King Fahd University of Petroleum and Minerals Department of Mathematics Math 202 Exam 1 222 February 20, 2023 Net Time Allowed: 120 Minutes

USE THIS AS A TEMPLATE

Write your questions, once you are satisfied upload this file.

Q12/P.13 (Section 1.1)

1. If $y = A + Be^{-20x}$ is a solution of the differential equation $\frac{dy}{dx} + 20y = 24$, then A =

(a)
$$\frac{6}{5}$$

(b) $\frac{3}{2}$
(c) $-\frac{3}{2}$
(d) $-\frac{6}{5}$
(e) $\frac{7}{6}$

Similar to Q25-28/P.20 (Section 1.2)

2. Using the existance and uniqueness theorem, a value of β so that the initial-value problem

$$\frac{dy}{dx} = \frac{\sqrt{y - 3x}}{\sqrt{9 - x^2}}, \ y(2) = \beta,$$

has a unique solution is

- (a) 7
- (b) 6
- (c) 5
- (d) 4
- (e) 3

Q19/P.52 (Section 2.2)

3. The solution of the differential equation

$$\frac{dy}{dx} = \frac{xy+3x-y-3}{xy-2x+4y-8}$$

is given by

(a)
$$(y - x) + 5 \ln \left| \frac{x + 4}{y + 3} \right| = c$$

(b) $(y - x) + 5 \ln \left| \frac{y + 3}{x + 4} \right| = c$
(c) $(y + x) + 5 \ln \left| \frac{x + 4}{y + 3} \right| = c$
(d) $(y + x) + 5 \ln \left| \frac{y + 3}{x + 4} \right| = c$
(e) $(y - x) + 3 \ln \left| \frac{x + 4}{y + 3} \right| = c$

Q43/P. 21 (Section 1.2)

4. Given that $y = c_1 \cos(2x) + c_2 \sin(2x)$ is the general solution of the differential equation y'' + 4y = 0. The boundary-value problem

$$y'' + 4y = 0$$

 $y(0) = 0, y(\pi) = 2$

- (a) has no solution
- (b) has infinitly many solution
- (c) has a unique solution $y = 2\cos(2x)$
- (d) has a unique solution $y = 2\sin(2x)$
- (e) has a unique solution $y = 2\cos(2x) + 2\sin(2x)$

Q33/P.63 (Section 2.3)

5. The solution of the initial-value problem

$$(x+1)\frac{dy}{dx} + y = \ln x, \ y(1) = 10$$

is given by

(a)
$$(x+1)y = x \ln x - x + 21$$

(b) $(x+1)y = \ln x - x + 21$

- (c) $(x+1)y = x^2 \ln x x + 21$
- (d) $(x+1)y = x \ln x + x + 19$

(e)
$$(x+1)y = x^2 \ln x + x + 19$$

Similar to Q27-28/P. 70 (Section 2.4)

6. The function k(x) with k(0) = 0 that makes

$$\frac{dy}{dx} = \frac{y\cos x + 2xe^y + 3}{k(x) - x^2e^y + 2x}$$

an exact differential equation is

(a) $k(x) = -\sin x - 2x$ (b) $k(x) = \sin x + 3x$ (c) $k(x) = 2\sin x + x$ (d) $k(x) = 3\sin x - x$ (e) $k(x) = -\sin x + x$

Q12/P.70 (Section 2.4)

7. The solution of the exact differential equation

$$(3x^2y + e^y) dx + (x^3 + xe^y - 2y) dy = 0$$

is

(a)
$$x^{3}y + xe^{y} - y^{2} = c$$

(b) $x^{3}y - xe^{y} + y^{2} = c$
(c) $x^{3}y + 2xe^{y} + y^{2} = c$
(d) $x^{3}y + 2xe^{y} - y^{2} = c$
(e) $x^{3}y - xe^{y} + 2y^{2} = c$

