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1. If c is constant, then the solution of the differential equation

y′ +
1

x+ 1
y =

lnx

x+ 1

is given by

(a) y =
x

x+ 1
lnx− x

x+ 1
+

c

x+ 1
(correct)

(b) y =
x

x+ 1
lnx+

c

x+ 1

(c) y =
x+ 1

x
lnx+

x+ 1

x
+ c(x+ 1)

(d) y =
x

x+ 1
lnx+

x

x+ 1
+

c

x+ 1

(e) y =
x+ 1

x
lnx− x+ 1

x
+ c(x+ 1)

2. If c is constant, then the solution of the exact differential equation

(y2 + y sinx) dx+

(
2xy − cosx− 1

1 + y2

)
dy = 0

is given by

(a) xy2 − y cosx− tan−1 y = c (correct)

(b) xy2 + y sinx+ tan−1 y = c

(c) xy2 − 2y cosx+ tan−1 y = c

(d) xy2 − y cosx+ tan−1 y = c

(e) xy2 − y cosx+ 2 tan−1 y = c
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3. If c is constant, then the solution of the homogeneous differential equation

(x+ 3y) dx− (3x+ y) dy = 0

is given by

(a) (y − x)2 = c(y + x) (correct)

(b) y − x = c(y + x)

(c) y − x = c(y + x)2

(d) (y + x)2 = c(y − x)

(e) (y + x)2 = c(y − 2x)

4. If y1 = 1 is a solution of the differential equation (1 − x2)y′′ − 2xy′ = 0, then by
using reduction of order, a second solution y2 =

(a)
1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣ (correct)

(b)
1

2
ln

∣∣∣∣2 + x

1− x

∣∣∣∣
(c)

1

2
ln

∣∣∣∣1 + x

2− x

∣∣∣∣
(d)

1

3
ln

∣∣∣∣1− x2 + x

∣∣∣∣
(e)

1

3
ln

∣∣∣∣1− x1 + x

∣∣∣∣



222, Math 202, Final Exam Page 3 of 10 MASTER

5. A homogeneous linear differential equation with constant coefficients whose general
solution is

y = c1 cosx+ c2 sinx+ c3 cos 2x+ c4 sin 2x

is given by

(a) y(4) + 5y′′ + 4y = 0 (correct)

(b) y(4) + 4y′′ + 5y = 0

(c) y(4) + 5y′′ − 4y = 0

(d) y(4) − 5y′′ + 4y = 0

(e) y(4) + 5y′′ + 6y = 0

6. Using the undetermined coefficients, a form of a particular solution for the differen-
tial equation

y′′ + 3y′ = 4x− 5

is given by

(a) yp = Ax2 +Bx (correct)

(b) yp = Ax3 +Bx

(c) yp = Ax2 +Bx3

(d) yp = Ax2 +Bx4

(e) yp = Ax+B
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7. By using variation of parameters method, a particular solution of the differential
equation

y′′ − 9y =
9x

e3x
is given by

(a) yp =

(
− 1

24
− 1

4
x− 3

4
x2
)
e−3x (correct)

(b) yp =

(
− 1

24
+ x+

3

4
x2
)
e−3x

(c) yp =

(
1

24
+ 3x− x2

)
e−3x

(d) yp =

(
1− 1

4
xe− 3

4
x2
)
e−3x

(e) yp =

(
1

4
− x− 3

4
x2
)
e−3x

8. The general solution of the differential equation x3y′′′ − 6y = 0 is given by

(a) y = c1x
3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x) (correct)

(b) y = c1x
2 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(c) y = c1x
3 + c2 cos(2 lnx) + c3 sin(2 lnx)

(d) y = c1x
2 + c2 cos(2 lnx) + c3 sin(2 lnx)

(e) y = c1x
3 + c2 cos(3 lnx) + c3 sin(3 lnx)
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9. The minimum radius of convergence of a power series solution of the second order
differential equation (x2− 2x+ 5)y′′+ xy′− y = 0 about the ordinary point x = −1
is equal to

(a) 2
√

2 (correct)

(b) 5

(c) 3
√

2

(d) 2
√

3

(e) 1

10. If y =
∞∑
n=0

cnx
n is a power series solution of the differential equation

(x2 + 1)y′′ − 6y = 0, then the recurrence relation is given by

(a) c2 = 3c0, c3 = c1, ck+2 =
3− k
k + 1

ck, k = 2, 3, . . . (correct)

(b) c2 = c0, c3 = c1, ck+2 =
k − 3

k + 1
ck, k = 2, 3, . . .

(c) c2 = 2c0, c3 = 2c1, ck+2 =
4− k
k + 1

ck, k = 2, 3, . . .

(d) c2 = 3c0, c3 = 2c1, ck+2 =
3 + k

k + 1
ck, k = 2, 3, . . .

(e) c2 = 4c0, c3 = c1, ck+2 =
3− k
k + 1

ck, k = 2, 3, . . .



222, Math 202, Final Exam Page 6 of 10 MASTER

11. The number of regular singular points of the differential equation

x3(x2 − 25)(x− 2)2y′′ + 3x(x− 2)y′ + 7(x+ 5)y = 0

is

(a) 3 (correct)

(b) 2

(c) 1

(d) 0

(e) 5

12. If y =
∞∑
n=0

cnx
n+r is a series solution for the differential equation 2xy′′ − y′ + 2y = 0

about x = 0, then the non-integer indicial root is equal to

(a)
3

2
(correct)

(b)
2

3

(c)
1

2

(d)
3

4

(e)
4

3
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13. If c0 6= 0, c1 = 0, ck = − ck−2

k(2k−1) , k = 2, 3, 4, . . . is the recurrence relation correspond-

ing to the indicial root r =
1

2
in the series solution of the differential equation

2x2y′′ − xy′ + (x2 + 1)y = 0 about x = 0, then the solution is given by

(a) y = x
1
2

[
1− 1

6
x2 +

1

168
x4 − . . .

