King Fahd University of Petroleum and Minerals Department of Mathematics

> Math 202 Final Exam 222 May 22, 2023

EXAM COVER

Number of versions: 4 Number of questions: 20

King Fahd University of Petroleum and Minerals Department of Mathematics **Math 202** Final Exam 222 May 22, 2023 Net Time Allowed: 180 Minutes

MASTER VERSION

Page 1 of 10

1. If c is constant, then the solution of the differential equation

$$y' + \frac{1}{x+1}y = \frac{\ln x}{x+1}$$

is given by

(a)
$$y = \frac{x}{x+1} \ln x - \frac{x}{x+1} + \frac{c}{x+1}$$
 (correct)
(b) $y = \frac{x}{x+1} \ln x + \frac{c}{x+1}$
(c) $y = \frac{x+1}{x} \ln x + \frac{x+1}{x} + c(x+1)$
(d) $y = \frac{x}{x+1} \ln x + \frac{x}{x+1} + \frac{c}{x+1}$
(e) $y = \frac{x+1}{x} \ln x - \frac{x+1}{x} + c(x+1)$

2. If c is constant, then the solution of the exact differential equation

$$(y^{2} + y\sin x) dx + \left(2xy - \cos x - \frac{1}{1 + y^{2}}\right) dy = 0$$

is given by

(a)
$$xy^2 - y\cos x - \tan^{-1} y = c$$
 ______(correct)
(b) $xy^2 + y\sin x + \tan^{-1} y = c$
(c) $xy^2 - 2y\cos x + \tan^{-1} y = c$
(d) $xy^2 - y\cos x + \tan^{-1} y = c$
(e) $xy^2 - y\cos x + 2\tan^{-1} y = c$

3. If c is constant, then the solution of the homogeneous differential equation

$$(x+3y)\,dx - (3x+y)\,dy = 0$$

is given by

(a)
$$(y - x)^2 = c(y + x)$$
 (correct)
(b) $y - x = c(y + x)$
(c) $y - x = c(y + x)^2$
(d) $(y + x)^2 = c(y - x)$
(e) $(y + x)^2 = c(y - 2x)$

4. If $y_1 = 1$ is a solution of the differential equation $(1 - x^2)y'' - 2xy' = 0$, then by using reduction of order, a second solution $y_2 =$

(a)
$$\frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|$$
(correct)
(b)
$$\frac{1}{2} \ln \left| \frac{2+x}{1-x} \right|$$

(c)
$$\frac{1}{2} \ln \left| \frac{1+x}{2-x} \right|$$

(d)
$$\frac{1}{3} \ln \left| \frac{1-x}{2+x} \right|$$

(e)
$$\frac{1}{3} \ln \left| \frac{1-x}{1+x} \right|$$

(correct)

5. A homogeneous linear differential equation with constant coefficients whose general solution is

 $y = c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x$

is given by

(a) $y^{(4)} + 5y'' + 4y = 0$ (b) $y^{(4)} + 4y'' + 5y = 0$ (c) $y^{(4)} + 5y'' - 4y = 0$ (d) $y^{(4)} - 5y'' + 4y = 0$ (e) $y^{(4)} + 5y'' + 6y = 0$

6. Using the undetermined coefficients, a form of a particular solution for the differential equation

$$y'' + 3y' = 4x - 5$$

is given by

(a)
$$y_p = Ax^2 + Bx$$
 ______(correct)
(b) $y_p = Ax^3 + Bx$
(c) $y_p = Ax^2 + Bx^3$
(d) $y_p = Ax^2 + Bx^4$
(e) $y_p = Ax + B$

7. By using variation of parameters method, a particular solution of the differential equation

$$y'' - 9y = \frac{9x}{e^{3x}}$$
 is given by

(a)
$$y_p = \left(-\frac{1}{24} - \frac{1}{4}x - \frac{3}{4}x^2\right)e^{-3x}$$

(b) $y_p = \left(-\frac{1}{24} + x + \frac{3}{4}x^2\right)e^{-3x}$
(c) $y_p = \left(\frac{1}{24} + 3x - x^2\right)e^{-3x}$
(d) $y_p = \left(1 - \frac{1}{4}xe - \frac{3}{4}x^2\right)e^{-3x}$
(e) $y_p = \left(\frac{1}{4} - x - \frac{3}{4}x^2\right)e^{-3x}$

8. The general solution of the differential equation $x^3y''' - 6y = 0$ is given by

(a)
$$y = c_1 x^3 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$$
 (correct)
(b) $y = c_1 x^2 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$
(c) $y = c_1 x^3 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
(d) $y = c_1 x^2 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
(e) $y = c_1 x^3 + c_2 \cos(3 \ln x) + c_3 \sin(3 \ln x)$

_(correct)

9. The minimum radius of convergence of a power series solution of the second order differential equation $(x^2 - 2x + 5)y'' + xy' - y = 0$ about the ordinary point x = -1 is equal to

(a) $2\sqrt{2}$	(correct)
(b) 5	
(c) $3\sqrt{2}$	
(d) $2\sqrt{3}$	

(e) 1

10. If $y = \sum_{n=0}^{\infty} c_n x^n$ is a power series solution of the differential equation $(x^2 + 1)y'' - 6y = 0$, then the recurrence relation is given by

(a)
$$c_2 = 3c_0, c_3 = c_1, c_{k+2} = \frac{3-k}{k+1}c_k, k = 2, 3, \dots$$
 (correct)
(b) $c_2 = c_0, c_3 = c_1, c_{k+2} = \frac{k-3}{k+1}c_k, k = 2, 3, \dots$
(c) $c_2 = 2c_0, c_3 = 2c_1, c_{k+2} = \frac{4-k}{k+1}c_k, k = 2, 3, \dots$
(d) $c_2 = 3c_0, c_3 = 2c_1, c_{k+2} = \frac{3+k}{k+1}c_k, k = 2, 3, \dots$
(e) $c_2 = 4c_0, c_3 = c_1, c_{k+2} = \frac{3-k}{k+1}c_k, k = 2, 3, \dots$

11. The number of regular singular points of the differential equation

$$x^{3}(x^{2}-25)(x-2)^{2}y''+3x(x-2)y'+7(x+5)y=0$$

is

- (a) 3 _____(correct) (b) 2 (c) 1 (d) 0
- (e) 5

12. If $y = \sum_{n=0}^{\infty} c_n x^{n+r}$ is a series solution for the differential equation 2xy'' - y' + 2y = 0about x = 0, then the non-integer indicial root is equal to

Page 7 of 10

MASTER

13. If $c_0 \neq 0, c_1 = 0, c_k = -\frac{c_{k-2}}{k(2k-1)}, k = 2, 3, 4, \dots$ is the recurrence relation corresponding to the indicial root $r = \frac{1}{2}$ in the series solution of the differential equation $2x^2y'' - xy' + (x^2 + 1)y = 0$ about x = 0, then the solution is given by

