Page 1 of 7

Page 1 of 7

[MASTER]

1. Given that the two-parameter family  $y = c_1 x^2 + c_2 x^4 + 3$  is a solution of the differential equation  $x^2y'' - 5xy' + 8y = 24$  on  $(-\infty, \infty)$ . Then the differential equation has a solution satisfying the boundary conditions:

(a) 
$$y(1) = 3$$
,  $y(2) = 15$  \_\_\_\_\_(correct)

- (b) y(0) = 0, y(1) = 2
- (c) y(1) = 3, y'(0) = 1
- (d) y(-1) = 0, y(1) = 4
- (e) y(-2) = 0, y(2) = 2

Similar to Q15-22 (page 130-131) ( see 4.1)

- 2. Which one of the following sets form a fundamental set of solutions of a third-order linear differential equation?
  - (a)  $\{\sinh x, \cosh x, 1\}$ (correct)
  - (b)  $\{\sinh x, \cosh x, e^x\}$
  - (c)  $\{\sinh x, \cosh x\}$
  - (d)  $\{\cos 2x, \cos^2 x\}$
  - (e)  $\{e^x, e^{-x}, \sinh x\}$

Page 2 of 7

Another Exam II

Solve that  $y_{p_1} = 4x^2$ ,  $y_{p_2} = e^{2x}$ , and  $y_{p_3} = xe^x$  are particular solutions of the differential equations

$$L(y) = -16x^2 + 24x - 8$$
,  $L(y) = 2e^{2x}$ , and  $L(y) = 2xe^x - e^x$ ,

respectively where L is a linear differential operator. Which of the following is a particular solution of the differential equation  $L(y) = -16x^2 + 24x - 8 + 2e^{2x} + 2e^{2x}$  $2xe^x - e^x$ ?

(a) 
$$4x^2 + e^{2x} + xe^x$$
 \_\_\_\_\_(correct)

- (b)  $4x^2 e^{2x} xe^x$
- (c)  $-4x^2 e^{2x} + xe^x$
- (d)  $-4x^2 + e^{2x} xe^x$
- (e)  $-4x^2 + e^{2x} + xe^x$

Similar to @1-22 (page 134) (tec 4-2)

- 4. If  $y_1 = e^x$  is a solution of the differential equation xy'' (2x+1)y' + (x+1)y = 0, then which of the following is a second solution  $y_2$  that is linearly independent with  $y_1$ ?
  - (a)  $x^{2}e^{x}$ (correct)
  - (b)  $x^2e^{2x}$
  - (c)  $xe^{2x}$
  - (d)  $xe^x$
  - (e)  $x^3e^{-x}$

- 11, Math 202, Major Exam II

  12, Math 202, Major Exam II

  13, Page 3 of 7

  14, Math 202, Major Exam II

  15. If  $y = c_1 + c_2 x + c_3 e^{-\frac{1}{2}x} + c_4 e^{bx} \cos cx + c_5 e^{bx} \sin cx$  is the general solution of the differential equation  $2y^{(5)} - 7y^{(4)} + 12y''' + 8y'' = 0$ , then  $b^2 + c^2 =$ (Hint:  $y = e^{-\frac{1}{2}x}$  is a solution of the differential equation)
  - (a) 8. (correct)
  - (b) 6
  - (c) 10
  - (d) 12
  - (e) 4

\$22,26 (page 159) (Sec 4.5)

6. A linear differential operator that annihilates the function

$$8x - \sin x + e^{-x} \sin x$$

is:

(a) 
$$D^6 + 2D^5 + 3D^4 + 2D^3 + 2D^2$$
 \_\_\_\_\_(correct)

- (b)  $D^6 2D^5 3D^4 2D^3 2D^2$
- (c)  $D^5 2D^4 + 3D^3 2D^2 + 2D$
- (d)  $D^6 2D^5 + 3D^4 2D^3 + 2D^2$
- (e)  $D^6 2D^5 3D^4 + 2D^3 2D^2$

7. The general solution of the differential equation

$$y'' - y' - 12y = e^{4x}$$

is y =

(a) 
$$c_1 e^{4x} + c_2 e^{-3x} + \frac{1}{7} x e^{4x}$$
 \_\_\_\_\_(correct)

(b) 
$$c_1e^{4x} + c_2e^{-3x} + \frac{1}{7}e^{4x}$$

(c) 
$$c_1 e^{4x} + c_2 e^{3x} + \frac{1}{6} x e^{4x}$$

(d) 
$$c_1e^{-4x} + c_2e^{3x} + \frac{1}{7}e^{4x}$$

(e) 
$$c_1e^{4x} + c_2e^{-3x} + xe^{4x}$$

## Q 13. ( Page 165) (sec 4.6)

8. The general solution of the differential equation

$$y'' + 3y' + 2y = \sin e^x$$

is y =

(a) 
$$c_1e^{-x} + c_2e^{-2x} - e^{-2x}\sin e^x$$
 \_\_\_\_\_(correct)

(b) 
$$c_1e^{-x} + c_2e^{-2x} + 2e^{-2x}\sin e^x$$

(c) 
$$c_1e^{-x} + c_2e^{-2x} - e^{-x}\cos e^x$$

(d) 
$$c_1e^{-x} + c_2e^{-2x} + e^{-x}\cos e^x$$

(e) 
$$c_1 e^x + c_2 e^{2x} + e^{-2x} \sin e^x$$

221, Math 202, Major Exam II

9. Given that  $y_1 = x^2$  is a solution of the associated homogeneous equation of the differential equation  $x^4y'' + x^3y' - 4x^2y = 1$ . Which of the following is a particular solution of the differential equation?