]
(correct)

(b) y = x
1
2

[
1− 1

6
x2 − 1

168
x4 + . . .

]
(c) y = x

1
2

[
1 +

1

6
x2 +

1

168
x4 − . . .

]
(d) y = x

1
2

[
1 +

1

3
x2 +

1

68
x4 − . . .

]
(e) y = x

1
2

[
1− 1

3
x2 +

1

68
x4 + . . .

]

14. If X1 =

(
1
−1

)
e−2t and X2 =

(
3
5

)
e6t are two solution vectors of a homogeneous

linear system X ′ = AX, then the Wronskian W (X1, X2) =

(a) 8e4t (correct)

(b) 6e4t

(c) 8e8t

(d) 6e8t

(e) 8e6t
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15. If the general solution of the system X ′ =

(
2 2
1 3

)
X is given by

X = c1

(
−2
m

)
ent + c2

(
1
k

)
e4t,

then m+ n+ k =

(a) 3 (correct)

(b) 4

(c) 2

(d) −2

(e) −4

16. If X1 =

(
1
1

)
e−t is a solution of the linear system X ′ =

(
−6 5
−5 4

)
X that corre-

sponds to the only eigenvalue λ = −1, then a second linearly independent solution
of the system is given by

(a) X2 =

(
1
1

)
te−t +

(
0
1

5

)
e−t (correct)

(b) X2 =

(
1
1

)
e−t + t

(
0
1

5

)
e−t

(c) X2 =

(
1
1

)
te−t +

(
0
1

)
e−t

(d) X2 =

(
1
1

)
te−t +

(
0
−1

)
e−t

(e) X2 =

(
1
1

)
e−t + t

(
0
−1

)
e−t
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17. Given that K =

(
1

1− 2i

)
is an eigenvector that corresponds to the eigenvalue

λ = 5 + 2i of the matrix A =

(
6 −1
5 4

)
. If X(t) is the solution of the initial value

problem X ′ =

(
6 −1
5 4

)
X, X(0) =

(
−2
8

)
thenX

(π
2

)
=

(a)

(
2
−8

)
e

5π
2 (correct)

(b)

(
1
4

)
e

5π
2

(c)

(
1
−8

)
e

5π
2

(d)

(
2
0

)
e

5π
2

(e)

(
0
2

)
e

5π
2

18. If Xc = c1

(
1
1

)
et + c2

(
1
3

)
e−t is the general solution of the homogeneous linear

system X ′ = AX, then using the variation of parameters method, a particular

solution Xp of the non-homogeneous system X ′ = AX +

(
0
4t

)
is given by

(a) Xp =

(
4t

8t− 4

)
(correct)

(b) Xp =

(
t

8t− 4

)
(c) Xp =

(
4t
t− 1

)
(d) Xp =

(
t

t− 1

)
(e) Xp =

(
4t
t+ 1

)
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19. Using the exponential of a matrix method, if the general solution of the system

X ′ =

 0 0 0
3 0 0
5 1 0

 X is given by X =

 1 0 0
g(t) 1 0
h(t) f(t) 1

  c1
c2
c3

 ,

then g(2) + h(2) + f(2) =

(a) 24 (correct)

(b) 22

(c) 20

(d) 18

(e) 26

20. The eigenvalues of the matrix

A =

 5 −1 0
0 −5 9
5 −1 0


are

(a) λ = 0, λ = 4 and λ = −4 (correct)

(b) λ = 0, λ = 3 and λ = −3

(c) λ = 1, λ = 4 and λ = −4

(d) λ = 1, λ = 3 and λ = −3

(e) λ = 1, λ = 1± 2i
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1. A homogeneous linear differential equation with constant coefficients whose general
solution is

y = c1 cosx+ c2 sinx+ c3 cos 2x+ c4 sin 2x

is given by

(a) y(4) + 5y′′ − 4y = 0

(b) y(4) − 5y′′ + 4y = 0

(c) y(4) + 4y′′ + 5y = 0

(d) y(4) + 5y′′ + 6y = 0

(e) y(4) + 5y′′ + 4y = 0

2. If y1 = 1 is a solution of the differential equation (1 − x2)y′′ − 2xy′ = 0, then by
using reduction of order, a second solution y2 =

(a)
1

2
ln

∣∣∣∣1 + x

2− x

∣∣∣∣
(b)

1

2
ln

∣∣∣∣2 + x

1− x

∣∣∣∣
(c)

1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣
(d)

1

3
ln

∣∣∣∣1− x1 + x

∣∣∣∣
(e)

1

3
ln

∣∣∣∣1− x2 + x

∣∣∣∣
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3. If c is constant, then the solution of the homogeneous differential equation

(x+ 3y) dx− (3x+ y) dy = 0

is given by

(a) y − x = c(y + x)

(b) y − x = c(y + x)2

(c) (y + x)2 = c(y − 2x)

(d) (y + x)2 = c(y − x)

(e) (y − x)2 = c(y + x)

4. If c is constant, then the solution of the exact differential equation

(y2 + y sinx) dx+

(
2xy − cosx− 1

1 + y2

)
dy = 0

is given by

(a) xy2 − y cosx− tan−1 y = c

(b) xy2 − y cosx+ 2 tan−1 y = c

(c) xy2 + y sinx+ tan−1 y = c

(d) xy2 − 2y cosx+ tan−1 y = c

(e) xy2 − y cosx+ tan−1 y = c
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5. If c is constant, then the solution of the differential equation

y′ +
1

x+ 1
y =

lnx

x+ 1

is given by

(a) y =
x+ 1

x
lnx− x+ 1

x
+ c(x+ 1)

(b) y =
x+ 1

x
lnx+

x+ 1

x
+ c(x+ 1)

(c) y =
x

x+ 1
lnx+

c

x+ 1

(d) y =
x

x+ 1
lnx− x

x+ 1
+

c

x+ 1

(e) y =
x

x+ 1
lnx+

x

x+ 1
+

c

x+ 1

6. If y =
∞∑
n=0

cnx
n is a power series solution of the differential equation

(x2 + 1)y′′ − 6y = 0, then the recurrence relation is given by

(a) c2 = 3c0, c3 = 2c1, ck+2 =
3 + k

k + 1
ck, k = 2, 3, . . .