(a)
$$y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^{2} + \frac{1}{168}x^{4} - \dots \right]$$
 (correct)
(b) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^{2} - \frac{1}{168}x^{4} + \dots \right]$
(c) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{6}x^{2} + \frac{1}{168}x^{4} - \dots \right]$
(d) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{3}x^{2} + \frac{1}{68}x^{4} - \dots \right]$
(e) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{3}x^{2} + \frac{1}{68}x^{4} + \dots \right]$

14. If $X_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t}$ and $X_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t}$ are two solution vectors of a homogeneous linear system X' = AX, then the Wronskian $W(X_1, X_2) =$

- (a) $8e^{4t}$ ______(correct) (b) $6e^{4t}$ (c) $8e^{8t}$
- (d) $6e^{8t}$
- (e) $8e^{6t}$

MASTER

15. If the general solution of the system
$$X' = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} X$$
 is given by

$$X = c_1 \begin{pmatrix} -2 \\ m \end{pmatrix} e^{nt} + c_2 \begin{pmatrix} 1 \\ k \end{pmatrix} e^{4t},$$

then m + n + k =

(e) -4

16. If $X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t}$ is a solution of the linear system $X' = \begin{pmatrix} -6 & 5 \\ -5 & 4 \end{pmatrix} X$ that corresponds to the only eigenvalue $\lambda = -1$, then a second linearly independent solution of the system is given by

(a)
$$X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t} + \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$$
 (correct)
(b) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
(c) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t}$
(d) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$
(e) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$

MASTER

17. Given that $K = \begin{pmatrix} 1 \\ 1-2i \end{pmatrix}$ is an eigenvector that corresponds to the eigenvalue $\lambda = 5 + 2i$ of the matrix $A = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix}$. If X(t) is the solution of the initial value problem $X' = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} X$, $X(0) = \begin{pmatrix} -2 \\ 8 \end{pmatrix}$ then $X \begin{pmatrix} \frac{\pi}{2} \end{pmatrix} =$

(a)
$$\begin{pmatrix} 2 \\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}$$
 (correct)
(b) $\begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{\frac{5\pi}{2}}$
(c) $\begin{pmatrix} 1 \\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}$
(d) $\begin{pmatrix} 2 \\ 0 \end{pmatrix} e^{\frac{5\pi}{2}}$
(e) $\begin{pmatrix} 0 \\ 2 \end{pmatrix} e^{\frac{5\pi}{2}}$

18. If $X_c = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t}$ is the general solution of the homogeneous linear system X' = AX, then using the variation of parameters method, a particular solution X_p of the non-homogeneous system $X' = AX + \begin{pmatrix} 0 \\ 4t \end{pmatrix}$ is given by

(a)
$$X_p = \begin{pmatrix} 4t \\ 8t - 4 \end{pmatrix}$$
 (correct)
(b) $X_p = \begin{pmatrix} t \\ 8t - 4 \end{pmatrix}$
(c) $X_p = \begin{pmatrix} 4t \\ t - 1 \end{pmatrix}$
(d) $X_p = \begin{pmatrix} t \\ t - 1 \end{pmatrix}$
(e) $X_p = \begin{pmatrix} 4t \\ t + 1 \end{pmatrix}$

MASTER

- 19. Using the exponential of a matrix method, if the general solution of the system $X' = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 1 & 0 \end{pmatrix} X \text{ is given by } X = \begin{pmatrix} 1 & 0 & 0 \\ g(t) & 1 & 0 \\ h(t) & f(t) & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix},$ then g(2) + h(2) + f(2) =
 - (a) 24 _____(correct) (b) 22
 - (c) 20
 - (d) 18
 - (e) 26

20. The eigenvalues of the matrix

$$A = \left(\begin{array}{rrrr} 5 & -1 & 0\\ 0 & -5 & 9\\ 5 & -1 & 0 \end{array}\right)$$

are

(a) $\lambda = 0$, $\lambda = 4$ and $\lambda = -4$ (correct) (b) $\lambda = 0$, $\lambda = 3$ and $\lambda = -3$ (c) $\lambda = 1$, $\lambda = 4$ and $\lambda = -4$ (d) $\lambda = 1$, $\lambda = 3$ and $\lambda = -3$ (e) $\lambda = 1$, $\lambda = 1 \pm 2i$ King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01

CODE01

Math 202 Final Exam 222 May 22, 2023 Net Time Allowed: 180 Minutes

Name		
ID	Sec	

Check that this exam has <u>20</u> questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

 $y = c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x$

is given by

(a)
$$y^{(4)} + 5y'' - 4y = 0$$

(b) $y^{(4)} - 5y'' + 4y = 0$
(c) $y^{(4)} + 4y'' + 5y = 0$
(d) $y^{(4)} + 5y'' + 6y = 0$
(e) $y^{(4)} + 5y'' + 4y = 0$

2. If $y_1 = 1$ is a solution of the differential equation $(1 - x^2)y'' - 2xy' = 0$, then by using reduction of order, a second solution $y_2 =$

(a)
$$\frac{1}{2} \ln \left| \frac{1+x}{2-x} \right|$$

(b)
$$\frac{1}{2} \ln \left| \frac{2+x}{1-x} \right|$$

(c)
$$\frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|$$

(d)
$$\frac{1}{3} \ln \left| \frac{1-x}{1+x} \right|$$

(e)
$$\frac{1}{3} \ln \left| \frac{1-x}{2+x} \right|$$

3. If c is constant, then the solution of the homogeneous differential equation

$$(x+3y)\,dx - (3x+y)\,dy = 0$$

is given by

(a)
$$y - x = c(y + x)$$

(b) $y - x = c(y + x)^2$
(c) $(y + x)^2 = c(y - 2x)$
(d) $(y + x)^2 = c(y - x)$
(e) $(y - x)^2 = c(y + x)$

4. If c is constant, then the solution of the exact differential equation

$$(y^{2} + y\sin x) dx + \left(2xy - \cos x - \frac{1}{1 + y^{2}}\right) dy = 0$$

is given by

(a) $xy^2 - y \cos x - \tan^{-1} y = c$ (b) $xy^2 - y \cos x + 2 \tan^{-1} y = c$ (c) $xy^2 + y \sin x + \tan^{-1} y = c$ (d) $xy^2 - 2y \cos x + \tan^{-1} y = c$ (e) $xy^2 - y \cos x + \tan^{-1} y = c$

Page 3 of 10

5. If c is constant, then the solution of the differential equation

$$y' + \frac{1}{x+1}y = \frac{\ln x}{x+1}$$

is given by

(a)
$$y = \frac{x+1}{x} \ln x - \frac{x+1}{x} + c(x+1)$$

(b) $y = \frac{x+1}{x} \ln x + \frac{x+1}{x} + c(x+1)$
(c) $y = \frac{x}{x+1} \ln x + \frac{c}{x+1}$
(d) $y = \frac{x}{x+1} \ln x - \frac{x}{x+1} + \frac{c}{x+1}$
(e) $y = \frac{x}{x+1} \ln x + \frac{x}{x+1} + \frac{c}{x+1}$