(a) 
$$\frac{-1}{16x^2} - \frac{1}{4x^2} \ln x$$
 \_\_\_\_\_\_(correct)

(b) 
$$\frac{1}{16x^2} + \frac{1}{4x} \ln x$$

(c) 
$$\frac{1}{16x} - \frac{1}{4x^2} \ln x$$

(d) 
$$\frac{-1}{16x^2} - \frac{1}{2x^2} \ln x$$

(e) 
$$\frac{-1}{8x} - \frac{1}{4x^2} \ln x$$

@17(page 171) (sec 4.7)

10. The general solution of the differential equation  $xy^{(4)} + 6y''' = 0$  is y =

(a) 
$$c_1 + c_2 x + c_3 x^2 + c_4 x^{-3}$$
 \_\_\_\_\_(correct)

(b) 
$$c_1 + c_2 x + c_3 x^2 + c_4 x^3$$

(c) 
$$c_1 + c_2 x^2 + c_3 x^{-3} + c_4 x^{-4}$$

(d) 
$$c_1x + c_2x^2 + c_3x^{-3} + c_4x^{-4}$$

(e) 
$$c_1 + c_2 x + c_3 x^{-3} + c_4 x^{-4}$$

221, Math 202, Major Exam II Page 6 of 7

11. By using the substitution  $x = e^t$ , if we transform the differential equation

$$x^3y''' - 3x^2y'' + 6xy' - 6y = 3 + \ln x^3$$

into the differential equation

$$\frac{d^3y}{dt^3} + A\frac{d^2y}{dt^2} + B\frac{dy}{dt} + Cy = D + Et,$$

then A + B + C + D + E =

- (a) 5 \_\_\_\_\_
- (b) 6
- (c) 7
- (d) 4
- (e) 3

12. Which of the following is the form of a particular solution for the differential equation

$$y''' - 4y'' + 4y' = 5x^2 - 6x + 4x^2e^{2x} + 3e^{5x}?$$

(a) 
$$Ax + Bx^2 + Cx^3 + Ex^2e^{2x} + Fx^3e^{2x} + Gx^4e^{2x} + He^{5x}$$
 \_\_\_\_\_(correct)

(b) 
$$A + Bx + Cx^2 + Ee^{2x} + Fxe^{2x} + Gx^2e^{2x} + He^{5x}$$

(c) 
$$Ax + Bx^2 + Cx^3 + Ex^2e^x + Fe^{5x}$$

(d) 
$$Ax^2 + Bx^2e^{2x} + Cx^3e^{2x} + Ex^4e^{2x} + Fe^{5x}$$

(e) 
$$Ax + Bx^2 + Cx^3 + Ex^2e^{2x} + Fx^3e^{2x} + Ge^{5x}$$

Q8 (page 252) (fee 6-2)

13. If  $y = \sum_{k=0}^{\infty} c_k x^k$  is a power series solution about the ordinary point  $x_0 = 0$  of the differential equation  $y'' + x^2 y = 0$ , then the coefficients  $c_k$  satisfy

(a) 
$$c_{k+2} = \frac{-1}{(k+2)(k+1)} c_{k-2}, \ k \ge 2$$
 \_\_\_\_\_\_(correct)

(b) 
$$c_{k+2} = \frac{1}{k(k+1)} c_{k-1}, k \ge 3$$

(c) 
$$c_{k+2} = \frac{1}{(k+2)(k+1)} c_{k-1}, k \ge 2$$

(d) 
$$c_{k+2} = \frac{-1}{k+2} c_{k-2}, k \ge 2$$

(e) 
$$c_{k+2} = \frac{-1}{k(k+1)(k+2)} c_{k-2}, k \ge 2$$

Ex 7 ( page 249) (See 6.2)

14. If we solve the differential equation

$$y'' - (1+x)y = 0$$

about the ordinary point x = 0, by considering  $y = \sum_{n=0}^{\infty} c_n x^n$ , then we will have the three-term recurrence relation

$$c_{k+2} = \frac{c_k + c_{k-1}}{(k+1)(k+2)}, \ k \ge 1 \text{ and } c_2 = \frac{1}{2}c_0$$

If we assume  $c_0 = 1$ , and  $c_1 = 0$ , then the first three non zero terms of one series solution evaluated at x = 1 could be

- (a)  $1, \frac{1}{2}, \frac{1}{6}$  \_\_\_\_\_\_(correct)
- (b)  $2, \frac{1}{4}, \frac{1}{12}$
- (c)  $1, \frac{1}{2}, \frac{1}{8}$
- (d)  $1, \frac{1}{4}, \frac{1}{6}$
- (e)  $2, 1, \frac{1}{6}$