(b) c2 = 3c0, c3 = c1, ck+2 =
3− k
k + 1

ck, k = 2, 3, . . .

(c) c2 = 2c0, c3 = 2c1, ck+2 =
4− k
k + 1

ck, k = 2, 3, . . .

(d) c2 = 4c0, c3 = c1, ck+2 =
3− k
k + 1

ck, k = 2, 3, . . .

(e) c2 = c0, c3 = c1, ck+2 =
k − 3

k + 1
ck, k = 2, 3, . . .
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7. The general solution of the differential equation x3y′′′ − 6y = 0 is given by

(a) y = c1x
2 + c2 cos(2 lnx) + c3 sin(2 lnx)

(b) y = c1x
3 + c2 cos(3 lnx) + c3 sin(3 lnx)

(c) y = c1x
3 + c2 cos(2 lnx) + c3 sin(2 lnx)

(d) y = c1x
2 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(e) y = c1x
3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

8. Using the undetermined coefficients, a form of a particular solution for the differen-
tial equation

y′′ + 3y′ = 4x− 5

is given by

(a) yp = Ax3 +Bx

(b) yp = Ax2 +Bx4

(c) yp = Ax+B

(d) yp = Ax2 +Bx3

(e) yp = Ax2 +Bx
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9. The minimum radius of convergence of a power series solution of the second order
differential equation (x2− 2x+ 5)y′′+ xy′− y = 0 about the ordinary point x = −1
is equal to

(a) 5

(b) 1

(c) 2
√

2

(d) 3
√

2

(e) 2
√

3

10. By using variation of parameters method, a particular solution of the differential
equation

y′′ − 9y =
9x

e3x
is given by

(a) yp =

(
− 1

24
− 1

4
x− 3

4
x2
)
e−3x

(b) yp =

(
1

4
− x− 3

4
x2
)
e−3x

(c) yp =

(
− 1

24
+ x+

3

4
x2
)
e−3x

(d) yp =

(
1− 1

4
xe− 3

4
x2
)
e−3x

(e) yp =

(
1

24
+ 3x− x2

)
e−3x
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11. If the general solution of the system X ′ =

(
2 2
1 3

)
X is given by

X = c1

(
−2
m

)
ent + c2

(
1
k

)
e4t,

then m+ n+ k =

(a) 2

(b) −2

(c) 4

(d) 3

(e) −4

12. If c0 6= 0, c1 = 0, ck = − ck−2

k(2k−1) , k = 2, 3, 4, . . . is the recurrence relation correspond-

ing to the indicial root r =
1

2
in the series solution of the differential equation

2x2y′′ − xy′ + (x2 + 1)y = 0 about x = 0, then the solution is given by

(a) y = x
1
2

[
1 +

1

3
x2 +

1

68
x4 − . . .

]
(b) y = x

1
2

[
1− 1

6
x2 − 1

168
x4 + . . .

]
(c) y = x

1
2

[
1− 1

6
x2 +

1

168
x4 − . . .

]
(d) y = x

1
2

[
1− 1

3
x2 +

1

68
x4 + . . .

]
(e) y = x

1
2

[
1 +

1

6
x2 +

1

168
x4 − . . .

]
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13. If y =
∞∑
n=0

cnx
n+r is a series solution for the differential equation 2xy′′ − y′ + 2y = 0

about x = 0, then the non-integer indicial root is equal to

(a)
3

4

(b)
4

3

(c)
3

2

(d)
1

2

(e)
2

3

14. If X1 =

(
1
−1

)
e−2t and X2 =

(
3
5

)
e6t are two solution vectors of a homogeneous

linear system X ′ = AX, then the Wronskian W (X1, X2) =

(a) 8e4t

(b) 6e8t

(c) 8e8t

(d) 8e6t

(e) 6e4t
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15. The number of regular singular points of the differential equation

x3(x2 − 25)(x− 2)2y′′ + 3x(x− 2)y′ + 7(x+ 5)y = 0

is

(a) 5

(b) 0

(c) 3

(d) 1

(e) 2

16. The eigenvalues of the matrix

A =

 5 −1 0
0 −5 9
5 −1 0


are

(a) λ = 1, λ = 1± 2i

(b) λ = 0, λ = 3 and λ = −3

(c) λ = 1, λ = 4 and λ = −4

(d) λ = 0, λ = 4 and λ = −4

(e) λ = 1, λ = 3 and λ = −3
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17. If X1 =

(
1
1

)
e−t is a solution of the linear system X ′ =

(
−6 5
−5 4

)
X that corre-

sponds to the only eigenvalue λ = −1, then a second linearly independent solution
of the system is given by

(a) X2 =

(
1
1

)
te−t +

(
0
1

)
e−t

(b) X2 =

(
1
1

)
e−t + t

(
0
−1

)
e−t

(c) X2 =

(
1
1

)
te−t +

(
0
1

5

)
e−t

(d) X2 =

(
1
1

)
e−t + t

(
0
1

5

)
e−t

(e) X2 =

(
1
1

)
te−t +

(
0
−1

)
e−t

18. Using the exponential of a matrix method, if the general solution of the system

X ′ =

 0 0 0
3 0 0
5 1 0

 X is given by X =

 1 0 0
g(t) 1 0
h(t) f(t) 1

  c1
c2
c3

 ,

then g(2) + h(2) + f(2) =

(a) 18

(b) 20

(c) 26

(d) 22

(e) 24
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19. Given that K =

(
1

1− 2i

)
is an eigenvector that corresponds to the eigenvalue

λ = 5 + 2i of the matrix A =

(
6 −1
5 4

)
. If X(t) is the solution of the initial value

problem X ′ =

(
6 −1
5 4

)
X, X(0) =

(
−2
8

)
thenX

(π
2

)
=

(a)