6. If $y = \sum_{n=0}^{\infty} c_n x^n$ is a power series solution of the differential equation $(x^2 + 1)y'' - 6y = 0$, then the recurrence relation is given by

(a)
$$c_2 = 3c_0, c_3 = 2c_1, c_{k+2} = \frac{3+k}{k+1}c_k, k = 2, 3, \dots$$

(b) $c_2 = 3c_0, c_3 = c_1, c_{k+2} = \frac{3-k}{k+1}c_k, k = 2, 3, \dots$
(c) $c_2 = 2c_0, c_3 = 2c_1, c_{k+2} = \frac{4-k}{k+1}c_k, k = 2, 3, \dots$
(d) $c_2 = 4c_0, c_3 = c_1, c_{k+2} = \frac{3-k}{k+1}c_k, k = 2, 3, \dots$
(e) $c_2 = c_0, c_3 = c_1, c_{k+2} = \frac{k-3}{k+1}c_k, k = 2, 3, \dots$

- 7. The general solution of the differential equation $x^3y''' 6y = 0$ is given by
 - (a) $y = c_1 x^2 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$ (b) $y = c_1 x^3 + c_2 \cos(3 \ln x) + c_3 \sin(3 \ln x)$ (c) $y = c_1 x^3 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$ (d) $y = c_1 x^2 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$ (e) $y = c_1 x^3 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$

8. Using the undetermined coefficients, a form of a particular solution for the differential equation

$$y'' + 3y' = 4x - 5$$

is given by

(a)
$$y_p = Ax^3 + Bx$$

(b) $y_p = Ax^2 + Bx^4$
(c) $y_p = Ax + B$
(d) $y_p = Ax^2 + Bx^3$
(e) $y_p = Ax^2 + Bx$

- 9. The minimum radius of convergence of a power series solution of the second order differential equation $(x^2 2x + 5)y'' + xy' y = 0$ about the ordinary point x = -1 is equal to
 - (a) 5
 - (b) 1
 - (c) $2\sqrt{2}$
 - (d) $3\sqrt{2}$
 - (e) $2\sqrt{3}$

10. By using variation of parameters method, a particular solution of the differential equation

$$y'' - 9y = \frac{9x}{e^{3x}}$$
 is given by

(a)
$$y_p = \left(-\frac{1}{24} - \frac{1}{4}x - \frac{3}{4}x^2\right)e^{-3x}$$

(b) $y_p = \left(\frac{1}{4} - x - \frac{3}{4}x^2\right)e^{-3x}$
(c) $y_p = \left(-\frac{1}{24} + x + \frac{3}{4}x^2\right)e^{-3x}$
(d) $y_p = \left(1 - \frac{1}{4}xe - \frac{3}{4}x^2\right)e^{-3x}$
(e) $y_p = \left(\frac{1}{24} + 3x - x^2\right)e^{-3x}$

CODE01

11. If the general solution of the system $X' = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} X$ is given by

$$X = c_1 \begin{pmatrix} -2 \\ m \end{pmatrix} e^{nt} + c_2 \begin{pmatrix} 1 \\ k \end{pmatrix} e^{4t},$$

then m + n + k =

- (a) 2
- (b) -2
- (c) 4
- (d) 3
- (e) -4

12. If $c_0 \neq 0, c_1 = 0, c_k = -\frac{c_{k-2}}{k(2k-1)}, k = 2, 3, 4, \dots$ is the recurrence relation corresponding to the indicial root $r = \frac{1}{2}$ in the series solution of the differential equation $2x^2y'' - xy' + (x^2 + 1)y = 0$ about x = 0, then the solution is given by

(a)
$$y = x^{\frac{1}{2}} \left[1 + \frac{1}{3}x^2 + \frac{1}{68}x^4 - \ldots \right]$$

(b) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 - \frac{1}{168}x^4 + \ldots \right]$
(c) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 + \frac{1}{168}x^4 - \ldots \right]$
(d) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{3}x^2 + \frac{1}{68}x^4 + \ldots \right]$
(e) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{6}x^2 + \frac{1}{168}x^4 - \ldots \right]$

13. If $y = \sum_{n=0}^{\infty} c_n x^{n+r}$ is a series solution for the differential equation 2xy'' - y' + 2y = 0about x = 0, then the non-integer indicial root is equal to

(a) $\frac{3}{4}$ (b) $\frac{4}{3}$ (c) $\frac{3}{2}$ (d) $\frac{1}{2}$ (e) $\frac{2}{3}$

14. If $X_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t}$ and $X_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t}$ are two solution vectors of a homogeneous linear system X' = AX, then the Wronskian $W(X_1, X_2) =$

- (a) $8e^{4t}$
- (b) $6e^{8t}$
- (c) $8e^{8t}$
- (d) $8e^{6t}$
- (e) $6e^{4t}$

15. The number of regular singular points of the differential equation

$$x^{3}(x^{2}-25)(x-2)^{2}y''+3x(x-2)y'+7(x+5)y=0$$

is

- (a) 5
- (b) 0
- (c) 3
- (d) 1
- (e) 2

16. The eigenvalues of the matrix

$$A = \left(\begin{array}{rrrr} 5 & -1 & 0\\ 0 & -5 & 9\\ 5 & -1 & 0 \end{array}\right)$$

are

17. If $X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t}$ is a solution of the linear system $X' = \begin{pmatrix} -6 & 5 \\ -5 & 4 \end{pmatrix} X$ that corresponds to the only eigenvalue $\lambda = -1$, then a second linearly independent solution of the system is given by

(a)
$$X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t}$$

(b) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$
(c) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
(d) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
(e) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$

18. Using the exponential of a matrix method, if the general solution of the system $X' = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 1 & 0 \end{pmatrix} X \text{ is given by } X = \begin{pmatrix} 1 & 0 & 0 \\ g(t) & 1 & 0 \\ h(t) & f(t) & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix},$ then g(2) + h(2) + f(2) =

- (a) 18
- (b) 20
- (c) 26
- (d) 22
- (e) 24

19. Given that $K = \begin{pmatrix} 1 \\ 1-2i \end{pmatrix}$ is an eigenvector that corresponds to the eigenvalue $\lambda = 5 + 2i$ of the matrix $A = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix}$. If X(t) is the solution of the initial value problem $X' = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} X$, $X(0) = \begin{pmatrix} -2 \\ 8 \end{pmatrix}$ then $X \begin{pmatrix} \frac{\pi}{2} \end{pmatrix} =$

(a)
$$\begin{pmatrix} 0\\2 \end{pmatrix} e^{\frac{5\pi}{2}}$$

(b) $\begin{pmatrix} 2\\0 \end{pmatrix} e^{\frac{5\pi}{2}}$
(c) $\begin{pmatrix} 2\\-8 \end{pmatrix} e^{\frac{5\pi}{2}}$
(d) $\begin{pmatrix} 1\\4 \end{pmatrix} e^{\frac{5\pi}{2}}$
(e) $\begin{pmatrix} 1\\-8 \end{pmatrix} e^{\frac{5\pi}{2}}$

