King Fahd University of Petroleum and Minerals Department of Mathematics

> Math 202 Final Exam 222 May 22, 2023

EXAM COVER

Number of versions: 4 Number of questions: 20

King Fahd University of Petroleum and Minerals Department of Mathematics Math 202 Final Exam 222 May 22, 2023 Net Time Allowed: 180 Minutes

MASTER VERSION

1. If c is constant, then the solution of the differential equation

$$
y' + \frac{1}{x+1}y = \frac{\ln x}{x+1}
$$

is given by

(a)
$$
y = \frac{x}{x+1} \ln x - \frac{x}{x+1} + \frac{c}{x+1}
$$

\n(b) $y = \frac{x}{x+1} \ln x + \frac{c}{x+1}$
\n(c) $y = \frac{x+1}{x} \ln x + \frac{x+1}{x} + c(x+1)$
\n(d) $y = \frac{x}{x+1} \ln x + \frac{x}{x+1} + \frac{c}{x+1}$
\n(e) $y = \frac{x+1}{x} \ln x - \frac{x+1}{x} + c(x+1)$

2. If c is constant, then the solution of the exact differential equation

$$
(y^2 + y \sin x) dx + (2xy - \cos x - \frac{1}{1+y^2}) dy = 0
$$

(a)
$$
xy^2 - y \cos x - \tan^{-1} y = c
$$

\n(b) $xy^2 + y \sin x + \tan^{-1} y = c$
\n(c) $xy^2 - 2y \cos x + \tan^{-1} y = c$
\n(d) $xy^2 - y \cos x + \tan^{-1} y = c$
\n(e) $xy^2 - y \cos x + 2 \tan^{-1} y = c$

3. If c is constant, then the solution of the homogeneous differential equation

$$
(x+3y) dx - (3x + y) dy = 0
$$

(a)
$$
(y - x)^2 = c(y + x)
$$
 (correct)
\n(b) $y - x = c(y + x)$
\n(c) $y - x = c(y + x)^2$
\n(d) $(y + x)^2 = c(y - x)$
\n(e) $(y + x)^2 = c(y - 2x)$

4. If $y_1 = 1$ is a solution of the differential equation $(1 - x^2)y'' - 2xy' = 0$, then by using reduction of order, a second solution $y_2 =$

(a) $\frac{1}{2} \ln \left \frac{1+x}{1-x} \right $	(correct)
(b) $\frac{1}{2} \ln \left \frac{2+x}{1-x} \right $	
(c) $\frac{1}{2} \ln \left \frac{1+x}{2-x} \right $	
(d) $\frac{1}{3} \ln \left \frac{1-x}{2+x} \right $	
(e) $\frac{1}{3} \ln \left \frac{1-x}{1+x} \right $	

5. A homogeneous linear differential equation with constant coefficients whose general solution is

$$
y = c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x
$$

is given by

(a) y (4) + 5y ⁰⁰ + 4y = 0 (correct) (b) $y^{(4)} + 4y'' + 5y = 0$ (c) $y^{(4)} + 5y'' - 4y = 0$ (d) $y^{(4)} - 5y'' + 4y = 0$ (e) $y^{(4)} + 5y'' + 6y = 0$

6. Using the undetermined coefficients, a form of a particular solution for the differential equation

$$
y'' + 3y' = 4x - 5
$$

(a)
$$
y_p = Ax^2 + Bx
$$
 (correct)
\n(b) $y_p = Ax^3 + Bx$
\n(c) $y_p = Ax^2 + Bx^3$
\n(d) $y_p = Ax^2 + Bx^4$
\n(e) $y_p = Ax + B$

7. By using variation of parameters method, a particular solution of the differential equation

$$
y'' - 9y = \frac{9x}{e^{3x}}
$$
 is given by

(a)
$$
y_p = \left(-\frac{1}{24} - \frac{1}{4}x - \frac{3}{4}x^2\right)e^{-3x}
$$

\n(b) $y_p = \left(-\frac{1}{24} + x + \frac{3}{4}x^2\right)e^{-3x}$
\n(c) $y_p = \left(\frac{1}{24} + 3x - x^2\right)e^{-3x}$
\n(d) $y_p = \left(1 - \frac{1}{4}xe - \frac{3}{4}x^2\right)e^{-3x}$
\n(e) $y_p = \left(\frac{1}{4} - x - \frac{3}{4}x^2\right)e^{-3x}$

8. The general solution of the differential equation $x^3y''' - 6y = 0$ is given by

(a)
$$
y = c_1 x^3 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)
$$
 (correct)
\n(b) $y = c_1 x^2 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$
\n(c) $y = c_1 x^3 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
\n(d) $y = c_1 x^2 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
\n(e) $y = c_1 x^3 + c_2 \cos(3 \ln x) + c_3 \sin(3 \ln x)$

(correct)

9. The minimum radius of convergence of a power series solution of the second order differential equation $(x^2 - 2x + 5)y'' + xy' - y = 0$ about the ordinary point $x = -1$ is equal to

(e) 1

10. If $y = \sum$ ∞ $n=0$ $c_n x^n$ is a power series solution of the differential equation $(x^{2} + 1)y'' - 6y = 0$, then the recurrence relation is given by

