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1. If the differential equation

(6xy3 + cos y) dx+ (2kx2y2 − x sin y) dy = 0

is exact, then k is equal to

(a)
9

2

(b)
7

2

(c)
11

2

(d)
9

4

(e)
7

4

2. If c is a constant, solving exy
dy

dx
= e−y + 3e−2x−y, gives

(a) yey − ey + e−x + e−3x = c

(b) yey + ey + e−x − e−3x = c

(c) yey − ey + e−x + 2e−3x = c

(d) yey − ey + 2e−x − e−3x = c

(e) yey + ey + 2e−x − 2e−3x = c
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3. If c is a constant, solving ydx− 4(x+ y6) dy = 0, gives

(a) x = 2y6 + cy4

(b) x = 2y4 + cy2

(c) x = y6 − cy4

(d) y = 2x6 + cx4

(e) x = 3y6 + y4

4. If a, b, c and d are the roots of the auxiliary equation of the differential equation
y(4) − 7y′′ − 18y = 0, then a+ b+ c+ d =

(a) 0

(b) 6

(c) −6

(d) 2

(e) −2
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5. If D4+aD3+bD2+cD+20 annihilates
2x− 3 cosx

e2x
, where D =

d

dx
, then a+b+c =

(a) 69

(b) 68

(c) 67

(d) 70

(e) 71

6. If yp = Ax2 +Bx is a particular solution of the differential equation
2x2y′′ + 5xy′ + y = x2 − x, then 15A+ 6B =

(a) 0

(b) 1

(c) 2

(d) −1

(e) −2
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7. The general solution of the differential equation

y′′′ + 2y′′ + y′ = 10

is y =

(a) c1 + c2e
−x + c3xe

−x + 10x

(b) c1 + c2e
−x + 10x

(c) c1 + c2e
−x + c3xe

−x + x

(d) c1 + c2e
−x + c3xe

x + 5x

(e) c1 + c2e
−x + c3e

x + 10x

8. If y = y(x) is the solution of the initial-value problem
x2y′′ − xy′ + y = 0, y(1) = 3, y′(1) = −1, then y(e) =

(a) −e
(b) 2e

(c) 3e

(d) −2e

(e) −3e
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9. The general solution of the differential equation

4y′′ + 36y = csc 3x is y =

(a) c1 cos 3x+ c2 sin 3x− 1

12
x cos 3x+

1

36
(sin 3x) ln | sin 3x|

(b) c1 cos 3x+ c2 sin 3x+
1

4
x sin 3x+

1

36
(cosx) ln | cosx|

(c) c1 cos 3x+ c2 sin 3x− x cos 3x+ (sin 3x) ln | sin 3x|
(d) c1 cos 3x+ c2 sin 3x− x sin 3x+ (cosx) ln | cosx|
(e) c1 cos 3x+ c2 sin 3x− x cos 3x+ (cos 3x) ln | cos 3x|

10. If c is a constant, solving this homogeneous differential equation (x−y) dx+xdy = 0,
gives

(a) y = cx− x ln |x|
(b) y = cx2 − x ln |x|
(c) y = cx+ x2 ln |x|
(d) y = cx− 2x ln |x|
(e) y = cx+ 2 ln |x|
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11. The minimum radius of convergence of the power series solutions for the differential
equation (x2 − 2x+ 10)y′′ + xy′ − 4y = 0 about the ordinary point x = 1, is R =

(a) 3

(b) 2

(c) 1

(d) 4

(e) 5

12. If y =
∞∑
n=0

cnx
n is a power series solution about the ordinary point x0 = 0 of the

differential equation y′′ + xy = 0, then the coefficients cn satisfy

(a) cn+2 =
−cn−1

(n+ 2)(n+ 1)
, n ≥ 1

(b) cn+2 =
−cn

(n+ 2)(n+ 1)
, n ≥ 1

(c) cn =
−cn+2

(n+ 2)(n+ 1)
, n ≥ 1

(d) cn+2 =
−1

(n+ 2)(n+ 1)
, n ≥ 1

(e) cn+2 =
−cn−1

(n+ 1)(n+ 3)
, n ≥ 1
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13. If we solve the differential equation 3xy′′ + y′ − y = 0 about the regular singular

point x = 0, by considering y =
∞∑
n=0

cnx
n+r then we will have the recurrence relation

ck+1 =
ck

(k + r + 1)(3k + 3r + 1)
, k ≥ 0

where r are the roots of the indicial equation. The first three nonzero terms in the
series solution that corresponds to the smaller indicial root evaluated at x = 1 could
be