(
0
2

)
e

5π
2

(b)

(
2
0

)
e

5π
2

(c)

(
2
−8

)
e

5π
2

(d)

(
1
4

)
e

5π
2

(e)

(
1
−8

)
e

5π
2

20. If Xc = c1

(
1
1

)
et + c2

(
1
3

)
e−t is the general solution of the homogeneous linear

system X ′ = AX, then using the variation of parameters method, a particular

solution Xp of the non-homogeneous system X ′ = AX +

(
0
4t

)
is given by

(a) Xp =

(
t

t− 1

)
(b) Xp =

(
4t

8t− 4

)
(c) Xp =

(
4t
t− 1

)
(d) Xp =

(
4t
t+ 1

)
(e) Xp =

(
t

8t− 4

)
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1. If c is constant, then the solution of the exact differential equation

(y2 + y sinx) dx+

(
2xy − cosx− 1

1 + y2

)
dy = 0

is given by

(a) xy2 − y cosx− tan−1 y = c

(b) xy2 − 2y cosx+ tan−1 y = c

(c) xy2 − y cosx+ 2 tan−1 y = c

(d) xy2 − y cosx+ tan−1 y = c

(e) xy2 + y sinx+ tan−1 y = c

2. If c is constant, then the solution of the homogeneous differential equation

(x+ 3y) dx− (3x+ y) dy = 0

is given by

(a) (y + x)2 = c(y − 2x)

(b) y − x = c(y + x)

(c) (y − x)2 = c(y + x)

(d) (y + x)2 = c(y − x)

(e) y − x = c(y + x)2
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3. If y1 = 1 is a solution of the differential equation (1 − x2)y′′ − 2xy′ = 0, then by
using reduction of order, a second solution y2 =

(a)
1

3
ln

∣∣∣∣1− x1 + x

∣∣∣∣
(b)

1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣
(c)

1

2
ln

∣∣∣∣1 + x

2− x

∣∣∣∣
(d)

1

2
ln

∣∣∣∣2 + x

1− x

∣∣∣∣
(e)

1

3
ln

∣∣∣∣1− x2 + x

∣∣∣∣

4. If c is constant, then the solution of the differential equation

y′ +
1

x+ 1
y =

lnx

x+ 1

is given by

(a) y =
x+ 1

x
lnx+

x+ 1

x
+ c(x+ 1)

(b) y =
x

x+ 1
lnx− x

x+ 1
+

c

x+ 1

(c) y =
x

x+ 1
lnx+

x

x+ 1
+

c

x+ 1

(d) y =
x+ 1

x
lnx− x+ 1

x
+ c(x+ 1)

(e) y =
x

x+ 1
lnx+

c

x+ 1
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5. A homogeneous linear differential equation with constant coefficients whose general
solution is

y = c1 cosx+ c2 sinx+ c3 cos 2x+ c4 sin 2x

is given by

(a) y(4) + 4y′′ + 5y = 0

(b) y(4) + 5y′′ + 6y = 0

(c) y(4) + 5y′′ − 4y = 0

(d) y(4) − 5y′′ + 4y = 0

(e) y(4) + 5y′′ + 4y = 0

6. By using variation of parameters method, a particular solution of the differential
equation

y′′ − 9y =
9x

e3x
is given by

(a) yp =

(
1− 1

4
xe− 3

4
x2
)
e−3x

(b) yp =

(
− 1

24
+ x+

3

4
x2
)
e−3x

(c) yp =

(
1

4
− x− 3

4
x2
)
e−3x

(d) yp =

(
1

24
+ 3x− x2

)
e−3x

(e) yp =

(
− 1

24
− 1

4
x− 3

4
x2
)
e−3x
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7. The minimum radius of convergence of a power series solution of the second order
differential equation (x2− 2x+ 5)y′′+ xy′− y = 0 about the ordinary point x = −1
is equal to

(a) 5

(b) 2
√

3

(c) 2
√

2

(d) 3
√

2

(e) 1

8. If y =
∞∑
n=0

cnx
n is a power series solution of the differential equation

(x2 + 1)y′′ − 6y = 0, then the recurrence relation is given by

(a) c2 = 4c0, c3 = c1, ck+2 =
3− k
k + 1

ck, k = 2, 3, . . .

(b) c2 = 3c0, c3 = 2c1, ck+2 =
3 + k

k + 1
ck, k = 2, 3, . . .

(c) c2 = 2c0, c3 = 2c1, ck+2 =
4− k
k + 1

ck, k = 2, 3, . . .

(d) c2 = 3c0, c3 = c1, ck+2 =
3− k
k + 1

ck, k = 2, 3, . . .

(e) c2 = c0, c3 = c1, ck+2 =
k − 3

k + 1
ck, k = 2, 3, . . .
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9. Using the undetermined coefficients, a form of a particular solution for the differen-
tial equation

y′′ + 3y′ = 4x− 5

is given by

(a) yp = Ax2 +Bx

(b) yp = Ax2 +Bx3

(c) yp = Ax3 +Bx

(d) yp = Ax2 +Bx4

(e) yp = Ax+B

10. The general solution of the differential equation x3y′′′ − 6y = 0 is given by

(a) y = c1x
2 + c2 cos(2 lnx) + c3 sin(2 lnx)

(b) y = c1x
3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(c) y = c1x
3 + c2 cos(2 lnx) + c3 sin(2 lnx)

(d) y = c1x
2 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(e) y = c1x
3 + c2 cos(3 lnx) + c3 sin(3 lnx)
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11. If the general solution of the system X ′ =

(
2 2
1 3

)
X is given by

X = c1

(
−2
m

)
ent + c2

(
1
k

)
e4t,

then m+ n+ k =

(a) −2

(b) 3

(c) −4

(d) 4

(e) 2

12. If y =
∞∑
n=0

cnx
n+r is a series solution for the differential equation 2xy′′ − y′ + 2y = 0

about x = 0, then the non-integer indicial root is equal to

(a)
1

2

(b)
4

3

(c)
2

3

(d)
3

2

(e)
3

4
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13. If c0 6= 0, c1 = 0, ck = − ck−2

k(2k−1) , k = 2, 3, 4, . . . is the recurrence relation correspond-

ing to the indicial root r =
1

2
in the series solution of the differential equation

2x2y′′ − xy′ + (x2 + 1)y = 0 about x = 0, then the solution is given by

(a) y = x
1
2

[
1− 1

6
x2 +

1

168
x4 − . . .

