2)
, n ≥ 1

(b) cn+1 =
3cn+1 + cn−1

n(n+ 2)
, n ≥ 1

(c) cn+1 =
3cn + cn−1

(n+ 2)(n+ 3)
, n ≥ 1

(d) cn+2 =
3cn+1 + cn−1

n(n+ 2)
, n ≥ 1

(e) cn+1 =
3cn + cn−1

(n+ 1)(n+ 2)
, n ≥ 1
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3. If the differential equation

(

g(x)y3 −
1

1 + 9x2

)

dx

dy
+ x3y2 = 0

is exact, then g(1) =

(a) −3

(b) 2

(c) −2

(d) 3

(e) 1

4. If the particular solution of the differential equation

y′′ + 3y′ + 2y =
1

1 + ex

has the form yp(x) = e−xu1(x) + e−2xu2(x), then u1(0) =

(a) − ln 3

(b) 0

(c) ln 3

(d) ln 2

(e) − ln 2
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5. The function y1 = x+ 1 is a solution of the differential equation

(1− 2x− x2)y′′ + 2(1 + x)y′ − 2y = 0

The method of Reduction of order produces the second solution y2 =

(a) x2 + 2

(b) x2 + x+ 3

(c) 2x2 − x+ 1

(d) x2 + x+ 2

(e) x2 − x+ 3

6. The solution y(x) of the third order initial value problem

y′′′ + 36y′ = 0, y(0) = 0, y′(0) = −6, y′′(0) = −36

satisfies y
(

π

2

)

=

(a) 2

(b) −3

(c) 3

(d) 0

(e) −2
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7. The indicial roots of the singular point x0 = 0 of the differential equation

3x2y′′ + 9xy′ − (5x+ 9) y = 0

are

(a) r = 1 and r = 2

(b) r = 2 and r = −3

(c) r = 1 and r = −3

(d) r = 2 and r = 3

(e) r = 1 and r = −2

8. A linear differential operator that annihilates the function

e−x sin x− e2x cos x

is give by

(a) D4 − 2D3 +D2 + 2D − 10

(b) D4 + 2D3 −D2 + 2D + 10

(c) D4 − 2D3 −D2 + 2D + 10

(d) D4 − 2D3 +D2 − 2D + 10

(e) D4 + 2D3 +D2 + 2D + 10
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9. The general solution of the Cauchy-Euler differential equation
x3y′′′ − 6y = 0 is given by

(a) c1x
−3 + c2 cos(ln x) + c3 sin(ln x)

(b) c1x
3 + c2 cos(2 ln x) + c3 sin(2 ln x)

(c) c1x
−3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(d) c1x
3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(e) c1x
3 + c2 cos(ln x) + c3 sin(ln x)

10. The solution of the differential equation

dy

dx
= (x+ y + 1)2

is given by

(a) y = −2x+ 1 + tan(x+ c)

(b) y = x− 1 + tan(x+ c)

(c) y = −x− 1 + tan(x+ c)

(d) y = x+ 1− tan(2x+ c)

(e) y = 2x− 1 + tan(x+ c)
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11. (10 points) Solve the following initial-value problem

X ′ =





3 −2

4 −1



X, X(0) =





2

1



 .
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12. (10 points) Use the matrix exponential method to find the general solu-
tion of the following system

X ′ =











1 1 1
1 1 1

−2 −2 −2











X.
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13. (12 points) Find the general solution of the system

X ′ =











1 1 1

1 1 0
0 0 2











X.
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14. (13 points) Find the first three nonzero terms of the series solution of
the equation 2xy′′ − y′ + 2y = 0 which corresponds to the larger indicial

root of the differential equation around the regular singular point x = 0.
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1. If y =
∞
∑

n=0

cnx
n is a power series solution about the ordinary point x0 = 0

of the differential equation y′′−(3+x)y = 0, then the coefficients cn satisfy

(a) cn+1 =
3cn+1 + cn−1

n(n+ 2)
, n ≥ 1

(b) cn+1 =
3cn + cn−1

(n+ 2)(n+ 3)
, n ≥ 1

(c) cn+1 =
3cn + cn−1

(n+ 1)(n+ 2)
, n ≥ 1

(d) cn+2 =
3cn+1 + cn−1

n(n+ 2)
, n ≥ 1

(e) cn+2 =
3cn + cn−1

(n+ 1)(n+ 2)
, n ≥ 1

2. The solution y(x) of the third order initial value problem

y′′′ + 36y′ = 0, y(0) = 0, y′(0) = −6, y′′(0) = −36

satisfies y
(

π

2

)