(a) 1, 1,
1

8

(b) 2, 3,
1

6

(c) 2, 2,
2

5

(d) 1, 1,
1

6

(e) 2, 2,
1

8

14. Which one of the following statements is TRUE about the differential equation

(x3 − 2x2 − 3x)2y′′ + x(x− 3)2y′ − (x+ 1)y = 0?

(a) x = −1 is an irregular singular point

(b) x = 1 is an irregular singular point

(c) x = 0 is an irregular singular point

(d) x = 3 is an irregular singular point

(e) x = 3 is an ordinary point
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15. If X =

(
1
b

)
e−5t is a solution of the system

dx

dt
= 3x− 4y,

dy

dt
= 4x− 7y,

then b =

(a) 2

(b) 0

(c) −1

(d) −2

(e) 1

16. If the general solution of the system
dx

dt
= x+ y − z

dy

dt
= 2y

dz

dt
= y − z

is given by

X = c1

 a
b
0

 eλ1t + c2

 c
d
1

 eλ2t + c3

 e
f
2

 e−t, λ1 6= λ2

Then a · b+ c · d+ e · f =

(a) 6

(b) 5

(c) 4

(d) 7

(e) 8
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17. Consider the following initial value problem

X ′ = AX, X(0) =

[
−1
6

]

where A =

[
2 4
−1 6

]
. Then X(1) =

(a)

[
25e4

19e4

]
(b)

[
19e4

25e4

]
(c)

[
10e4

15e4

]
(d)

[
25e4

10e4

]
(e)

[
15e4

19e4

]

18. The solution of X ′ =

[
1 −2
2 1

]
X, X(0) =

[
1
2

]
at t =

π

4
equals

(a)

[
−2
1

]
e

π
4

(b)

[
2
1

]
e

π
4

(c)

[
1
2

]
e

π
4

(d)

[
−2
0

]
e

π
4

(e)

[
2
1

]
e−

π
4
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19. Consider the non homogeneous system

X ′ = AX +

(
4
−1

)
If the general solution of the associated homogeneous system is

Xc = c1

(
1
1

)
+ c2

(
3
2

)
et

then the particular solution Xp(−1) =

(a)

(
−4
1

)
(b)

(
1
−3

)
(c)

(
4
3

)
(d)

(
−4
3

)
(e)

(
0
0

)
20. If the exponential matrix of

A =

 1 1 1
1 1 1
−2 −2 −2


is given by

eAt =

 t+ 1 t t
h1(t) t+ 1 t
h2(t) h3(t) −2t+ 1


then h1(1) + h2(2) + h3(3) =

(a) −9

(b) 9

(c) −10

(d) 10

(e) −8
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21. The first order differential equation

dr

dθ
= rθ + r + θ + 1

is not seperable
(Answer True or False by filling in the OMR sheet)

(a) False

(b) True

22. If y1 = ex and y2 = e−x are solutions of a homogeneous linear differential equation
(DE), then y = −5e−x + 10ex is also a solution of the DE.
(Answer True or False by filling in the OMR sheet)

(a) True

(b) False
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23. The linear differential equation, y′ + k1y = k2, where k1 and k2 are non zero con-
stants, possesses a constant solution
(Answer True or False by filling in the OMR sheet)

(a) True

(b) False

24. If the set consisting of two functions f1 and f2 is linearly independent on an interval
I, then the Wronskian W (f1, f2) 6= 0 for all x in I.

(Answer True or False by filling in the OMR sheet)

(a) False

(b) True
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25. k1 =

 3
1
−1

 is an eigenvector of the coefficient matrix

 4 6 6
1 3 2
−1 −4 −3

 .

(Answer True or False by filling in the OMR sheet)

(a) True

(b) False