]
(b) y = x

1
2

[
1− 1

3
x2 +

1

68
x4 + . . .

]
(c) y = x

1
2

[
1 +

1

6
x2 +

1

168
x4 − . . .

]
(d) y = x

1
2

[
1− 1

6
x2 − 1

168
x4 + . . .

]
(e) y = x

1
2

[
1 +

1

3
x2 +

1

68
x4 − . . .

]

14. The number of regular singular points of the differential equation

x3(x2 − 25)(x− 2)2y′′ + 3x(x− 2)y′ + 7(x+ 5)y = 0

is

(a) 0

(b) 5

(c) 2

(d) 1

(e) 3
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15. If X1 =

(
1
−1

)
e−2t and X2 =

(
3
5

)
e6t are two solution vectors of a homogeneous

linear system X ′ = AX, then the Wronskian W (X1, X2) =

(a) 8e6t

(b) 6e8t

(c) 6e4t

(d) 8e8t

(e) 8e4t

16. Using the exponential of a matrix method, if the general solution of the system

X ′ =

 0 0 0
3 0 0
5 1 0

 X is given by X =

 1 0 0
g(t) 1 0
h(t) f(t) 1

  c1
c2
c3

 ,

then g(2) + h(2) + f(2) =

(a) 22

(b) 18

(c) 24

(d) 26

(e) 20
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17. If Xc = c1

(
1
1

)
et + c2

(
1
3

)
e−t is the general solution of the homogeneous linear

system X ′ = AX, then using the variation of parameters method, a particular

solution Xp of the non-homogeneous system X ′ = AX +

(
0
4t

)
is given by

(a) Xp =

(
4t
t− 1

)
(b) Xp =

(
4t

8t− 4

)
(c) Xp =

(
4t
t+ 1

)
(d) Xp =

(
t

8t− 4

)
(e) Xp =

(
t

t− 1

)

18. Given that K =

(
1

1− 2i

)
is an eigenvector that corresponds to the eigenvalue

λ = 5 + 2i of the matrix A =

(
6 −1
5 4

)
. If X(t) is the solution of the initial value

problem X ′ =

(
6 −1
5 4

)
X, X(0) =

(
−2
8

)
thenX

(π
2

)
=

(a)

(
0
2

)
e

5π
2

(b)

(
2
−8

)
e

5π
2

(c)

(
1
4

)
e

5π
2

(d)

(
2
0

)
e

5π
2

(e)

(
1
−8

)
e

5π
2
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19. If X1 =

(
1
1

)
e−t is a solution of the linear system X ′ =

(
−6 5
−5 4

)
X that corre-

sponds to the only eigenvalue λ = −1, then a second linearly independent solution
of the system is given by

(a) X2 =

(
1
1

)
e−t + t

(
0
−1

)
e−t

(b) X2 =

(
1
1

)
e−t + t

(
0
1

5

)
e−t

(c) X2 =

(
1
1

)
te−t +

(
0
1

)
e−t

(d) X2 =

(
1
1

)
te−t +

(
0
−1

)
e−t

(e) X2 =

(
1
1

)
te−t +

(
0
1

5

)
e−t

20. The eigenvalues of the matrix

A =

 5 −1 0
0 −5 9
5 −1 0


are

(a) λ = 1, λ = 1± 2i

(b) λ = 1, λ = 4 and λ = −4

(c) λ = 1, λ = 3 and λ = −3

(d) λ = 0, λ = 3 and λ = −3

(e) λ = 0, λ = 4 and λ = −4
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1. A homogeneous linear differential equation with constant coefficients whose general
solution is

y = c1 cosx+ c2 sinx+ c3 cos 2x+ c4 sin 2x

is given by

(a) y(4) + 5y′′ + 4y = 0

(b) y(4) + 5y′′ + 6y = 0

(c) y(4) + 4y′′ + 5y = 0

(d) y(4) + 5y′′ − 4y = 0

(e) y(4) − 5y′′ + 4y = 0

2. If c is constant, then the solution of the exact differential equation

(y2 + y sinx) dx+

(
2xy − cosx− 1

1 + y2

)
dy = 0

is given by

(a) xy2 − y cosx+ tan−1 y = c

(b) xy2 + y sinx+ tan−1 y = c

(c) xy2 − 2y cosx+ tan−1 y = c

(d) xy2 − y cosx− tan−1 y = c

(e) xy2 − y cosx+ 2 tan−1 y = c
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3. If c is constant, then the solution of the homogeneous differential equation

(x+ 3y) dx− (3x+ y) dy = 0

is given by

(a) (y + x)2 = c(y − x)

(b) (y + x)2 = c(y − 2x)

(c) y − x = c(y + x)2

(d) (y − x)2 = c(y + x)

(e) y − x = c(y + x)

4. If c is constant, then the solution of the differential equation

y′ +
1

x+ 1
y =

lnx

x+ 1

is given by

(a) y =
x+ 1

x
lnx+

x+ 1

x
+ c(x+ 1)

(b) y =
x+ 1

x
lnx− x+ 1

x
+ c(x+ 1)

(c) y =
x

x+ 1
lnx− x

x+ 1
+

c

x+ 1

(d) y =
x

x+ 1
lnx+

x

x+ 1
+

c

x+ 1

(e) y =
x

x+ 1
lnx+

c

x+ 1
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5. If y1 = 1 is a solution of the differential equation (1 − x2)y′′ − 2xy′ = 0, then by
using reduction of order, a second solution y2 =

