King Fahd University of Petroleum and Minerals Department of Mathematics Math 202 Final Exam 213 August 11, 2022 Net Time Allowed: 180 Minutes

USE THIS AS A TEMPLATE

Write your questions, once you are satisfied upload this file.

1. If the differential equation

$$(6xy^3 + \cos y) \, dx + (2kx^2y^2 - x\sin y) \, dy = 0$$

is exact, then k is equal to

(a)
$$\frac{9}{2}$$

(b) $\frac{7}{2}$
(c) $\frac{11}{2}$
(d) $\frac{9}{4}$
(e) $\frac{7}{4}$

2. If c is a constant, solving
$$e^x y \frac{dy}{dx} = e^{-y} + 3e^{-2x-y}$$
, gives

(a)
$$ye^{y} - e^{y} + e^{-x} + e^{-3x} = c$$

(b) $ye^{y} + e^{y} + e^{-x} - e^{-3x} = c$
(c) $ye^{y} - e^{y} + e^{-x} + 2e^{-3x} = c$
(d) $ye^{y} - e^{y} + 2e^{-x} - e^{-3x} = c$
(e) $ye^{y} + e^{y} + 2e^{-x} - 2e^{-3x} = c$

- 3. If c is a constant, solving $ydx 4(x + y^6) dy = 0$, gives
 - (a) $x = 2y^{6} + cy^{4}$ (b) $x = 2y^{4} + cy^{2}$ (c) $x = y^{6} - cy^{4}$ (d) $y = 2x^{6} + cx^{4}$ (e) $x = 3y^{6} + y^{4}$

- 4. If a, b, c and d are the roots of the auxiliary equation of the differential equation $y^{(4)} 7y'' 18y = 0$, then a + b + c + d =
 - (a) 0
 - (b) 6
 - (c) -6
 - (d) 2
 - (e) -2

MASTER

5. If $D^4 + aD^3 + bD^2 + cD + 20$ annihilates $\frac{2x - 3\cos x}{e^{2x}}$, where $D = \frac{d}{dx}$, then $a + b + c = \frac{d}{dx}$

- (a) 69
- (b) 68
- (c) 67
- (d) 70
- (e) 71

- 6. If $y_p = Ax^2 + Bx$ is a particular solution of the differential equation $2x^2y'' + 5xy' + y = x^2 x$, then 15A + 6B =
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) -1
 - (e) -2

7. The general solution of the differential equation

$$y''' + 2y'' + y' = 10$$

is $y =$
(a) $c_1 + c_2 e^{-x} + c_3 x e^{-x} + 10x$
(b) $c_1 + c_2 e^{-x} + 10x$
(c) $c_1 + c_2 e^{-x} + c_3 x e^{-x} + x$

(d) $c_1 + c_2 e^{-x} + c_3 x e^x + 5x$

(e)
$$c_1 + c_2 e^{-x} + c_3 e^x + 10x$$

- 8. If y = y(x) is the solution of the initial-value problem $x^2y'' xy' + y = 0$, y(1) = 3, y'(1) = -1, then y(e) =
 - (a) -e
 - (b) 2e
 - (c) 3*e*
 - (d) -2e
 - (e) -3e

9. The general solution of the differential equation

$$4y'' + 36y = \csc 3x$$
 is $y =$

(a)
$$c_1 \cos 3x + c_2 \sin 3x - \frac{1}{12}x \cos 3x + \frac{1}{36}(\sin 3x) \ln |\sin 3x|$$

(b) $c_1 \cos 3x + c_2 \sin 3x + \frac{1}{4}x \sin 3x + \frac{1}{36}(\cos x) \ln |\cos x|$
(c) $c_1 \cos 3x + c_2 \sin 3x - x \cos 3x + (\sin 3x) \ln |\sin 3x|$
(d) $c_1 \cos 3x + c_2 \sin 3x - x \sin 3x + (\cos x) \ln |\cos x|$
(e) $c_1 \cos 3x + c_2 \sin 3x - x \cos 3x + (\cos 3x) \ln |\cos 3x|$

- 10. If c is a constant, solving this homogeneous differential equation (x-y) dx + x dy = 0, gives
 - (a) $y = cx x \ln |x|$ (b) $y = cx^2 - x \ln |x|$ (c) $y = cx + x^2 \ln |x|$ (d) $y = cx - 2x \ln |x|$ (e) $y = cx + 2 \ln |x|$

- 11. The minimum radius of convergence of the power series solutions for the differential equation $(x^2 2x + 10)y'' + xy' 4y = 0$ about the ordinary point x = 1, is R =
 - (a) 3
 - (b) 2
 - (c) 1
 - (d) 4
 - (e) 5

12. If $y = \sum_{n=0}^{\infty} c_n x^n$ is a power series solution about the ordinary point $x_0 = 0$ of the differential equation y'' + xy = 0, then the coefficients c_n satisfy

(a)
$$c_{n+2} = \frac{-c_{n-1}}{(n+2)(n+1)}, n \ge 1$$

(b) $c_{n+2} = \frac{-c_n}{(n+2)(n+1)}, n \ge 1$
(c) $c_n = \frac{-c_{n+2}}{(n+2)(n+1)}, n \ge 1$
(d) $c_{n+2} = \frac{-1}{(n+2)(n+1)}, n \ge 1$
(e) $c_{n+2} = \frac{-c_{n-1}}{(n+1)(n+3)}, n \ge 1$