(a)
$$
c_2 = 3c_0
$$
, $c_3 = c_1$, $c_{k+2} = \frac{3-k}{k+1}c_k$, $k = 2, 3, ...$
\n(b) $c_2 = c_0$, $c_3 = c_1$, $c_{k+2} = \frac{k-3}{k+1}c_k$, $k = 2, 3, ...$
\n(c) $c_2 = 2c_0$, $c_3 = 2c_1$, $c_{k+2} = \frac{4-k}{k+1}c_k$, $k = 2, 3, ...$
\n(d) $c_2 = 3c_0$, $c_3 = 2c_1$, $c_{k+2} = \frac{3+k}{k+1}c_k$, $k = 2, 3, ...$
\n(e) $c_2 = 4c_0$, $c_3 = c_1$, $c_{k+2} = \frac{3-k}{k+1}c_k$, $k = 2, 3, ...$

11. The number of regular singular points of the differential equation

$$
x^{3}(x^{2} - 25)(x - 2)^{2}y'' + 3x(x - 2)y' + 7(x + 5)y = 0
$$

is

- (a) 3 (correct) (b) 2 (c) 1 (d) 0
- (e) 5

12. If $y = \sum$ ∞ $n=0$ $c_n x^{n+r}$ is a series solution for the differential equation $2xy'' - y' + 2y = 0$ about $x = 0$, then the non-integer indicial root is equal to

13. If $c_0 \neq 0, c_1 = 0, c_k = -\frac{c_{k-2}}{k(2k-1)}, k = 2, 3, 4, \dots$ is the recurrence relation corresponding to the indicial root $r =$ 1 2 in the series solution of the differential equation $2x^2y'' - xy' + (x^2 + 1)y = 0$ about $x = 0$, then the solution is given by

(a)
$$
y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 + \frac{1}{168}x^4 - \cdots \right]
$$
 (correct)
\n(b) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 - \frac{1}{168}x^4 + \cdots \right]$
\n(c) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{6}x^2 + \frac{1}{168}x^4 - \cdots \right]$
\n(d) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{3}x^2 + \frac{1}{68}x^4 - \cdots \right]$
\n(e) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{3}x^2 + \frac{1}{68}x^4 + \cdots \right]$

14. If $X_1 =$ $\begin{pmatrix} 1 \end{pmatrix}$ −1 \setminus e^{-2t} and $X_2 =$ $\sqrt{3}$ 5 \setminus e^{6t} are two solution vectors of a homogeneous linear system $X' = AX$, then the Wronskian $W(X_1, X_2) =$

- (a) $8e^{4t}$ (correct) (b) $6e^{4t}$ (c) $8e^{8t}$
- (d) $6e^{8t}$
- (e) $8e^{6t}$

15. If the general solution of the system
$$
X' = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} X
$$
 is given by

$$
X = c_1 \begin{pmatrix} -2 \\ m \end{pmatrix} e^{nt} + c_2 \begin{pmatrix} 1 \\ k \end{pmatrix} e^{4t},
$$

then $m + n + k =$

 $(e) -4$

16. If $X_1 =$ $\left(1\right)$ 1 \setminus e^{-t} is a solution of the linear system $X' =$ $\left(\begin{array}{cc} -6 & 5 \\ -5 & 4 \end{array}\right)$ X that corresponds to the only eigenvalue $\lambda = -1$, then a second linearly independent solution of the system is given by

(a)
$$
X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}
$$

\n(b) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
\n(c) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t}$
\n(d) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$
\n(e) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$

17. Given that $K =$ $\begin{pmatrix} 1 \end{pmatrix}$ $1 - 2i$ \setminus is an eigenvector that corresponds to the eigenvalue $\lambda = 5 + 2i$ of the matrix $A =$ $\left(\begin{array}{cc} 6 & -1 \\ 5 & 4 \end{array}\right)$. If $X(t)$ is the solution of the initial value problem $X' =$ $\left(\begin{array}{cc} 6 & -1 \\ 5 & 4 \end{array}\right)X, X(0) = \left(\begin{array}{cc} -2 \\ 8 \end{array}\right)$ 8 \setminus then $X\left(\frac{\pi}{2}\right)$ 2 $=$

(a)
$$
\begin{pmatrix} 2 \\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}
$$
 (correct)
\n(b) $\begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(c) $\begin{pmatrix} 1 \\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(d) $\begin{pmatrix} 2 \\ 0 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(e) $\begin{pmatrix} 0 \\ 2 \end{pmatrix} e^{\frac{5\pi}{2}}$

18. If $X_c = c_1$ $\begin{pmatrix} 1 \end{pmatrix}$ 1 \setminus $e^t + c_2$ $\left(1\right)$ 3 \setminus e^{-t} is the general solution of the homogeneous linear system $X' = AX$, then using the variation of parameters method, a particular solution X_p of the non-homogeneous system $X' = AX +$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 4_t \setminus is given by

(a)
$$
X_p = \begin{pmatrix} 4t \\ 8t - 4 \end{pmatrix}
$$
 (correct)
\n(b) $X_p = \begin{pmatrix} t \\ 8t - 4 \end{pmatrix}$
\n(c) $X_p = \begin{pmatrix} 4t \\ t - 1 \end{pmatrix}$
\n(d) $X_p = \begin{pmatrix} t \\ t - 1 \end{pmatrix}$
\n(e) $X_p = \begin{pmatrix} 4t \\ t + 1 \end{pmatrix}$