(a)
1

3
ln

∣∣∣∣1− x1 + x

∣∣∣∣
(b)

1

3
ln

∣∣∣∣1− x2 + x

∣∣∣∣
(c)

1

2
ln

∣∣∣∣2 + x

1− x

∣∣∣∣
(d)

1

2
ln

∣∣∣∣1 + x

2− x

∣∣∣∣
(e)

1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣

6. By using variation of parameters method, a particular solution of the differential
equation

y′′ − 9y =
9x

e3x
is given by

(a) yp =

(
− 1

24
+ x+

3

4
x2
)
e−3x

(b) yp =

(
1

24
+ 3x− x2

)
e−3x

(c) yp =

(
1− 1

4
xe− 3

4
x2
)
e−3x

(d) yp =

(
1

4
− x− 3

4
x2
)
e−3x

(e) yp =

(
− 1

24
− 1

4
x− 3

4
x2
)
e−3x
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7. Using the undetermined coefficients, a form of a particular solution for the differen-
tial equation

y′′ + 3y′ = 4x− 5

is given by

(a) yp = Ax2 +Bx4

(b) yp = Ax+B

(c) yp = Ax3 +Bx

(d) yp = Ax2 +Bx3

(e) yp = Ax2 +Bx

8. The general solution of the differential equation x3y′′′ − 6y = 0 is given by

(a) y = c1x
3 + c2 cos(3 lnx) + c3 sin(3 lnx)

(b) y = c1x
3 + c2 cos(2 lnx) + c3 sin(2 ln x)

(c) y = c1x
3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(d) y = c1x
2 + c2 cos(2 lnx) + c3 sin(2 lnx)

(e) y = c1x
2 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)
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9. The minimum radius of convergence of a power series solution of the second order
differential equation (x2− 2x+ 5)y′′+ xy′− y = 0 about the ordinary point x = −1
is equal to

(a) 5

(b) 3
√

2

(c) 2
√

2

(d) 1

(e) 2
√

3

10. If y =
∞∑
n=0

cnx
n is a power series solution of the differential equation

(x2 + 1)y′′ − 6y = 0, then the recurrence relation is given by

(a) c2 = 4c0, c3 = c1, ck+2 =
3− k
k + 1

ck, k = 2, 3, . . .

(b) c2 = 3c0, c3 = c1, ck+2 =
3− k
k + 1

ck, k = 2, 3, . . .

(c) c2 = c0, c3 = c1, ck+2 =
k − 3

k + 1
ck, k = 2, 3, . . .

(d) c2 = 2c0, c3 = 2c1, ck+2 =
4− k
k + 1

ck, k = 2, 3, . . .

(e) c2 = 3c0, c3 = 2c1, ck+2 =
3 + k

k + 1
ck, k = 2, 3, . . .
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11. If the general solution of the system X ′ =

(
2 2
1 3

)
X is given by

X = c1

(
−2
m

)
ent + c2

(
1
k

)
e4t,

then m+ n+ k =

(a) 2

(b) 3

(c) −2

(d) 4

(e) −4

12. If y =
∞∑
n=0

cnx
n+r is a series solution for the differential equation 2xy′′ − y′ + 2y = 0

about x = 0, then the non-integer indicial root is equal to

(a)
2

3

(b)
3

4

(c)
4

3

(d)
1

2

(e)
3

2
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13. If c0 6= 0, c1 = 0, ck = − ck−2

k(2k−1) , k = 2, 3, 4, . . . is the recurrence relation correspond-

ing to the indicial root r =
1

2
in the series solution of the differential equation

2x2y′′ − xy′ + (x2 + 1)y = 0 about x = 0, then the solution is given by

(a) y = x
1
2

[
1− 1

3
x2 +

1

68
x4 + . . .

]
(b) y = x

1
2

[
1 +

1

3
x2 +

1

68
x4 − . . .

]
(c) y = x

1
2

[
1 +

1

6
x2 +

1

168
x4 − . . .

]
(d) y = x

1
2

[
1− 1

6
x2 − 1

168
x4 + . . .

]
(e) y = x

1
2

[
1− 1

6
x2 +

1

168
x4 − . . .

]

14. The number of regular singular points of the differential equation

x3(x2 − 25)(x− 2)2y′′ + 3x(x− 2)y′ + 7(x+ 5)y = 0

is

(a) 0

(b) 2

(c) 3

(d) 5

(e) 1
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15. If X1 =

(
1
−1

)
e−2t and X2 =

(
3
5

)
e6t are two solution vectors of a homogeneous

linear system X ′ = AX, then the Wronskian W (X1, X2) =

(a) 8e4t

(b) 6e4t

(c) 6e8t

(d) 8e6t

(e) 8e8t

16. If Xc = c1

(
1
1

)
et + c2

(
1
3

)
e−t is the general solution of the homogeneous linear

system X ′ = AX, then using the variation of parameters method, a particular

solution Xp of the non-homogeneous system X ′ = AX +

(
0
4t

)
is given by

(a) Xp =

(
4t
t+ 1

)
(b) Xp =

(
4t

8t− 4

)
(c) Xp =

(
t

8t− 4

)
(d) Xp =

(
4t
t− 1

)
(e) Xp =

(
t

t− 1

)
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17. The eigenvalues of the matrix

A =

 5 −1 0
0 −5 9
5 −1 0


are

(a) λ = 1, λ = 3 and λ = −3

(b) λ = 1, λ = 1± 2i

(c) λ = 1, λ = 4 and λ = −4

(d) λ = 0, λ = 3 and λ = −3

(e) λ = 0, λ = 4 and λ = −4

18. If X1 =

(
1
1

)
e−t is a solution of the linear system X ′ =

(
−6 5
−5 4

)
X that corre-

sponds to the only eigenvalue λ = −1, then a second linearly independent solution
of the system is given by