13. If we solve the differential equation 3xy'' + y' - y = 0 about the regular singular point x = 0, by considering $y = \sum_{n=0}^{\infty} c_n x^{n+r}$ then we will have the recurrence relation c_k

$$c_{k+1} = \frac{c_k}{(k+r+1)(3k+3r+1)}, \ k \ge 0$$

where r are the roots of the indicial equation. The first three nonzero terms in the series solution that corresponds to the smaller indicial root evaluated at x = 1 could be

(a)
$$1, 1, \frac{1}{8}$$

(b) $2, 3, \frac{1}{6}$
(c) $2, 2, \frac{2}{5}$
(d) $1, 1, \frac{1}{6}$
(e) $2, 2, \frac{1}{8}$

14. Which one of the following statements is TRUE about the differential equation

$$(x^{3} - 2x^{2} - 3x)^{2}y'' + x(x - 3)^{2}y' - (x + 1)y = 0?$$

- (a) x = -1 is an irregular singular point
- (b) x = 1 is an irregular singular point
- (c) x = 0 is an irregular singular point
- (d) x = 3 is an irregular singular point
- (e) x = 3 is an ordinary point

15. If $X = \begin{pmatrix} 1 \\ b \end{pmatrix} e^{-5t}$ is a solution of the system $\frac{dx}{dt} = 3x - 4y,$ $\frac{dy}{dt} = 4x - 7y,$ then b =

- (a) 2
 (b) 0
 (c) -1
 (d) -2
 (e) 1
- 16. If the general solution of the system dx

 \boldsymbol{z}

$$\frac{dx}{dt} = x + y - \frac{dy}{dt} = 2y$$
$$\frac{dz}{dt} = y - z$$

is given by

$$X = c_1 \begin{pmatrix} a \\ b \\ 0 \end{pmatrix} e^{\lambda_1 t} + c_2 \begin{pmatrix} c \\ d \\ 1 \end{pmatrix} e^{\lambda_2 t} + c_3 \begin{pmatrix} e \\ f \\ 2 \end{pmatrix} e^{-t}, \ \lambda_1 \neq \lambda_2$$

Then $a \cdot b + c \cdot d + e \cdot f =$

- (a) 6
- (b) 5
- (c) 4
- (d) 7
- (e) 8

17. Consider the following initial value problem

$$X' = AX, \ X(0) = \begin{bmatrix} -1\\ 6 \end{bmatrix}$$

where $A = \begin{bmatrix} 2 & 4\\ -1 & 6 \end{bmatrix}$. Then $X(1) =$

(a)
$$\begin{bmatrix} 25e^4\\ 19e^4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 19e^4\\ 25e^4 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 10e^4\\ 15e^4 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 25e^4\\ 10e^4 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 15e^4\\ 19e^4 \end{bmatrix}$$

18. The solution of
$$X' = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} X$$
, $X(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ at $t = \frac{\pi}{4}$ equals

(a)
$$\begin{bmatrix} -2\\1 \end{bmatrix} e^{\frac{\pi}{4}}$$

(b) $\begin{bmatrix} 2\\1 \end{bmatrix} e^{\frac{\pi}{4}}$
(c) $\begin{bmatrix} 1\\2 \end{bmatrix} e^{\frac{\pi}{4}}$
(d) $\begin{bmatrix} -2\\0 \end{bmatrix} e^{\frac{\pi}{4}}$
(e) $\begin{bmatrix} 2\\1 \end{bmatrix} e^{-\frac{\pi}{4}}$

19. Consider the non homogeneous system

$$X' = AX + \left(\begin{array}{c} 4\\ -1 \end{array}\right)$$

If the general solution of the associated homogeneous system is

$$X_c = c_1 \begin{pmatrix} 1\\1 \end{pmatrix} + c_2 \begin{pmatrix} 3\\2 \end{pmatrix} e^t$$

then the particular solution $X_p(-1) =$

(a)
$$\begin{pmatrix} -4\\1 \end{pmatrix}$$

(b) $\begin{pmatrix} 1\\-3 \end{pmatrix}$
(c) $\begin{pmatrix} 4\\3 \end{pmatrix}$
(d) $\begin{pmatrix} -4\\3 \end{pmatrix}$
(e) $\begin{pmatrix} 0\\0 \end{pmatrix}$

20. If the exponential matrix of

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2 \end{pmatrix}$$

is given by

$$e^{At} = \begin{pmatrix} t+1 & t & t \\ h_1(t) & t+1 & t \\ h_2(t) & h_3(t) & -2t+1 \end{pmatrix}$$

then $h_1(1) + h_2(2) + h_3(3) =$

- (a) −9
- (b) 9
- (c) -10
- (d) 10
- (e) -8

21. The first order differential equation

$$\frac{dr}{d\theta} = r\theta + r + \theta + 1$$

is not seperable (Answer True or False by filling in the OMR sheet)

(a) False

(b) True

- 22. If $y_1 = e^x$ and $y_2 = e^{-x}$ are solutions of a homogeneous linear differential equation (DE), then $y = -5e^{-x} + 10e^x$ is also a solution of the DE. (Answer True or False by filling in the OMR sheet)
 - (a) True
 - (b) False

- 23. The linear differential equation, $y' + k_1 y = k_2$, where k_1 and k_2 are non zero constants, possesses a constant solution (Answer True or False by filling in the OMR sheet)
 - (a) True
 - (b) False

- 24. If the set consisting of two functions f_1 and f_2 is linearly independent on an interval I, then the Wronskian $W(f_1, f_2) \neq 0$ for all x in I. (Answer True or False by filling in the OMR sheet)
 - (a) False
 - (b) True

25. $k_1 = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}$ is an eigenvector of the coefficient matrix $\begin{pmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{pmatrix}$.

(Answer True or False by filling in the OMR sheet)

(a) True

(b) False