20. If $X_c = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t}$ is the general solution of the homogeneous linear system X' = AX, then using the variation of parameters method, a particular solution X_p of the non-homogeneous system $X' = AX + \begin{pmatrix} 0 \\ 4t \end{pmatrix}$ is given by

(a)
$$X_p = \begin{pmatrix} t \\ t-1 \end{pmatrix}$$

(b) $X_p = \begin{pmatrix} 4t \\ 8t-4 \end{pmatrix}$
(c) $X_p = \begin{pmatrix} 4t \\ t-1 \end{pmatrix}$
(d) $X_p = \begin{pmatrix} 4t \\ t+1 \end{pmatrix}$
(e) $X_p = \begin{pmatrix} t \\ 8t-4 \end{pmatrix}$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02

CODE02

Math 202 Final Exam 222 May 22, 2023 Net Time Allowed: 180 Minutes

Name		
ID	Sec	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If c is constant, then the solution of the exact differential equation

$$(y^{2} + y\sin x) dx + \left(2xy - \cos x - \frac{1}{1 + y^{2}}\right) dy = 0$$

is given by

(a)
$$xy^2 - y\cos x - \tan^{-1} y = c$$

(b) $xy^2 - 2y\cos x + \tan^{-1} y = c$
(c) $xy^2 - y\cos x + 2\tan^{-1} y = c$
(d) $xy^2 - y\cos x + \tan^{-1} y = c$

(e)
$$xy^2 + y\sin x + \tan^{-1} y = c$$

2. If c is constant, then the solution of the homogeneous differential equation

$$(x+3y)\,dx - (3x+y)\,dy = 0$$

is given by

(a)
$$(y+x)^2 = c(y-2x)$$

(b) $y-x = c(y+x)$
(c) $(y-x)^2 = c(y+x)$
(d) $(y+x)^2 = c(y-x)$
(e) $y-x = c(y+x)^2$

3. If $y_1 = 1$ is a solution of the differential equation $(1 - x^2)y'' - 2xy' = 0$, then by using reduction of order, a second solution $y_2 =$

(a)
$$\frac{1}{3}\ln\left|\frac{1-x}{1+x}\right|$$

(b)
$$\frac{1}{2}\ln\left|\frac{1+x}{1-x}\right|$$

(c)
$$\frac{1}{2}\ln\left|\frac{1+x}{2-x}\right|$$

(d)
$$\frac{1}{2}\ln\left|\frac{2+x}{1-x}\right|$$

(e)
$$\frac{1}{3}\ln\left|\frac{1-x}{2+x}\right|$$

4. If c is constant, then the solution of the differential equation

$$y' + \frac{1}{x+1}y = \frac{\ln x}{x+1}$$

is given by

(a)
$$y = \frac{x+1}{x} \ln x + \frac{x+1}{x} + c(x+1)$$

(b) $y = \frac{x}{x+1} \ln x - \frac{x}{x+1} + \frac{c}{x+1}$
(c) $y = \frac{x}{x+1} \ln x + \frac{x}{x+1} + \frac{c}{x+1}$
(d) $y = \frac{x+1}{x} \ln x - \frac{x+1}{x} + c(x+1)$
(e) $y = \frac{x}{x+1} \ln x + \frac{c}{x+1}$

5. A homogeneous linear differential equation with constant coefficients whose general solution is

 $y = c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x$

is given by

(a)
$$y^{(4)} + 4y'' + 5y = 0$$

(b) $y^{(4)} + 5y'' + 6y = 0$
(c) $y^{(4)} + 5y'' - 4y = 0$
(d) $y^{(4)} - 5y'' + 4y = 0$
(e) $y^{(4)} + 5y'' + 4y = 0$

6. By using variation of parameters method, a particular solution of the differential equation

$$y'' - 9y = \frac{9x}{e^{3x}}$$
 is given by

(a)
$$y_p = \left(1 - \frac{1}{4}xe - \frac{3}{4}x^2\right)e^{-3x}$$

(b) $y_p = \left(-\frac{1}{24} + x + \frac{3}{4}x^2\right)e^{-3x}$
(c) $y_p = \left(\frac{1}{4} - x - \frac{3}{4}x^2\right)e^{-3x}$
(d) $y_p = \left(\frac{1}{24} + 3x - x^2\right)e^{-3x}$
(e) $y_p = \left(-\frac{1}{24} - \frac{1}{4}x - \frac{3}{4}x^2\right)e^{-3x}$

CODE02

- 7. The minimum radius of convergence of a power series solution of the second order differential equation $(x^2 2x + 5)y'' + xy' y = 0$ about the ordinary point x = -1 is equal to
 - (a) 5
 - (b) $2\sqrt{3}$
 - (c) $2\sqrt{2}$
 - (d) $3\sqrt{2}$
 - (e) 1

8. If $y = \sum_{n=0}^{\infty} c_n x^n$ is a power series solution of the differential equation $(x^2 + 1)y'' - 6y = 0$, then the recurrence relation is given by

(a)
$$c_2 = 4c_0, c_3 = c_1, c_{k+2} = \frac{3-k}{k+1}c_k, k = 2, 3, \dots$$

(b) $c_2 = 3c_0, c_3 = 2c_1, c_{k+2} = \frac{3+k}{k+1}c_k, k = 2, 3, \dots$
(c) $c_2 = 2c_0, c_3 = 2c_1, c_{k+2} = \frac{4-k}{k+1}c_k, k = 2, 3, \dots$
(d) $c_2 = 3c_0, c_3 = c_1, c_{k+2} = \frac{3-k}{k+1}c_k, k = 2, 3, \dots$
(e) $c_2 = c_0, c_3 = c_1, c_{k+2} = \frac{k-3}{k+1}c_k, k = 2, 3, \dots$

9. Using the undetermined coefficients, a form of a particular solution for the differential equation

$$y'' + 3y' = 4x - 5$$

is given by

(a)
$$y_p = Ax^2 + Bx$$

(b) $y_p = Ax^2 + Bx^3$
(c) $y_p = Ax^3 + Bx$
(d) $y_p = Ax^2 + Bx^4$
(e) $y_p = Ax + B$

10. The general solution of the differential equation $x^3y''' - 6y = 0$ is given by

(a)
$$y = c_1 x^2 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$$

(b) $y = c_1 x^3 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$
(c) $y = c_1 x^3 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
(d) $y = c_1 x^2 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$
(e) $y = c_1 x^3 + c_2 \cos(3 \ln x) + c_3 \sin(3 \ln x)$