- 19. Using the exponential of a matrix method, if the general solution of the system $X' =$ $\sqrt{ }$ \mathcal{L} 0 0 0 3 0 0 5 1 0 \setminus X is given by $X =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 $g(t)$ 1 0 $h(t)$ $f(t)$ 1 \setminus $\overline{ }$ $\sqrt{ }$ $\overline{1}$ $\overline{c_1}$ $\overline{c_2}$ $\overline{c_3}$ \setminus \vert , then $q(2) + h(2) + f(2) =$
	- (a) 24 $\frac{\ }{\ }$ (correct) (b) 22
	- (c) 20
	- (d) 18
	- (e) 26

20. The eigenvalues of the matrix

$$
A = \left(\begin{array}{rrr} 5 & -1 & 0 \\ 0 & -5 & 9 \\ 5 & -1 & 0 \end{array}\right)
$$

are

(a) $\lambda = 0$, $\lambda = 4$ and $\lambda = -4$ (correct) (b) $\lambda = 0$, $\lambda = 3$ and $\lambda = -3$ (c) $\lambda = 1, \lambda = 4$ and $\lambda = -4$ (d) $\lambda = 1, \lambda = 3$ and $\lambda = -3$ (e) $\lambda = 1, \lambda = 1 \pm 2i$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01 CODE01

Math 202 Final Exam 222 May 22, 2023 Net Time Allowed: 180 Minutes

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. A homogeneous linear differential equation with constant coefficients whose general solution is

 $y = c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x$

is given by

(a)
$$
y^{(4)} + 5y'' - 4y = 0
$$

\n(b) $y^{(4)} - 5y'' + 4y = 0$
\n(c) $y^{(4)} + 4y'' + 5y = 0$
\n(d) $y^{(4)} + 5y'' + 6y = 0$
\n(e) $y^{(4)} + 5y'' + 4y = 0$

2. If $y_1 = 1$ is a solution of the differential equation $(1 - x^2)y'' - 2xy' = 0$, then by using reduction of order, a second solution $y_2 =$

(a)
$$
\frac{1}{2} \ln \left| \frac{1+x}{2-x} \right|
$$

\n(b) $\frac{1}{2} \ln \left| \frac{2+x}{1-x} \right|$
\n(c) $\frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|$
\n(d) $\frac{1}{3} \ln \left| \frac{1-x}{1+x} \right|$
\n(e) $\frac{1}{3} \ln \left| \frac{1-x}{2+x} \right|$

3. If c is constant, then the solution of the homogeneous differential equation

$$
(x+3y) dx - (3x + y) dy = 0
$$

is given by

(a)
$$
y - x = c(y + x)
$$

\n(b) $y - x = c(y + x)^2$
\n(c) $(y + x)^2 = c(y - 2x)$
\n(d) $(y + x)^2 = c(y - x)$
\n(e) $(y - x)^2 = c(y + x)$

4. If c is constant, then the solution of the exact differential equation

$$
(y^2 + y \sin x) dx + (2xy - \cos x - \frac{1}{1+y^2}) dy = 0
$$

is given by

(a) $xy^2 - y \cos x - \tan^{-1} y = c$ (b) $xy^2 - y \cos x + 2 \tan^{-1} y = c$ (c) $xy^2 + y \sin x + \tan^{-1} y = c$ (d) $xy^2 - 2y \cos x + \tan^{-1} y = c$ (e) $xy^2 - y \cos x + \tan^{-1} y = c$

5. If c is constant, then the solution of the differential equation

$$
y' + \frac{1}{x+1}y = \frac{\ln x}{x+1}
$$

is given by

(a)
$$
y = \frac{x+1}{x} \ln x - \frac{x+1}{x} + c(x+1)
$$

\n(b) $y = \frac{x+1}{x} \ln x + \frac{x+1}{x} + c(x+1)$
\n(c) $y = \frac{x}{x+1} \ln x + \frac{c}{x+1}$
\n(d) $y = \frac{x}{x+1} \ln x - \frac{x}{x+1} + \frac{c}{x+1}$
\n(e) $y = \frac{x}{x+1} \ln x + \frac{x}{x+1} + \frac{c}{x+1}$

6. If $y = \sum$ ∞ $n=0$ $c_n x^n$ is a power series solution of the differential equation $(x^{2} + 1)y'' - 6y = 0$, then the recurrence relation is given by

(a)
$$
c_2 = 3c_0
$$
, $c_3 = 2c_1$, $c_{k+2} = \frac{3+k}{k+1}c_k$, $k = 2, 3, ...$
\n(b) $c_2 = 3c_0$, $c_3 = c_1$, $c_{k+2} = \frac{3-k}{k+1}c_k$, $k = 2, 3, ...$
\n(c) $c_2 = 2c_0$, $c_3 = 2c_1$, $c_{k+2} = \frac{4-k}{k+1}c_k$, $k = 2, 3, ...$
\n(d) $c_2 = 4c_0$, $c_3 = c_1$, $c_{k+2} = \frac{3-k}{k+1}c_k$, $k = 2, 3, ...$
\n(e) $c_2 = c_0$, $c_3 = c_1$, $c_{k+2} = \frac{k-3}{k+1}c_k$, $k = 2, 3, ...$

- 7. The general solution of the differential equation $x^3y''' 6y = 0$ is given by
	- (a) $y = c_1 x^2 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$ (b) $y = c_1 x^3 + c_2 \cos(3 \ln x) + c_3 \sin(3 \ln x)$ (c) $y = c_1 x^3 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$ (d) $y = c_1 x^2 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$ (e) $y = c_1 x^3 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$