(a) X2 =

(
1
1

)
te−t +

(
0
1

)
e−t

(b) X2 =

(
1
1

)
e−t + t

(
0
−1

)
e−t

(c) X2 =

(
1
1

)
te−t +

(
0
1

5

)
e−t

(d) X2 =

(
1
1

)
te−t +

(
0
−1

)
e−t

(e) X2 =

(
1
1

)
e−t + t

(
0
1

5

)
e−t
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19. Given that K =

(
1

1− 2i

)
is an eigenvector that corresponds to the eigenvalue

λ = 5 + 2i of the matrix A =

(
6 −1
5 4

)
. If X(t) is the solution of the initial value

problem X ′ =

(
6 −1
5 4

)
X, X(0) =

(
−2
8

)
thenX

(π
2

)
=

(a)

(
2
−8

)
e

5π
2

(b)

(
0
2

)
e

5π
2

(c)

(
2
0

)
e

5π
2

(d)

(
1
4

)
e

5π
2

(e)

(
1
−8

)
e

5π
2

20. Using the exponential of a matrix method, if the general solution of the system

X ′ =

 0 0 0
3 0 0
5 1 0

 X is given by X =

 1 0 0
g(t) 1 0
h(t) f(t) 1

  c1
c2
c3

 ,

then g(2) + h(2) + f(2) =

(a) 26

(b) 22

(c) 20

(d) 24

(e) 18
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1. If y1 = 1 is a solution of the differential equation (1 − x2)y′′ − 2xy′ = 0, then by
using reduction of order, a second solution y2 =

(a)
1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣
(b)

1

3
ln

∣∣∣∣1− x2 + x

∣∣∣∣
(c)

1

3
ln

∣∣∣∣1− x1 + x

∣∣∣∣
(d)

1

2
ln

∣∣∣∣2 + x

1− x

∣∣∣∣
(e)

1

2
ln

∣∣∣∣1 + x

2− x

∣∣∣∣

2. If c is constant, then the solution of the exact differential equation

(y2 + y sinx) dx+

(
2xy − cosx− 1

1 + y2

)
dy = 0

is given by

(a) xy2 + y sinx+ tan−1 y = c

(b) xy2 − y cosx+ 2 tan−1 y = c

(c) xy2 − y cosx+ tan−1 y = c

(d) xy2 − y cosx− tan−1 y = c

(e) xy2 − 2y cosx+ tan−1 y = c
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3. If c is constant, then the solution of the differential equation

y′ +
1

x+ 1
y =

lnx

x+ 1

is given by

(a) y =
x+ 1

x
lnx+

x+ 1

x
+ c(x+ 1)

(b) y =
x

x+ 1
lnx− x

x+ 1
+

c

x+ 1

(c) y =
x+ 1

x
lnx− x+ 1

x
+ c(x+ 1)

(d) y =
x

x+ 1
lnx+

c

x+ 1

(e) y =
x

x+ 1
lnx+

x

x+ 1
+

c

x+ 1

4. A homogeneous linear differential equation with constant coefficients whose general
solution is

y = c1 cosx+ c2 sinx+ c3 cos 2x+ c4 sin 2x

is given by

(a) y(4) − 5y′′ + 4y = 0

(b) y(4) + 5y′′ + 6y = 0

(c) y(4) + 5y′′ − 4y = 0

(d) y(4) + 4y′′ + 5y = 0

(e) y(4) + 5y′′ + 4y = 0
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5. If c is constant, then the solution of the homogeneous differential equation

(x+ 3y) dx− (3x+ y) dy = 0

is given by

(a) (y − x)2 = c(y + x)

(b) y − x = c(y + x)2

(c) (y + x)2 = c(y − 2x)

(d) y − x = c(y + x)

(e) (y + x)2 = c(y − x)

6. The general solution of the differential equation x3y′′′ − 6y = 0 is given by

(a) y = c1x
3 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(b) y = c1x
2 + c2 cos(

√
2 ln x) + c3 sin(

√
2 ln x)

(c) y = c1x
2 + c2 cos(2 lnx) + c3 sin(2 lnx)

(d) y = c1x
3 + c2 cos(2 lnx) + c3 sin(2 lnx)

(e) y = c1x
3 + c2 cos(3 lnx) + c3 sin(3 lnx)
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7. By using variation of parameters method, a particular solution of the differential
equation

y′′ − 9y =
9x

e3x
is given by

(a) yp =

(
1

4
− x− 3

4
x2
)
e−3x

(b) yp =

(
1

24
+ 3x− x2

)
e−3x

(c) yp =

(
− 1

24
+ x+

3

4
x2
)
e−3x

(d) yp =

(
1− 1

4
xe− 3

4
x2
)
e−3x

(e) yp =

(
− 1

24
− 1

4
x− 3

4
x2
)
e−3x

8. If y =
∞∑
n=0

cnx
n is a power series solution of the differential equation

(x2 + 1)y′′ − 6y = 0, then the recurrence relation is given by

(a) c2 = 2c0, c3 = 2c1, ck+2 =
4− k
k + 1

ck, k = 2, 3, . . .

(b) c2 = 3c0, c3 = 2c1, ck+2 =
3 + k

k + 1
ck, k = 2, 3, . . .

(c) c2 = c0, c3 = c1, ck+2 =
k − 3

k + 1
ck, k = 2, 3, . . .

(d) c2 = 4c0, c3 = c1, ck+2 =
3− k
k + 1

ck, k = 2, 3, . . .