CODE02

11. If the general solution of the system
$$X' = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} X$$
 is given by

$$X = c_1 \begin{pmatrix} -2 \\ m \end{pmatrix} e^{nt} + c_2 \begin{pmatrix} 1 \\ k \end{pmatrix} e^{4t},$$

then m + n + k =

- (a) -2
- (b) 3
- (c) -4
- (d) 4
- (e) 2

12. If $y = \sum_{n=0}^{\infty} c_n x^{n+r}$ is a series solution for the differential equation 2xy'' - y' + 2y = 0about x = 0, then the non-integer indicial root is equal to

(a)
$$\frac{1}{2}$$

(b) $\frac{4}{3}$
(c) $\frac{2}{3}$
(d) $\frac{3}{2}$
(e) $\frac{3}{4}$

Page 7 of 10

CODE02

13. If $c_0 \neq 0, c_1 = 0, c_k = -\frac{c_{k-2}}{k(2k-1)}, k = 2, 3, 4, \dots$ is the recurrence relation corresponding to the indicial root $r = \frac{1}{2}$ in the series solution of the differential equation $2x^2y'' - xy' + (x^2 + 1)y = 0$ about x = 0, then the solution is given by

(a)
$$y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]$$

(b) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{3}x^2 + \frac{1}{68}x^4 + \dots \right]$
(c) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]$
(d) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 - \frac{1}{168}x^4 + \dots \right]$
(e) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{3}x^2 + \frac{1}{68}x^4 - \dots \right]$

14. The number of regular singular points of the differential equation

$$x^{3}(x^{2}-25)(x-2)^{2}y''+3x(x-2)y'+7(x+5)y=0$$

is

- (a) 0
- (b) 5
- (c) 2
- (d) 1
- (e) 3

CODE02

15. If $X_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t}$ and $X_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t}$ are two solution vectors of a homogeneous linear system X' = AX, then the Wronskian $W(X_1, X_2) =$

- (a) $8e^{6t}$
- (b) $6e^{8t}$
- (c) $6e^{4t}$
- (d) $8e^{8t}$
- (e) $8e^{4t}$

- (a) 22
- (b) 18
- (c) 24
- (d) 26
- (e) 20

CODE02

17. If $X_c = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t}$ is the general solution of the homogeneous linear system X' = AX, then using the variation of parameters method, a particular solution X_p of the non-homogeneous system $X' = AX + \begin{pmatrix} 0 \\ 4t \end{pmatrix}$ is given by

(a)
$$X_p = \begin{pmatrix} 4t \\ t-1 \end{pmatrix}$$

(b) $X_p = \begin{pmatrix} 4t \\ 8t-4 \end{pmatrix}$
(c) $X_p = \begin{pmatrix} 4t \\ t+1 \end{pmatrix}$
(d) $X_p = \begin{pmatrix} t \\ 8t-4 \end{pmatrix}$
(e) $X_p = \begin{pmatrix} t \\ t-1 \end{pmatrix}$

18. Given that $K = \begin{pmatrix} 1 \\ 1-2i \end{pmatrix}$ is an eigenvector that corresponds to the eigenvalue $\lambda = 5 + 2i$ of the matrix $A = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix}$. If X(t) is the solution of the initial value problem $X' = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} X$, $X(0) = \begin{pmatrix} -2 \\ 8 \end{pmatrix}$ then $X \begin{pmatrix} \frac{\pi}{2} \end{pmatrix} =$

(a)
$$\begin{pmatrix} 0\\2 \end{pmatrix} e^{\frac{5\pi}{2}}$$

(b) $\begin{pmatrix} 2\\-8 \end{pmatrix} e^{\frac{5\pi}{2}}$
(c) $\begin{pmatrix} 1\\4 \end{pmatrix} e^{\frac{5\pi}{2}}$
(d) $\begin{pmatrix} 2\\0 \end{pmatrix} e^{\frac{5\pi}{2}}$
(e) $\begin{pmatrix} 1\\-8 \end{pmatrix} e^{\frac{5\pi}{2}}$

19. If $X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t}$ is a solution of the linear system $X' = \begin{pmatrix} -6 & 5 \\ -5 & 4 \end{pmatrix} X$ that corresponds to the only eigenvalue $\lambda = -1$, then a second linearly independent solution of the system is given by

(a)
$$X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$$

(b) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
(c) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t}$
(d) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$
(e) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t} + \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$

20. The eigenvalues of the matrix

$$A = \left(\begin{array}{rrrr} 5 & -1 & 0\\ 0 & -5 & 9\\ 5 & -1 & 0 \end{array}\right)$$

are

(a)
$$\lambda = 1$$
, $\lambda = 1 \pm 2i$
(b) $\lambda = 1$, $\lambda = 4$ and $\lambda = -4$
(c) $\lambda = 1$, $\lambda = 3$ and $\lambda = -3$
(d) $\lambda = 0$, $\lambda = 3$ and $\lambda = -3$
(e) $\lambda = 0$, $\lambda = 4$ and $\lambda = -4$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE03

CODE03

Math 202 Final Exam 222 May 22, 2023 Net Time Allowed: 180 Minutes

Name		
ID	Sec	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. A homogeneous linear differential equation with constant coefficients whose general solution is

 $y = c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x$

is given by

(a)
$$y^{(4)} + 5y'' + 4y = 0$$

(b) $y^{(4)} + 5y'' + 6y = 0$
(c) $y^{(4)} + 4y'' + 5y = 0$
(d) $y^{(4)} + 5y'' - 4y = 0$

(e) $y^{(4)} - 5y'' + 4y = 0$

2. If c is constant, then the solution of the exact differential equation

$$(y^{2} + y\sin x) dx + \left(2xy - \cos x - \frac{1}{1 + y^{2}}\right) dy = 0$$

is given by

(a) $xy^2 - y \cos x + \tan^{-1} y = c$ (b) $xy^2 + y \sin x + \tan^{-1} y = c$ (c) $xy^2 - 2y \cos x + \tan^{-1} y = c$ (d) $xy^2 - y \cos x - \tan^{-1} y = c$ (e) $xy^2 - y \cos x + 2 \tan^{-1} y = c$ 3. If c is constant, then the solution of the homogeneous differential equation

$$(x+3y)\,dx - (3x+y)\,dy = 0$$

is given by

(a)
$$(y+x)^2 = c(y-x)$$

(b) $(y+x)^2 = c(y-2x)$
(c) $y-x = c(y+x)^2$
(d) $(y-x)^2 = c(y+x)$
(e) $y-x = c(y+x)$

4. If c is constant, then the solution of the differential equation

$$y' + \frac{1}{x+1}y = \frac{\ln x}{x+1}$$

is given by

(a)
$$y = \frac{x+1}{x} \ln x + \frac{x+1}{x} + c(x+1)$$

(b) $y = \frac{x+1}{x} \ln x - \frac{x+1}{x} + c(x+1)$
(c) $y = \frac{x}{x+1} \ln x - \frac{x}{x+1} + \frac{c}{x+1}$
(d) $y = \frac{x}{x+1} \ln x + \frac{x}{x+1} + \frac{c}{x+1}$
(e) $y = \frac{x}{x+1} \ln x + \frac{c}{x+1}$