8. Using the undetermined coefficients, a form of a particular solution for the differential equation

$$
y'' + 3y' = 4x - 5
$$

(a)
$$
y_p = Ax^3 + Bx
$$

\n(b) $y_p = Ax^2 + Bx^4$
\n(c) $y_p = Ax + B$
\n(d) $y_p = Ax^2 + Bx^3$
\n(e) $y_p = Ax^2 + Bx$

- 9. The minimum radius of convergence of a power series solution of the second order differential equation $(x^2 - 2x + 5)y'' + xy' - y = 0$ about the ordinary point $x = -1$ is equal to
	- (a) 5
	- (b) 1
	- (c) 2 √ 2
	- (d) 3 √ 2
	- (e) 2 √ 3

10. By using variation of parameters method, a particular solution of the differential equation

$$
y'' - 9y = \frac{9x}{e^{3x}}
$$
 is given by

(a)
$$
y_p = \left(-\frac{1}{24} - \frac{1}{4}x - \frac{3}{4}x^2\right)e^{-3x}
$$

\n(b) $y_p = \left(\frac{1}{4} - x - \frac{3}{4}x^2\right)e^{-3x}$
\n(c) $y_p = \left(-\frac{1}{24} + x + \frac{3}{4}x^2\right)e^{-3x}$
\n(d) $y_p = \left(1 - \frac{1}{4}xe - \frac{3}{4}x^2\right)e^{-3x}$
\n(e) $y_p = \left(\frac{1}{24} + 3x - x^2\right)e^{-3x}$

11. If the general solution of the system
$$
X' = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} X
$$
 is given by

$$
X = c_1 \begin{pmatrix} -2 \\ m \end{pmatrix} e^{nt} + c_2 \begin{pmatrix} 1 \\ k \end{pmatrix} e^{4t},
$$

then $m + n + k =$

- (a) 2
- $(b) -2$
- (c) 4
- (d) 3
- $(e) -4$

12. If $c_0 \neq 0, c_1 = 0, c_k = -\frac{c_{k-2}}{k(2k-1)}, k = 2, 3, 4, \dots$ is the recurrence relation corresponding to the indicial root $r =$ 1 2 in the series solution of the differential equation $2x^2y'' - xy' + (x^2 + 1)y = 0$ about $x = 0$, then the solution is given by

(a)
$$
y = x^{\frac{1}{2}} \left[1 + \frac{1}{3}x^2 + \frac{1}{68}x^4 - \dots \right]
$$

\n(b) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 - \frac{1}{168}x^4 + \dots \right]$
\n(c) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]$
\n(d) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{3}x^2 + \frac{1}{68}x^4 + \dots \right]$
\n(e) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]$

13. If $y = \sum$ ∞ $n=0$ $c_n x^{n+r}$ is a series solution for the differential equation $2xy'' - y' + 2y = 0$ about $x = 0$, then the non-integer indicial root is equal to

(a) $\frac{3}{4}$ 4 (b) $\frac{4}{2}$ 3 $(c) \frac{3}{2}$ 2 (d) $\frac{1}{2}$ 2 (e) $\frac{2}{2}$

3

14. If $X_1 =$ $\begin{pmatrix} 1 \end{pmatrix}$ −1 \setminus e^{-2t} and $X_2 =$ $\sqrt{3}$ 5 \setminus e^{6t} are two solution vectors of a homogeneous linear system $X' = AX$, then the Wronskian $W(X_1, X_2) =$

- (a) $8e^{4t}$
- (b) $6e^{8t}$
- (c) $8e^{8t}$
- (d) $8e^{6t}$
- (e) $6e^{4t}$

15. The number of regular singular points of the differential equation

$$
x^{3}(x^{2} - 25)(x - 2)^{2}y'' + 3x(x - 2)y' + 7(x + 5)y = 0
$$

is

- (a) 5
- (b) 0
- (c) 3
- (d) 1
- (e) 2

16. The eigenvalues of the matrix

$$
A = \left(\begin{array}{rrr} 5 & -1 & 0 \\ 0 & -5 & 9 \\ 5 & -1 & 0 \end{array}\right)
$$

are

(a)
$$
\lambda = 1
$$
, $\lambda = 1 \pm 2i$
\n(b) $\lambda = 0$, $\lambda = 3$ and $\lambda = -3$
\n(c) $\lambda = 1$, $\lambda = 4$ and $\lambda = -4$
\n(d) $\lambda = 0$, $\lambda = 4$ and $\lambda = -4$
\n(e) $\lambda = 1$, $\lambda = 3$ and $\lambda = -3$

17. If $X_1 =$ $\left(1\right)$ 1 \setminus e^{-t} is a solution of the linear system $X' =$ $\left(\begin{array}{cc} -6 & 5 \\ -5 & 4 \end{array}\right)$ X that corresponds to the only eigenvalue $\lambda = -1$, then a second linearly independent solution of the system is given by

(a)
$$
X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t}
$$

\n(b) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$
\n(c) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
\n(d) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
\n(e) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$

18. Using the exponential of a matrix method, if the general solution of the system $X' =$ $\sqrt{ }$ \mathcal{L} 0 0 0 3 0 0 5 1 0 \setminus X is given by $X =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 $g(t)$ 1 0 $h(t)$ $f(t)$ 1 \setminus $\overline{ }$ $\sqrt{ }$ $\overline{1}$ c_1 $\overline{c_2}$ $\overline{c_3}$ \setminus \vert , then $g(2) + h(2) + f(2) =$