(e) c2 = 3c0, c3 = c1, ck+2 =
3− k
k + 1

ck, k = 2, 3, . . .
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9. Using the undetermined coefficients, a form of a particular solution for the differen-
tial equation

y′′ + 3y′ = 4x− 5

is given by

(a) yp = Ax3 +Bx

(b) yp = Ax2 +Bx4

(c) yp = Ax+B

(d) yp = Ax2 +Bx

(e) yp = Ax2 +Bx3

10. The minimum radius of convergence of a power series solution of the second order
differential equation (x2− 2x+ 5)y′′+ xy′− y = 0 about the ordinary point x = −1
is equal to

(a) 3
√

2

(b) 1

(c) 2
√

2

(d) 2
√

3

(e) 5
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11. If y =
∞∑
n=0

cnx
n+r is a series solution for the differential equation 2xy′′ − y′ + 2y = 0

about x = 0, then the non-integer indicial root is equal to

(a)
4

3

(b)
2

3

(c)
3

4

(d)
1

2

(e)
3

2

12. If the general solution of the system X ′ =

(
2 2
1 3

)
X is given by

X = c1

(
−2
m

)
ent + c2

(
1
k

)
e4t,

then m+ n+ k =

(a) −2

(b) −4

(c) 3

(d) 2

(e) 4
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13. If c0 6= 0, c1 = 0, ck = − ck−2

k(2k−1) , k = 2, 3, 4, . . . is the recurrence relation correspond-

ing to the indicial root r =
1

2
in the series solution of the differential equation

2x2y′′ − xy′ + (x2 + 1)y = 0 about x = 0, then the solution is given by

(a) y = x
1
2

[
1− 1

6
x2 +

1

168
x4 − . . .

]
(b) y = x

1
2

[
1 +

1

3
x2 +

1

68
x4 − . . .

]
(c) y = x

1
2

[
1− 1

3
x2 +

1

68
x4 + . . .

]
(d) y = x

1
2

[
1 +

1

6
x2 +

1

168
x4 − . . .

]
(e) y = x

1
2

[
1− 1

6
x2 − 1

168
x4 + . . .

]

14. If X1 =

(
1
−1

)
e−2t and X2 =

(
3
5

)
e6t are two solution vectors of a homogeneous

linear system X ′ = AX, then the Wronskian W (X1, X2) =

(a) 6e4t

(b) 8e6t

(c) 8e4t

(d) 6e8t

(e) 8e8t
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15. The number of regular singular points of the differential equation

x3(x2 − 25)(x− 2)2y′′ + 3x(x− 2)y′ + 7(x+ 5)y = 0

is

(a) 5

(b) 2

(c) 0

(d) 1

(e) 3

16. Using the exponential of a matrix method, if the general solution of the system

X ′ =

 0 0 0
3 0 0
5 1 0

 X is given by X =

 1 0 0
g(t) 1 0
h(t) f(t) 1

  c1
c2
c3

 ,

then g(2) + h(2) + f(2) =

(a) 18

(b) 20

(c) 24

(d) 26

(e) 22
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17. If X1 =

(
1
1

)
e−t is a solution of the linear system X ′ =

(
−6 5
−5 4

)
X that corre-

sponds to the only eigenvalue λ = −1, then a second linearly independent solution
of the system is given by

(a) X2 =

(
1
1

)
te−t +

(
0
1

)
e−t

(b) X2 =

(
1
1

)
e−t + t

(
0
1

5

)
e−t

(c) X2 =

(
1
1

)
e−t + t

(
0
−1

)
e−t

(d) X2 =

(
1
1

)
te−t +

(
0
1

5

)
e−t

(e) X2 =

(
1
1

)
te−t +

(
0
−1

)
e−t

18. Given that K =

(
1

1− 2i

)
is an eigenvector that corresponds to the eigenvalue

λ = 5 + 2i of the matrix A =

(
6 −1
5 4

)
. If X(t) is the solution of the initial value

problem X ′ =

(
6 −1
5 4

)
X, X(0) =

(
−2
8

)
thenX

(π
2

)
=

(a)

(
2
0

)
e

5π
2

(b)

(
0
2

)
e

5π
2

(c)

(
2
−8

)
e

5π
2

(d)

(
1
−8

)
e

5π
2

(e)

(
1
4

)
e

5π
2
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19. The eigenvalues of the matrix

A =

 5 −1 0
0 −5 9
5 −1 0


are

(a) λ = 1, λ = 4 and λ = −4

(b) λ = 0, λ = 3 and λ = −3

(c) λ = 0, λ = 4 and λ = −4

(d) λ = 1, λ = 3 and λ = −3

(e) λ = 1, λ = 1± 2i

20. If Xc = c1

(
1
1

)
et + c2

(
1
3

)
e−t is the general solution of the homogeneous linear

system X ′ = AX, then using the variation of parameters method, a particular

solution Xp of the non-homogeneous system X ′ = AX +

(
0
4t

)
is given by

(a) Xp =

(
4t
t− 1

)
(b) Xp =

(
4t

8t− 4

)
(c) Xp =

(
t

t− 1

)
(d) Xp =

(
t

8t− 4

)
(e) Xp =

(
4t
t+ 1

)
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Q MASTER CODE01 CODE02 CODE03 CODE04
1 A E 5 A 2 A 5 A 4

2 A C 4 C 3 D 2 D 2

3 A E 3 B 4 D 3 B 1

4 A A 2 B 1 C 1 E 5

5 A D 1 E 5 E 4 A 3

6 A B 10 E 7 E 7 A 8

7 A E 8 C 9 E 6 E 7

8 A E 6 D 10 C 8 E 10

9 A C 9 A 6 C 9 D 6

10 A A 7 B 8 B 10 C 9

11 A D 15 B 15 B 15 E 12

12 A C 13 D 12 E 12 C 15

13 A C 12 A 13 E 13 A 13

14 A A 14 E 11 C 11 C 14

15 A C 11 E 14 A 14 E 11

16 A D 20 C 19 B 18 C 19

17 A C 16 B 18 E 20 D 16

18 A E 19 B 17 C 16 C 17

19 A C 17 E 16 A 17 C 20

20 A B 18 E 20 D 19 B 18
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V A B C D E
1 3 2 7 3 5
2 3 6 3 2 6
3 3 3 5 3 6
4 4 2 6 3 5


