1. Which one of the following equations is an exact differential equation?

- (a) $2xy \, dx + (2+x^2) \, dy = 0$ (correct)
- (b) $(x^2 + 1) dx xy dy = 0$
- (c) $x \, dy + (3x 2y) \, dx = 0$

$$(d) \quad x^2 y dy - y \, dx = 0$$

(e) $2xy \, dx - (1+x^2) \, dy = 0$

- 2. If we solve the differential equation $(\cos x \, \cos y - \cot x) \, dx - \sin x \, \sin y \, dy = 0$, then which one of the following is a solution (here c is a constant)
 - (a) $\sin x \cos y = \ln(c \sin x)$
 - (b) $\sin x \cos y = \ln(c \cos x)$
 - (c) $\sin x \cos y = -\ln(c \cos x)$
 - (d) $\sin x \cos y = -\ln(c \sin y)$
 - (e) $\sin x \cos y = \ln(c \tan x)$

MASTER

Page 1 of 9

3.

If we solve the Homogeneous differential equation $(y - \sqrt{x^2 + y^2}) dx - x dy = 0$, then which one of the following is a solution (here c is a constant)

(a)
$$\sqrt{x^2 + y^2} + y = c$$
 (correct)

(b)
$$\sqrt{x^2 + y^2 + y} = c$$

(c)
$$\sqrt{x+y} + y = c$$

(d)
$$\sqrt{x^2 - y} + y = c$$

(e)
$$\sqrt{x^2 + y} + y = c$$

4. If we solve the differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$, then which one of the following is a solution (here c is a constant)

(a)
$$xy = \frac{x^4}{4} + c$$
 (correct)
(b) $xy^2 = \frac{x^3}{4} + c$
(c) $xy^2 = \frac{x^4}{4} + c$
(d) $y = \frac{x^3}{4} + c$
(e) $y = \frac{x^4}{4} + c$

- 5. If $y = \sin x$ is an integrating factor of the linear differential equation $\frac{dy}{dx} + p(x)y = \sin 2x$, then p(x) can be
 - (a) $\cot x$
 - (b) $\sin x$ (c) $\ln \sin x$

 - (d) $\ln \cos x$
 - (e) $\tan x$

6. If y = y(x) is the solution of the initial value problem $\left(\frac{2+\sin x}{y+1}\right)\frac{dy}{dx} = -\cos x, \ y(0) = 1, \text{ then } y\left(\frac{\pi}{2}\right) \text{ equals}$

(a)
$$\frac{1}{3}$$

(b) $\frac{-1}{3}$
(c) $\frac{-2}{3}$
(d) $\frac{2}{3}$
(e) $\frac{-4}{3}$

(correct)

MASTER

(correct)

(correct)

(correct)

- 7. The sum of all values of m for which $y = x^m$ is a solution of the differential equation $x^2y'' 7xy' + 15y = 0$ is
 - (a) 8
 - (b) -8
 - (c) 2
 - (d) -2
 - (e) 0

- 8. The sum of all values of c for which y = c is a constant solution of the differential equation $y' = y^2 + 2y 3$ is
 - (a) -2
 - (b) 2
 - (c) -1
 - (d) 1
 - (e) 0

- 9. Using the Existence and Uniqueness Theorem, the initial value problem (y x)y' = y + x, y(a) = b has a unique solution if
 - (a) a = 1, b = -1

(correct)

- (b) a = 1, b = 1
- (c) a = 0, b = 0
- (d) a = -1, b = -1
- (e) a = 2, b = 2

10. (15 points) By using an appropriate integrating factor, transform the differential equation $(y^2 + xy^3) dx + (5y^2 - xy + y^3 \sin y) dy = 0$ into an exact equation, then solve it.

11. (13 points) Solve the initial value problem $y^{\frac{1}{2}}\frac{dy}{dx} + y^{\frac{3}{2}} = 1$, y(0) = 4.

12. (8 points) Solve the differential equation $\frac{dy}{dx} = 2 + \sqrt{y - 2x + 3}$

13. (10 points) A small metal bar, whose initial temperature was $20^{\circ}C$, is dropped into a large container of boiling water. How long will it take the bar to reach $90^{\circ}C$ if it is known that is temperature increases $2^{\circ}C$ in one second?

(Note that the temperature of boiling water is $100^{\circ}c$)