- (a) 18
- (b) 20
- (c) 26
- (d) 22
- (e) 24

$$
{\bf CODE}01
$$

19. Given that $K =$ $\begin{pmatrix} 1 \end{pmatrix}$ $1 - 2i$ \setminus is an eigenvector that corresponds to the eigenvalue $\lambda = 5 + 2i$ of the matrix $A =$ $\left(\begin{array}{cc} 6 & -1 \\ 5 & 4 \end{array}\right)$. If $X(t)$ is the solution of the initial value problem $X' =$ $\left(\begin{array}{cc} 6 & -1 \\ 5 & 4 \end{array}\right)X, X(0) = \left(\begin{array}{cc} -2 \\ 8 \end{array}\right)$ 8 \setminus then $X\left(\frac{\pi}{2}\right)$ 2 $=$

(a)
$$
\begin{pmatrix} 0 \\ 2 \end{pmatrix} e^{\frac{5\pi}{2}}
$$

\n(b) $\begin{pmatrix} 2 \\ 0 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(c) $\begin{pmatrix} 2 \\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(d) $\begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(e) $\begin{pmatrix} 1 \\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}$

20. If $X_c = c_1$ $\begin{pmatrix} 1 \end{pmatrix}$ 1 \setminus $e^t + c_2$ $\left(1\right)$ 3 \setminus e^{-t} is the general solution of the homogeneous linear system $X' = AX$, then using the variation of parameters method, a particular solution X_p of the non-homogeneous system $X' = AX +$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 4_t \setminus is given by

(a)
$$
X_p = \begin{pmatrix} t \\ t-1 \end{pmatrix}
$$

\n(b) $X_p = \begin{pmatrix} 4t \\ 8t-4 \end{pmatrix}$
\n(c) $X_p = \begin{pmatrix} 4t \\ t-1 \end{pmatrix}$
\n(d) $X_p = \begin{pmatrix} 4t \\ t+1 \end{pmatrix}$
\n(e) $X_p = \begin{pmatrix} t \\ 8t-4 \end{pmatrix}$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02 \vert CODE02

Math 202 Final Exam 222 May 22, 2023 Net Time Allowed: 180 Minutes

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If c is constant, then the solution of the exact differential equation

$$
(y^2 + y \sin x) dx + (2xy - \cos x - \frac{1}{1+y^2}) dy = 0
$$

is given by

(a)
$$
xy^2 - y \cos x - \tan^{-1} y = c
$$

\n(b) $xy^2 - 2y \cos x + \tan^{-1} y = c$
\n(c) $xy^2 - y \cos x + 2 \tan^{-1} y = c$
\n(d) $xy^2 - y \cos x + \tan^{-1} y = c$

(e)
$$
xy^2 + y \sin x + \tan^{-1} y = c
$$

2. If c is constant, then the solution of the homogeneous differential equation

$$
(x+3y) dx - (3x + y) dy = 0
$$

(a)
$$
(y+x)^2 = c(y-2x)
$$

\n(b) $y-x = c(y+x)$
\n(c) $(y-x)^2 = c(y+x)$
\n(d) $(y+x)^2 = c(y-x)$
\n(e) $y-x = c(y+x)^2$

3. If $y_1 = 1$ is a solution of the differential equation $(1 - x^2)y'' - 2xy' = 0$, then by using reduction of order, a second solution $y_2 =$

(a)
$$
\frac{1}{3} \ln \left| \frac{1-x}{1+x} \right|
$$

\n(b) $\frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|$
\n(c) $\frac{1}{2} \ln \left| \frac{1+x}{2-x} \right|$
\n(d) $\frac{1}{2} \ln \left| \frac{2+x}{1-x} \right|$
\n(e) $\frac{1}{3} \ln \left| \frac{1-x}{2+x} \right|$

4. If c is constant, then the solution of the differential equation

$$
y' + \frac{1}{x+1}y = \frac{\ln x}{x+1}
$$

(a)
$$
y = \frac{x+1}{x} \ln x + \frac{x+1}{x} + c(x+1)
$$

\n(b) $y = \frac{x}{x+1} \ln x - \frac{x}{x+1} + \frac{c}{x+1}$
\n(c) $y = \frac{x}{x+1} \ln x + \frac{x}{x+1} + \frac{c}{x+1}$
\n(d) $y = \frac{x+1}{x} \ln x - \frac{x+1}{x} + c(x+1)$
\n(e) $y = \frac{x}{x+1} \ln x + \frac{c}{x+1}$

5. A homogeneous linear differential equation with constant coefficients whose general solution is

 $y = c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x$

is given by

(a)
$$
y^{(4)} + 4y'' + 5y = 0
$$

\n(b) $y^{(4)} + 5y'' + 6y = 0$
\n(c) $y^{(4)} + 5y'' - 4y = 0$
\n(d) $y^{(4)} - 5y'' + 4y = 0$
\n(e) $y^{(4)} + 5y'' + 4y = 0$