5. If $y_1 = 1$ is a solution of the differential equation $(1 - x^2)y'' - 2xy' = 0$, then by using reduction of order, a second solution $y_2 =$

(a)
$$\frac{1}{3}\ln\left|\frac{1-x}{1+x}\right|$$

(b)
$$\frac{1}{3}\ln\left|\frac{1-x}{2+x}\right|$$

(c)
$$\frac{1}{2}\ln\left|\frac{2+x}{1-x}\right|$$

(d)
$$\frac{1}{2}\ln\left|\frac{1+x}{2-x}\right|$$

(e)
$$\frac{1}{2}\ln\left|\frac{1+x}{1-x}\right|$$

6. By using variation of parameters method, a particular solution of the differential equation

$$y'' - 9y = \frac{9x}{e^{3x}}$$
 is given by

(a)
$$y_p = \left(-\frac{1}{24} + x + \frac{3}{4}x^2\right)e^{-3x}$$

(b) $y_p = \left(\frac{1}{24} + 3x - x^2\right)e^{-3x}$
(c) $y_p = \left(1 - \frac{1}{4}xe - \frac{3}{4}x^2\right)e^{-3x}$
(d) $y_p = \left(\frac{1}{4} - x - \frac{3}{4}x^2\right)e^{-3x}$
(e) $y_p = \left(-\frac{1}{24} - \frac{1}{4}x - \frac{3}{4}x^2\right)e^{-3x}$

7. Using the undetermined coefficients, a form of a particular solution for the differential equation

$$y'' + 3y' = 4x - 5$$

is given by

(a)
$$y_p = Ax^2 + Bx^4$$

(b) $y_p = Ax + B$
(c) $y_p = Ax^3 + Bx$
(d) $y_p = Ax^2 + Bx^3$
(e) $y_p = Ax^2 + Bx$

8. The general solution of the differential equation $x^3y''' - 6y = 0$ is given by

(a)
$$y = c_1 x^3 + c_2 \cos(3 \ln x) + c_3 \sin(3 \ln x)$$

(b) $y = c_1 x^3 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
(c) $y = c_1 x^3 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$
(d) $y = c_1 x^2 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
(e) $y = c_1 x^2 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$

CODE03

- 9. The minimum radius of convergence of a power series solution of the second order differential equation $(x^2 2x + 5)y'' + xy' y = 0$ about the ordinary point x = -1 is equal to
 - (a) 5
 - (b) $3\sqrt{2}$
 - (c) $2\sqrt{2}$
 - (d) 1
 - (e) $2\sqrt{3}$

10. If $y = \sum_{n=0}^{\infty} c_n x^n$ is a power series solution of the differential equation $(x^2 + 1)y'' - 6y = 0$, then the recurrence relation is given by

(a)
$$c_2 = 4c_0, c_3 = c_1, c_{k+2} = \frac{3-k}{k+1}c_k, k = 2, 3, \dots$$

(b) $c_2 = 3c_0, c_3 = c_1, c_{k+2} = \frac{3-k}{k+1}c_k, k = 2, 3, \dots$
(c) $c_2 = c_0, c_3 = c_1, c_{k+2} = \frac{k-3}{k+1}c_k, k = 2, 3, \dots$
(d) $c_2 = 2c_0, c_3 = 2c_1, c_{k+2} = \frac{4-k}{k+1}c_k, k = 2, 3, \dots$
(e) $c_2 = 3c_0, c_3 = 2c_1, c_{k+2} = \frac{3+k}{k+1}c_k, k = 2, 3, \dots$

CODE03

11. If the general solution of the system $X' = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} X$ is given by

$$X = c_1 \begin{pmatrix} -2 \\ m \end{pmatrix} e^{nt} + c_2 \begin{pmatrix} 1 \\ k \end{pmatrix} e^{4t},$$

then m + n + k =

- (a) 2
- (b) 3
- (c) -2
- (d) 4
- (e) -4

12. If $y = \sum_{n=0}^{\infty} c_n x^{n+r}$ is a series solution for the differential equation 2xy'' - y' + 2y = 0about x = 0, then the non-integer indicial root is equal to

(a)
$$\frac{2}{3}$$

(b) $\frac{3}{4}$
(c) $\frac{4}{3}$
(d) $\frac{1}{2}$
(e) $\frac{3}{2}$

Page 7 of 10

CODE03

13. If $c_0 \neq 0, c_1 = 0, c_k = -\frac{c_{k-2}}{k(2k-1)}, k = 2, 3, 4, \dots$ is the recurrence relation corresponding to the indicial root $r = \frac{1}{2}$ in the series solution of the differential equation $2x^2y'' - xy' + (x^2 + 1)y = 0$ about x = 0, then the solution is given by

(a)
$$y = x^{\frac{1}{2}} \left[1 - \frac{1}{3}x^2 + \frac{1}{68}x^4 + \dots \right]$$

(b) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{3}x^2 + \frac{1}{68}x^4 - \dots \right]$
(c) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]$
(d) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 - \frac{1}{168}x^4 + \dots \right]$
(e) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]$

14. The number of regular singular points of the differential equation

$$x^{3}(x^{2}-25)(x-2)^{2}y''+3x(x-2)y'+7(x+5)y=0$$

is

- (a) 0
- (b) 2
- (c) 3
- (d) 5
- (e) 1

CODE03

15. If $X_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t}$ and $X_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t}$ are two solution vectors of a homogeneous linear system X' = AX, then the Wronskian $W(X_1, X_2) =$

- (a) $8e^{4t}$
- (b) $6e^{4t}$
- (c) $6e^{8t}$
- (d) $8e^{6t}$
- (e) $8e^{8t}$

16. If $X_c = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t}$ is the general solution of the homogeneous linear system X' = AX, then using the variation of parameters method, a particular solution X_p of the non-homogeneous system $X' = AX + \begin{pmatrix} 0 \\ 4t \end{pmatrix}$ is given by

(a)
$$X_p = \begin{pmatrix} 4t \\ t+1 \end{pmatrix}$$

(b) $X_p = \begin{pmatrix} 4t \\ 8t-4 \end{pmatrix}$
(c) $X_p = \begin{pmatrix} t \\ 8t-4 \end{pmatrix}$
(d) $X_p = \begin{pmatrix} 4t \\ t-1 \end{pmatrix}$
(e) $X_p = \begin{pmatrix} t \\ t-1 \end{pmatrix}$

17. The eigenvalues of the matrix

$$A = \left(\begin{array}{rrrr} 5 & -1 & 0\\ 0 & -5 & 9\\ 5 & -1 & 0 \end{array}\right)$$

are

(a)
$$\lambda = 1$$
, $\lambda = 3$ and $\lambda = -3$
(b) $\lambda = 1$, $\lambda = 1 \pm 2i$
(c) $\lambda = 1$, $\lambda = 4$ and $\lambda = -4$
(d) $\lambda = 0$, $\lambda = 3$ and $\lambda = -3$
(e) $\lambda = 0$, $\lambda = 4$ and $\lambda = -4$