=

(a) 0

(b) 3

(c) 2

(d) −2

(e) −3
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3. The indicial roots of the singular point x0 = 0 of the differential equation

3x2y′′ + 9xy′ − (5x+ 9) y = 0

are

(a) r = 1 and r = 2

(b) r = 1 and r = −2

(c) r = 1 and r = −3

(d) r = 2 and r = −3

(e) r = 2 and r = 3

4. If the differential equation

(

g(x)y3 −
1

1 + 9x2

)

dx

dy
+ x3y2 = 0

is exact, then g(1) =

(a) 1

(b) −2

(c) 2

(d) 3

(e) −3
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5. The function y1 = x+ 1 is a solution of the differential equation

(1− 2x− x2)y′′ + 2(1 + x)y′ − 2y = 0

The method of Reduction of order produces the second solution y2 =

(a) 2x2 − x+ 1

(b) x2 + x+ 3

(c) x2 + 2

(d) x2 − x+ 3

(e) x2 + x+ 2

6. The solution of the differential equation

dy

dx
= (x+ y + 1)2

is given by

(a) y = −2x+ 1 + tan(x+ c)

(b) y = 2x− 1 + tan(x+ c)

(c) y = x+ 1− tan(2x+ c)

(d) y = x− 1 + tan(x+ c)

(e) y = −x− 1 + tan(x+ c)
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7. Consider the nonhomogeneous system

X ′ = AX +





4

−1





If the general solution of the associated homogeneous system is

Xc = c1





1

1



+ c2





3

2



 et,

then the particular solution, Xp(t) at t = 1 equals:

(a)
(

13
12

)

(b)

(

−26
−21

)

(c)

(

11
13

)

(d)

(

−21
−3

)

(e)

(

3
12

)

8. The general solution of the Cauchy-Euler differential equation
x3y′′′ − 6y = 0 is given by

(a) c1x
−3 + c2 cos(ln x) + c3 sin(ln x)

(b) c1x
−3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(c) c1x
3 + c2 cos(ln x) + c3 sin(ln x)

(d) c1x
3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(e) c1x
3 + c2 cos(2 ln x) + c3 sin(2 ln x)
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9. If the particular solution of the differential equation

y′′ + 3y′ + 2y =
1

1 + ex

has the form yp(x) = e−xu1(x) + e−2xu2(x), then u1(0) =

(a) − ln 3

(b) 0

(c) ln 2

(d) − ln 2

(e) ln 3

10. A linear differential operator that annihilates the function

e−x sin x− e2x cos x

is give by

(a) D4 + 2D3 +D2 + 2D + 10

(b) D4 + 2D3 −D2 + 2D + 10

(c) D4 − 2D3 +D2 − 2D + 10

(d) D4 − 2D3 +D2 + 2D − 10

(e) D4 − 2D3 −D2 + 2D + 10
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11. (10 points) Solve the following initial-value problem

X ′ =





3 −2

4 −1



X, X(0) =





2

1



 .



Term 211, Math 202, Final Exam Page 7 of 9 CODE04

12. (10 points) Use the matrix exponential method to find the general solu-
tion of the following system

X ′ =











1 1 1
1 1 1

−2 −2 −2











X.
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13. (12 points) Find the general solution of the system

X ′ =











1 1 1

1 1 0
0 0 2











X.
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14. (13 points) Find the first three nonzero terms of the series solution of
the equation 2xy′′ − y′ + 2y = 0 which corresponds to the larger indicial

root of the differential equation around the regular singular point x = 0.
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Q MASTER CODE01 CODE02 CODE03 CODE04
1 A C C D E
2 A B E A D
3 A D B E C
4 A E B D A
5 A B A D E
6 A E E E E
7 A C B C B
8 A D D C D
9 A D E D C
10 A B D C E
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V A B C D E
1 0 3 2 3 2
2 1 3 1 2 3
3 1 0 3 4 2
4 1 1 2 2 4