6. By using variation of parameters method, a particular solution of the differential equation

$$
y'' - 9y = \frac{9x}{e^{3x}}
$$
 is given by

(a)
$$
y_p = \left(1 - \frac{1}{4}xe - \frac{3}{4}x^2\right)e^{-3x}
$$

\n(b) $y_p = \left(-\frac{1}{24} + x + \frac{3}{4}x^2\right)e^{-3x}$
\n(c) $y_p = \left(\frac{1}{4} - x - \frac{3}{4}x^2\right)e^{-3x}$
\n(d) $y_p = \left(\frac{1}{24} + 3x - x^2\right)e^{-3x}$
\n(e) $y_p = \left(-\frac{1}{24} - \frac{1}{4}x - \frac{3}{4}x^2\right)e^{-3x}$

- 7. The minimum radius of convergence of a power series solution of the second order differential equation $(x^2 - 2x + 5)y'' + xy' - y = 0$ about the ordinary point $x = -1$ is equal to
	- (a) 5
	- (b) 2 √ 3
	- (c) 2 √ 2
	- (d) 3 √ 2
	- (e) 1

8. If $y = \sum$ ∞ $n=0$ $c_n x^n$ is a power series solution of the differential equation $(x^{2} + 1)y'' - 6y = 0$, then the recurrence relation is given by

(a)
$$
c_2 = 4c_0
$$
, $c_3 = c_1$, $c_{k+2} = \frac{3-k}{k+1}c_k$, $k = 2, 3, ...$
\n(b) $c_2 = 3c_0$, $c_3 = 2c_1$, $c_{k+2} = \frac{3+k}{k+1}c_k$, $k = 2, 3, ...$
\n(c) $c_2 = 2c_0$, $c_3 = 2c_1$, $c_{k+2} = \frac{4-k}{k+1}c_k$, $k = 2, 3, ...$
\n(d) $c_2 = 3c_0$, $c_3 = c_1$, $c_{k+2} = \frac{3-k}{k+1}c_k$, $k = 2, 3, ...$
\n(e) $c_2 = c_0$, $c_3 = c_1$, $c_{k+2} = \frac{k-3}{k+1}c_k$, $k = 2, 3, ...$

9. Using the undetermined coefficients, a form of a particular solution for the differential equation

$$
y'' + 3y' = 4x - 5
$$

is given by

(a)
$$
y_p = Ax^2 + Bx
$$

\n(b) $y_p = Ax^2 + Bx^3$
\n(c) $y_p = Ax^3 + Bx$
\n(d) $y_p = Ax^2 + Bx^4$
\n(e) $y_p = Ax + B$

10. The general solution of the differential equation $x^3y''' - 6y = 0$ is given by

(a)
$$
y = c_1x^2 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)
$$

\n(b) $y = c_1x^3 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$
\n(c) $y = c_1x^3 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
\n(d) $y = c_1x^2 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$
\n(e) $y = c_1x^3 + c_2 \cos(3 \ln x) + c_3 \sin(3 \ln x)$

11. If the general solution of the system $X' =$ $\left(\begin{array}{cc} 2 & 2 \\ 1 & 3 \end{array}\right)$ X is given by

$$
X = c_1 \begin{pmatrix} -2 \\ m \end{pmatrix} e^{nt} + c_2 \begin{pmatrix} 1 \\ k \end{pmatrix} e^{4t},
$$

then $m + n + k =$

- $(a) -2$
- (b) 3
- $(c) -4$
- (d) 4
- (e) 2

12. If $y = \sum$ ∞ $n=0$ $c_n x^{n+r}$ is a series solution for the differential equation $2xy'' - y' + 2y = 0$ about $x = 0$, then the non-integer indicial root is equal to

(a)
$$
\frac{1}{2}
$$

\n(b) $\frac{4}{3}$
\n(c) $\frac{2}{3}$
\n(d) $\frac{3}{2}$
\n(e) $\frac{3}{4}$

13. If $c_0 \neq 0, c_1 = 0, c_k = -\frac{c_{k-2}}{k(2k-1)}, k = 2, 3, 4, \dots$ is the recurrence relation corresponding to the indicial root $r =$ 1 2 in the series solution of the differential equation $2x^2y'' - xy' + (x^2 + 1)y = 0$ about $x = 0$, then the solution is given by

(a)
$$
y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]
$$

\n(b) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{3}x^2 + \frac{1}{68}x^4 + \dots \right]$
\n(c) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]$
\n(d) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 - \frac{1}{168}x^4 + \dots \right]$
\n(e) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{3}x^2 + \frac{1}{68}x^4 - \dots \right]$

14. The number of regular singular points of the differential equation

$$
x^{3}(x^{2} - 25)(x - 2)^{2}y'' + 3x(x - 2)y' + 7(x + 5)y = 0
$$

is

- (a) 0
- (b) 5
- (c) 2
- (d) 1
- (e) 3

15. If $X_1 =$ $\begin{pmatrix} 1 \end{pmatrix}$ −1 \setminus e^{-2t} and $X_2 =$ $\sqrt{3}$ 5 \setminus e^{6t} are two solution vectors of a homogeneous linear system $X' = AX$, then the Wronskian $W(X_1, X_2) =$

- (a) $8e^{6t}$
- (b) $6e^{8t}$
- (c) 6 e^{4t}
- (d) $8e^{8t}$
- (e) $8e^{4t}$

16. Using the exponential of a matrix method, if the general solution of the system $X' =$ $\sqrt{ }$ \mathcal{L} 0 0 0 3 0 0 5 1 0 \setminus X is given by $X =$ $\sqrt{ }$ $\overline{ }$ 1 0 0 $g(t)$ 1 0 $h(t)$ $f(t)$ 1 \setminus $\overline{ }$ $\sqrt{ }$ $\overline{1}$ c_1 $\overline{c_2}$ $\overline{c_3}$ \setminus \vert , then $q(2) + h(2) + f(2)$