18. If $X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t}$ is a solution of the linear system $X' = \begin{pmatrix} -6 & 5 \\ -5 & 4 \end{pmatrix} X$ that corresponds to the only eigenvalue $\lambda = -1$, then a second linearly independent solution of the system is given by

(a)
$$X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t}$$

(b) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$
(c) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
(d) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$
(e) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$

19. Given that $K = \begin{pmatrix} 1 \\ 1-2i \end{pmatrix}$ is an eigenvector that corresponds to the eigenvalue $\lambda = 5 + 2i$ of the matrix $A = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix}$. If X(t) is the solution of the initial value problem $X' = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} X$, $X(0) = \begin{pmatrix} -2 \\ 8 \end{pmatrix}$ then $X \begin{pmatrix} \frac{\pi}{2} \end{pmatrix} =$

(a)
$$\begin{pmatrix} 2\\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}$$

(b) $\begin{pmatrix} 0\\ 2 \end{pmatrix} e^{\frac{5\pi}{2}}$
(c) $\begin{pmatrix} 2\\ 0 \end{pmatrix} e^{\frac{5\pi}{2}}$
(d) $\begin{pmatrix} 1\\ 4 \end{pmatrix} e^{\frac{5\pi}{2}}$
(e) $\begin{pmatrix} 1\\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}$

- - (a) 26
 - (b) 22
 - (c) 20
 - (d) 24
 - (e) 18

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04

CODE04

Math 202 Final Exam 222 May 22, 2023 Net Time Allowed: 180 Minutes

Name		
ID	Sec	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If $y_1 = 1$ is a solution of the differential equation $(1 - x^2)y'' - 2xy' = 0$, then by using reduction of order, a second solution $y_2 =$

(a)
$$\frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|$$

(b)
$$\frac{1}{3} \ln \left| \frac{1-x}{2+x} \right|$$

(c)
$$\frac{1}{3} \ln \left| \frac{1-x}{1+x} \right|$$

(d)
$$\frac{1}{2} \ln \left| \frac{2+x}{1-x} \right|$$

(e)
$$\frac{1}{2} \ln \left| \frac{1+x}{2-x} \right|$$

2. If c is constant, then the solution of the exact differential equation

$$(y^{2} + y\sin x) dx + \left(2xy - \cos x - \frac{1}{1 + y^{2}}\right) dy = 0$$

is given by

(a) $xy^2 + y \sin x + \tan^{-1} y = c$ (b) $xy^2 - y \cos x + 2 \tan^{-1} y = c$ (c) $xy^2 - y \cos x + \tan^{-1} y = c$ (d) $xy^2 - y \cos x - \tan^{-1} y = c$ (e) $xy^2 - 2y \cos x + \tan^{-1} y = c$

Page 2 of 10

3. If c is constant, then the solution of the differential equation

$$y' + \frac{1}{x+1}y = \frac{\ln x}{x+1}$$

is given by

(a)
$$y = \frac{x+1}{x} \ln x + \frac{x+1}{x} + c(x+1)$$

(b) $y = \frac{x}{x+1} \ln x - \frac{x}{x+1} + \frac{c}{x+1}$
(c) $y = \frac{x+1}{x} \ln x - \frac{x+1}{x} + c(x+1)$
(d) $y = \frac{x}{x+1} \ln x + \frac{c}{x+1}$
(e) $y = \frac{x}{x+1} \ln x + \frac{x}{x+1} + \frac{c}{x+1}$

4. A homogeneous linear differential equation with constant coefficients whose general solution is

 $y = c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x$

is given by

(a)
$$y^{(4)} - 5y'' + 4y = 0$$

(b) $y^{(4)} + 5y'' + 6y = 0$
(c) $y^{(4)} + 5y'' - 4y = 0$
(d) $y^{(4)} + 4y'' + 5y = 0$
(e) $y^{(4)} + 5y'' + 4y = 0$

5. If c is constant, then the solution of the homogeneous differential equation

$$(x+3y)\,dx - (3x+y)\,dy = 0$$

is given by

(a)
$$(y - x)^2 = c(y + x)$$

(b) $y - x = c(y + x)^2$
(c) $(y + x)^2 = c(y - 2x)$
(d) $y - x = c(y + x)$
(e) $(y + x)^2 = c(y - x)$

6. The general solution of the differential equation $x^3y''' - 6y = 0$ is given by

(a)
$$y = c_1 x^3 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$$

(b) $y = c_1 x^2 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$
(c) $y = c_1 x^2 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
(d) $y = c_1 x^3 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
(e) $y = c_1 x^3 + c_2 \cos(3 \ln x) + c_3 \sin(3 \ln x)$

7. By using variation of parameters method, a particular solution of the differential equation

$$y'' - 9y = \frac{9x}{e^{3x}}$$
 is given by

(a)
$$y_p = \left(\frac{1}{4} - x - \frac{3}{4}x^2\right)e^{-3x}$$

(b) $y_p = \left(\frac{1}{24} + 3x - x^2\right)e^{-3x}$
(c) $y_p = \left(-\frac{1}{24} + x + \frac{3}{4}x^2\right)e^{-3x}$
(d) $y_p = \left(1 - \frac{1}{4}xe - \frac{3}{4}x^2\right)e^{-3x}$
(e) $y_p = \left(-\frac{1}{24} - \frac{1}{4}x - \frac{3}{4}x^2\right)e^{-3x}$

8. If $y = \sum_{n=0}^{\infty} c_n x^n$ is a power series solution of the differential equation $(x^2 + 1)y'' - 6y = 0$, then the recurrence relation is given by

(a)
$$c_2 = 2c_0, c_3 = 2c_1, c_{k+2} = \frac{4-k}{k+1}c_k, k = 2, 3, \dots$$

(b) $c_2 = 3c_0, c_3 = 2c_1, c_{k+2} = \frac{3+k}{k+1}c_k, k = 2, 3, \dots$
(c) $c_2 = c_0, c_3 = c_1, c_{k+2} = \frac{k-3}{k+1}c_k, k = 2, 3, \dots$
(d) $c_2 = 4c_0, c_3 = c_1, c_{k+2} = \frac{3-k}{k+1}c_k, k = 2, 3, \dots$
(e) $c_2 = 3c_0, c_3 = c_1, c_{k+2} = \frac{3-k}{k+1}c_k, k = 2, 3, \dots$

