- 1. Given that $y = c_1 e^x \cos x + c_2 e^x \sin x$ is the general solution of a secondorder differential equation with the following boundary-value conditions: $y(0) = a, \ y(\pi) = b$. This boundary value problem, with $a \neq 0$ has infinitely many solutions if b =
 - (a) $-ae^{\pi}$
 - (b) ae^{π}
 - (c) -a
 - (d) *a*
 - (e) 0

- 2. Which one of the following set of solutions of a given third-order linear differential equation form a fundamental set of solutions?
 - (a) $\{2+x, 2+|x|, e^x\}$
 - (b) $\{x, x^2, 4x 3x^2\}$
 - (c) $\{e^x, e^{2x}, 0\}$
 - $(\mathbf{d}) \quad \{e^x, e^{2x}\}$
 - (e) $\{\cos 2x, 5, \cos^2 x\}$

(correct)

(correct)

(correct)

Given that $y_{p_1} = 3e^{2x}$ and $y_{p_2} = x^2 + 3x$, are respectively, particular 3. solutions of the differential equations $L(y) = -9e^{2x}$ and $L(y) = 5x^2 + 3x - 16$ where L is a second-order linear differential operator. A particular solution of the differential equation $\frac{1}{3}L(y) = -10x^2 - 6x + 32 + e^{2x}$ is

(a)
$$-6x^2 - 18x - e^{2x}$$

(b)
$$6x^2 + 18x - e^{2x}$$

(c)
$$-\frac{2}{3}x^2 - 2x - \frac{1}{9}e^{2x}$$

(d)
$$\frac{2}{3}x^2 + 2x - \frac{1}{9}e^{2x}$$

(e)
$$6x^2 - 18x - e^{2x}$$

- Given that $y_1(x) = e^{2x}$ is a solution of the differential equation 4. (3x-1)y'' - (3x+2)y' - (6x-8)y = 0. By using the reduction of order formula, a second solution $y_2(x)$ is
 - (a) $3xe^{-x}$ (correct)
 - (b) xe^x

 - (c) xe^{2x} (d) x^2e^{-x} (d)
 - $3e^{-x}$ (e)

5. The solution of the initial-value problem
$$y''' + 12y'' + 36y' = 0$$
,
 $y(0) = 0, y'(0) = 1, y''(0) = -12$ is

(a)
$$xe^{-6x}$$
 (correct)

(b)
$$1 + e^{-6x} + xe^{-6x}$$

(c)
$$-1 + e^{-6x} + xe^{-6x}$$

(d)
$$-1 - \frac{1}{6}e^{-6x}$$

(e)
$$6xe^{-6x}$$

- If $y^{(4)} + ay''' + by'' + cy' + dy = 0$ is a homogeneous linear differential equation 6. with real constant coefficients whose fundamental set of solutions contains the functions xe^{-10x} and $e^{-x}\sin x$, then a + b =
 - (a) 164
 - (b) 144
 - (c) 160
 - (d) 150
 - (e) 170

7. Using the substitution $x = e^t$, we can transform the differential equation $x^3y''' - 3x^2y'' + 6xy' - 6y = 3 + \ln x^3$ into the following differential equation with constant coefficients

(a)
$$y''' - 6y'' + 11y' - 6y = 3 + 3t$$

(b)
$$y''' - 3y'' + 6y' - 6y = 3 + 3t$$

(c)
$$y''' - 6y'' + 11y' - 6y = 3t$$

(d)
$$y''' - 6y'' + 6y' - 6y = 3 + 3t$$

(e)
$$y''' - 3y'' + 6y' - 6y = 3t$$

8. The linear differential operator with least order that annihilates the function $(2 - e^x)^2 \left(1 - \frac{1}{4}e^{2x}\right)$ is

(a)
$$D(D-1)(D-3)(D-4)$$

(b)
$$D(D-1)(D-2)(D-3)(D-4)$$

(c)
$$D(D-1)^2(D-2)$$

(d)
$$D(D-1)(D-2)$$

(e)
$$D(D-1)^2(D-3)$$

(correct)

MASTER

- 9. By using the undetermined-coefficients method in solving the differential equation $y'' + 4y = \cos^2 x$, the most suitable form of the particular solution (where A, B, C, D, and E are constants) is
 - (a) $A + Bx \cos 2x + Cx \sin 2x$
 - (b) $A + B\cos 2x + Cx\sin 2x$
 - (c) $A + B\cos 2x + C\sin 2x$
 - (d) $A + B\cos 2x + C\sin 2x + Dx\cos 2x + Ex\sin 2x$
 - (e) $A + Bx \cos 2x + C \sin 2x$

 $(\operatorname{correct})$

Term 213, Math 202, Major Exam II

MASTER

10. (9 points) Solve
$$\frac{d^3x}{dt^3} - \frac{d^2x}{dt^2} - 4x = 0.$$

11. (10 points) Solve y''+3y'=4x-5. By using the undetermined-coefficients method (Annihilator Approach).

MASTER

12. (13 points) Solve
$$y'' - 2y' + y = \frac{e^x}{1 + x^2}$$
.

13. (14 points) Solve
$$xy'' + y' = x$$
, $y(1) = 1$, $y'(1) = \frac{-1}{2}$.