- (a) 22
- (b) 18
- (c) 24
- (d) 26
- (e) 20

17. If $X_c = c_1$ $\begin{pmatrix} 1 \end{pmatrix}$ 1 \setminus $e^t + c_2$ $\left(1\right)$ 3 \setminus e^{-t} is the general solution of the homogeneous linear system $X' = AX$, then using the variation of parameters method, a particular solution X_p of the non-homogeneous system $X' = AX +$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 4_t \setminus is given by

(a) $X_p =$ $\int 4t$ $t-1$ \setminus (b) $X_p =$ $\int 4t$ $8t - 4$ \setminus (c) $X_p =$ $\left(\begin{array}{c} 4t \\ t+1 \end{array}\right)$ (d) $X_p =$ \int t $8t - 4$ \setminus (e) $X_p =$ \int t $t-1$ \setminus

18. Given that $K =$ $\begin{pmatrix} 1 \end{pmatrix}$ $1 - 2i$ \setminus is an eigenvector that corresponds to the eigenvalue $\lambda = 5 + 2i$ of the matrix $A =$ $\left(\begin{array}{cc} 6 & -1 \\ 5 & 4 \end{array}\right)$. If $X(t)$ is the solution of the initial value problem $X' =$ $\begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} X$, $X(0) = \begin{pmatrix} -2 \\ 8 \end{pmatrix}$ 8 \setminus then $X\left(\frac{\pi}{2}\right)$ 2 $=$

(a)
$$
\begin{pmatrix} 0 \\ 2 \end{pmatrix} e^{\frac{5\pi}{2}}
$$

\n(b) $\begin{pmatrix} 2 \\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(c) $\begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(d) $\begin{pmatrix} 2 \\ 0 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(e) $\begin{pmatrix} 1 \\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}$

19. If $X_1 =$ $\left(1\right)$ 1 \setminus e^{-t} is a solution of the linear system $X' =$ $\left(\begin{array}{cc} -6 & 5 \\ -5 & 4 \end{array}\right)$ X that corresponds to the only eigenvalue $\lambda = -1$, then a second linearly independent solution of the system is given by

(a)
$$
X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}
$$

\n(b) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
\n(c) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t}$
\n(d) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$
\n(e) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t} + \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$

20. The eigenvalues of the matrix

$$
A = \left(\begin{array}{rrr} 5 & -1 & 0 \\ 0 & -5 & 9 \\ 5 & -1 & 0 \end{array}\right)
$$

are

(a)
$$
\lambda = 1
$$
, $\lambda = 1 \pm 2i$
\n(b) $\lambda = 1$, $\lambda = 4$ and $\lambda = -4$
\n(c) $\lambda = 1$, $\lambda = 3$ and $\lambda = -3$
\n(d) $\lambda = 0$, $\lambda = 3$ and $\lambda = -3$
\n(e) $\lambda = 0$, $\lambda = 4$ and $\lambda = -4$

King Fahd University of Petroleum and Minerals Department of Mathematics

\Box CODE03 \Box

Math 202 Final Exam 222 May 22, 2023 Net Time Allowed: 180 Minutes

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. A homogeneous linear differential equation with constant coefficients whose general solution is

 $y = c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x$

is given by

(a)
$$
y^{(4)} + 5y'' + 4y = 0
$$

\n(b) $y^{(4)} + 5y'' + 6y = 0$
\n(c) $y^{(4)} + 4y'' + 5y = 0$
\n(d) $y^{(4)} + 5y'' - 4y = 0$
\n(e) $y^{(4)} - 5y'' + 4y = 0$

2. If c is constant, then the solution of the exact differential equation

$$
(y^2 + y \sin x) dx + (2xy - \cos x - \frac{1}{1+y^2}) dy = 0
$$

is given by

(a) $xy^2 - y \cos x + \tan^{-1} y = c$ (b) $xy^2 + y \sin x + \tan^{-1} y = c$ (c) $xy^2 - 2y \cos x + \tan^{-1} y = c$ (d) $xy^2 - y \cos x - \tan^{-1} y = c$ (e) $xy^2 - y \cos x + 2 \tan^{-1} y = c$

3. If c is constant, then the solution of the homogeneous differential equation

$$
(x+3y) dx - (3x + y) dy = 0
$$

is given by

(a)
$$
(y+x)^2 = c(y-x)
$$

\n(b) $(y+x)^2 = c(y-2x)$
\n(c) $y-x = c(y+x)^2$
\n(d) $(y-x)^2 = c(y+x)$
\n(e) $y-x = c(y+x)$

4. If c is constant, then the solution of the differential equation

$$
y' + \frac{1}{x+1}y = \frac{\ln x}{x+1}
$$

(a)
$$
y = \frac{x+1}{x} \ln x + \frac{x+1}{x} + c(x+1)
$$

\n(b) $y = \frac{x+1}{x} \ln x - \frac{x+1}{x} + c(x+1)$
\n(c) $y = \frac{x}{x+1} \ln x - \frac{x}{x+1} + \frac{c}{x+1}$
\n(d) $y = \frac{x}{x+1} \ln x + \frac{x}{x+1} + \frac{c}{x+1}$
\n(e) $y = \frac{x}{x+1} \ln x + \frac{c}{x+1}$