9. Using the undetermined coefficients, a form of a particular solution for the differential equation

$$y'' + 3y' = 4x - 5$$

is given by

(a)
$$y_p = Ax^3 + Bx$$

(b) $y_p = Ax^2 + Bx^4$
(c) $y_p = Ax + B$
(d) $y_p = Ax^2 + Bx$

(e)
$$y_p = Ax^2 + Bx^3$$

- 10. The minimum radius of convergence of a power series solution of the second order differential equation $(x^2 2x + 5)y'' + xy' y = 0$ about the ordinary point x = -1 is equal to
 - (a) $3\sqrt{2}$
 - (b) 1
 - (c) $2\sqrt{2}$
 - (d) $2\sqrt{3}$
 - (e) 5

11. If $y = \sum_{n=0}^{\infty} c_n x^{n+r}$ is a series solution for the differential equation 2xy'' - y' + 2y = 0about x = 0, then the non-integer indicial root is equal to

(a) $\frac{4}{3}$ (b) $\frac{2}{3}$ (c) $\frac{3}{4}$ (d) $\frac{1}{2}$ (e) $\frac{3}{2}$

12. If the general solution of the system $X' = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} X$ is given by

$$X = c_1 \begin{pmatrix} -2 \\ m \end{pmatrix} e^{nt} + c_2 \begin{pmatrix} 1 \\ k \end{pmatrix} e^{4t},$$

then m + n + k =

- (a) -2
- (b) -4
- (c) 3
- (d) 2
- (e) 4

Page 7 of 10

CODE04

13. If $c_0 \neq 0, c_1 = 0, c_k = -\frac{c_{k-2}}{k(2k-1)}, k = 2, 3, 4, \dots$ is the recurrence relation corresponding to the indicial root $r = \frac{1}{2}$ in the series solution of the differential equation $2x^2y'' - xy' + (x^2 + 1)y = 0$ about x = 0, then the solution is given by

(a)
$$y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]$$

(b) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{3}x^2 + \frac{1}{68}x^4 - \dots \right]$
(c) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{3}x^2 + \frac{1}{68}x^4 + \dots \right]$
(d) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]$
(e) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 - \frac{1}{168}x^4 + \dots \right]$

14. If $X_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t}$ and $X_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t}$ are two solution vectors of a homogeneous linear system X' = AX, then the Wronskian $W(X_1, X_2) =$

- (a) $6e^{4t}$
- (b) $8e^{6t}$
- (c) $8e^{4t}$
- (d) $6e^{8t}$
- (e) $8e^{8t}$

15. The number of regular singular points of the differential equation

$$x^{3}(x^{2}-25)(x-2)^{2}y''+3x(x-2)y'+7(x+5)y=0$$

is

- (a) 5
- (b) 2
- (c) 0
- (d) 1
- (e) 3

16. Using the exponential of a matrix method, if the general solution of the system $\begin{aligned}
X' &= \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 1 & 0 \end{pmatrix} X \text{ is given by } X = \begin{pmatrix} 1 & 0 & 0 \\ g(t) & 1 & 0 \\ h(t) & f(t) & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}, \\
\text{then } g(2) + h(2) + f(2) =
\end{aligned}$

- (a) 18
- (b) 20
- (c) 24
- (d) 26
- (e) 22

17. If $X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t}$ is a solution of the linear system $X' = \begin{pmatrix} -6 & 5 \\ -5 & 4 \end{pmatrix} X$ that corresponds to the only eigenvalue $\lambda = -1$, then a second linearly independent solution of the system is given by

(a)
$$X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t}$$

(b) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
(c) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$
(d) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
(e) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$

18. Given that $K = \begin{pmatrix} 1 \\ 1-2i \end{pmatrix}$ is an eigenvector that corresponds to the eigenvalue $\lambda = 5 + 2i$ of the matrix $A = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix}$. If X(t) is the solution of the initial value problem $X' = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} X$, $X(0) = \begin{pmatrix} -2 \\ 8 \end{pmatrix}$ then $X \begin{pmatrix} \frac{\pi}{2} \end{pmatrix} =$

(a)
$$\begin{pmatrix} 2\\0 \end{pmatrix} e^{\frac{5\pi}{2}}$$

(b) $\begin{pmatrix} 0\\2 \end{pmatrix} e^{\frac{5\pi}{2}}$
(c) $\begin{pmatrix} 2\\-8 \end{pmatrix} e^{\frac{5\pi}{2}}$
(d) $\begin{pmatrix} 1\\-8 \end{pmatrix} e^{\frac{5\pi}{2}}$
(e) $\begin{pmatrix} 1\\4 \end{pmatrix} e^{\frac{5\pi}{2}}$

19. The eigenvalues of the matrix

$$A = \left(\begin{array}{rrrr} 5 & -1 & 0\\ 0 & -5 & 9\\ 5 & -1 & 0 \end{array}\right)$$

are

(a) $\lambda = 1$, $\lambda = 4$ and $\lambda = -4$ (b) $\lambda = 0$, $\lambda = 3$ and $\lambda = -3$ (c) $\lambda = 0$, $\lambda = 4$ and $\lambda = -4$ (d) $\lambda = 1$, $\lambda = 3$ and $\lambda = -3$ (e) $\lambda = 1$, $\lambda = 1 \pm 2i$

20. If $X_c = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t}$ is the general solution of the homogeneous linear system X' = AX, then using the variation of parameters method, a particular solution X_p of the non-homogeneous system $X' = AX + \begin{pmatrix} 0 \\ 4t \end{pmatrix}$ is given by

(a)
$$X_p = \begin{pmatrix} 4t \\ t-1 \end{pmatrix}$$

(b) $X_p = \begin{pmatrix} 4t \\ 8t-4 \end{pmatrix}$
(c) $X_p = \begin{pmatrix} t \\ t-1 \end{pmatrix}$
(d) $X_p = \begin{pmatrix} t \\ 8t-4 \end{pmatrix}$
(e) $X_p = \begin{pmatrix} 4t \\ t+1 \end{pmatrix}$

Math 202, 222, Final Exam

Answer KEY

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	А	E 5	A 2	A 5	A 4
2	А	С 4	Сз	D 2	D 2
3	А	Ез	B 4	D 3	В 1
4	А	A 2	В 1	С 1	E 5
5	А	D 1	E 5	E ₄	Аз
6	A	В 10	E ₇	E ₇	A ₈
7	А	E ₈	С 9	Е 6	E ₇
8	А	Е 6	D 10	С 8	Е 10
9	А	С 9	A 6	С 9	D 6
10	А	A 7	В 8	В 10	С 9
11	А	D 15	В 15	В 15	Е 12
12	А	С 13	D 12	Е 12	С 15
13	А	С 12	A 13	Е 13	A 13
14	А	A 14	Е 11	С 11	С 14
15	А	С 11	Е 14	A 14	Е 11
16	A	D 20	С 19	В 18	С 19
17	А	С 16	В 18	E 20	D 16
18	А	Е 19	В 17	С 16	С 17
19	А	С 17	Е 16	A 17	C 20
20	А	В 18	E 20	D 19	В 18

Answer Counts

V	A	В	С	D	Е
1	3	2	7	3	5
2	3	6	3	2	6
3	3	3	5	3	6
4	4	2	6	3	5