Q36/P. 71 (Section 2.4)

8. An integrating factor that can by used to make the differential equation

$$(y^2 + xy^3) dx + (5y^2 - xy + y^3 \sin y) dy = 0$$

exact is given by

(a)
$$\frac{1}{y^3}$$

(b) $\frac{1}{y^2}$
(c) $\frac{1}{y}$
(d) y^3
(e) y^2

Page 5 of 7

Q10/ P. 75 (Section 2.5)

9. The solution of the homogeneous differential equation

$$x\frac{dy}{dx} = y + \sqrt{x^2 - y^2}, \ x > 0$$

is given by

(a)
$$y = x \sin(\ln x + c)$$

(b) $y = x^2 \sin(\ln x + c)$
(c) $y = 2x \sin(\ln x + c)$
(d) $y = 2x^2 \sin(\ln x + c)$

(e)
$$y = 3x\sin(2\ln x + c)$$

Q18 / P. 75 (Section 2.5)

10. By using an appropriate substitution, the differential equation $x\frac{dy}{dx} - (1+x)y = xy^2$ can be transformed to one of the following linear differential equations

(a)
$$\frac{du}{dx} + \left(1 + \frac{1}{x}\right)u = -1$$

(b)
$$\frac{du}{dx} + \left(1 + \frac{1}{x}\right)u = 1$$

(c)
$$\frac{du}{dx} + \left(1 + \frac{1}{x}\right)u = 2$$

(d)
$$\frac{du}{dx} + \left(1 + \frac{1}{x}\right)u = -2$$

(e)
$$\frac{du}{dx} + \left(1 - \frac{1}{x}\right)u = 1$$

Page 6 of 7

Q27 / P. 75 (Section 2.5) 11. The solution of the differential equation

$$\frac{dy}{dx} = 2 + \sqrt{y - 2x + 3}$$

is given by

(a)
$$4(y - 2x + 3) = (x + c)^2$$

(b) $2(y - 2x + 3) = (x + c)^2$
(c) $4(y + 2x - 3) = (x + c)^2$
(d) $2(y - 2x + 3) = (x + c)^3$
(e) $4(y - 2x + 3) = (x + c)^3$

Q4 / P. 91 (Section 3.1)

12. The population of bacteria in a culture grows at a rate proportional to the number of bacteria present at time t. After 3 hours it is observed that 400 bacteria are present. After 10 hours 2000 bacteria are present. What was the initial number of bacteria?

(a)
$$\frac{400}{\sqrt[7]{125}}$$

(b) $\frac{400}{\sqrt[5]{125}}$
(c) $\frac{400}{\sqrt[7]{250}}$
(d) $\frac{400}{\sqrt[5]{250}}$
(e) $\frac{400}{\sqrt[3]{250}}$

Page 7 of 7

Similar to Q1-8 / P. 12 (Section 1.1) 13. Which one of the following is a fourth-order linear differential equation

(a)
$$\sin x \frac{d^4 y}{dx^4} + 3x^2 \frac{d^2 y}{dx^2} + e^x y = \ln x$$

(b) $x^4 \frac{d^4 y}{dx^4} + x^3 \frac{d^2 y}{dx^3} + y = e^y$
(c) $x^3 \frac{d^3 y}{dx^3} + x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = x$
(d) $x^4 \left(\frac{dy}{dx}\right)^4 + x^3 \frac{d^3 y}{dx^3} + x \frac{dy}{dx} + y = e^x$
(e) $x^4 \frac{d^4 y}{dx^4} + y^3 \frac{d^3 y}{dx^3} + x^2 \frac{d^2 y}{dx^2} + \frac{dy}{dx} + y = x$

Example 3/P.49 (Section 2.2)

14. Given the differential equation $\frac{dy}{dx} = y^2 - 4$, then the sum of all constant solutions is

(a) 0

(b) 2

- (c) -2
- (d) 4
- (e) -4