5. If $y_1 = 1$ is a solution of the differential equation $(1 - x^2)y'' - 2xy' = 0$, then by using reduction of order, a second solution $y_2 =$

(a)
$$
\frac{1}{3} \ln \left| \frac{1-x}{1+x} \right|
$$

\n(b) $\frac{1}{3} \ln \left| \frac{1-x}{2+x} \right|$
\n(c) $\frac{1}{2} \ln \left| \frac{2+x}{1-x} \right|$
\n(d) $\frac{1}{2} \ln \left| \frac{1+x}{2-x} \right|$
\n(e) $\frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|$

6. By using variation of parameters method, a particular solution of the differential equation

$$
y'' - 9y = \frac{9x}{e^{3x}}
$$
 is given by

(a)
$$
y_p = \left(-\frac{1}{24} + x + \frac{3}{4}x^2\right)e^{-3x}
$$

\n(b) $y_p = \left(\frac{1}{24} + 3x - x^2\right)e^{-3x}$
\n(c) $y_p = \left(1 - \frac{1}{4}xe - \frac{3}{4}x^2\right)e^{-3x}$
\n(d) $y_p = \left(\frac{1}{4} - x - \frac{3}{4}x^2\right)e^{-3x}$
\n(e) $y_p = \left(-\frac{1}{24} - \frac{1}{4}x - \frac{3}{4}x^2\right)e^{-3x}$

7. Using the undetermined coefficients, a form of a particular solution for the differential equation

$$
y'' + 3y' = 4x - 5
$$

is given by

(a)
$$
y_p = Ax^2 + Bx^4
$$

\n(b) $y_p = Ax + B$
\n(c) $y_p = Ax^3 + Bx$
\n(d) $y_p = Ax^2 + Bx^3$
\n(e) $y_p = Ax^2 + Bx$

8. The general solution of the differential equation $x^3y''' - 6y = 0$ is given by

(a)
$$
y = c_1x^3 + c_2 \cos(3 \ln x) + c_3 \sin(3 \ln x)
$$

\n(b) $y = c_1x^3 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
\n(c) $y = c_1x^3 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$
\n(d) $y = c_1x^2 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
\n(e) $y = c_1x^2 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$

- 9. The minimum radius of convergence of a power series solution of the second order differential equation $(x^2 - 2x + 5)y'' + xy' - y = 0$ about the ordinary point $x = -1$ is equal to
	- (a) 5
	- (b) 3 √ 2 √
	- (c) 2 2
	- (d) 1
	- (e) 2 √ 3

10. If $y = \sum$ ∞ $n=0$ $c_n x^n$ is a power series solution of the differential equation $(x^{2} + 1)y'' - 6y = 0$, then the recurrence relation is given by

(a)
$$
c_2 = 4c_0
$$
, $c_3 = c_1$, $c_{k+2} = \frac{3-k}{k+1}c_k$, $k = 2, 3, ...$
\n(b) $c_2 = 3c_0$, $c_3 = c_1$, $c_{k+2} = \frac{3-k}{k+1}c_k$, $k = 2, 3, ...$
\n(c) $c_2 = c_0$, $c_3 = c_1$, $c_{k+2} = \frac{k-3}{k+1}c_k$, $k = 2, 3, ...$
\n(d) $c_2 = 2c_0$, $c_3 = 2c_1$, $c_{k+2} = \frac{4-k}{k+1}c_k$, $k = 2, 3, ...$
\n(e) $c_2 = 3c_0$, $c_3 = 2c_1$, $c_{k+2} = \frac{3+k}{k+1}c_k$, $k = 2, 3, ...$

11. If the general solution of the system $X' =$ $\left(\begin{array}{cc} 2 & 2 \\ 1 & 3 \end{array}\right)$ X is given by

$$
X = c_1 \begin{pmatrix} -2 \\ m \end{pmatrix} e^{nt} + c_2 \begin{pmatrix} 1 \\ k \end{pmatrix} e^{4t},
$$

then $m + n + k =$

- (a) 2
- (b) 3
- $(c) -2$
- (d) 4
- $(e) -4$

12. If $y = \sum$ ∞ $n=0$ $c_n x^{n+r}$ is a series solution for the differential equation $2xy'' - y' + 2y = 0$ about $x = 0$, then the non-integer indicial root is equal to

(a)
$$
\frac{2}{3}
$$

\n(b) $\frac{3}{4}$
\n(c) $\frac{4}{3}$
\n(d) $\frac{1}{2}$
\n(e) $\frac{3}{2}$

13. If $c_0 \neq 0, c_1 = 0, c_k = -\frac{c_{k-2}}{k(2k-1)}, k = 2, 3, 4, \dots$ is the recurrence relation corresponding to the indicial root $r =$ 1 2 in the series solution of the differential equation $2x^2y'' - xy' + (x^2 + 1)y = 0$ about $x = 0$, then the solution is given by

(a)
$$
y = x^{\frac{1}{2}} \left[1 - \frac{1}{3}x^2 + \frac{1}{68}x^4 + \dots \right]
$$

\n(b) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{3}x^2 + \frac{1}{68}x^4 - \dots \right]$
\n(c) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]$
\n(d) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 - \frac{1}{168}x^4 + \dots \right]$
\n(e) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]$

14. The number of regular singular points of the differential equation

$$
x^{3}(x^{2} - 25)(x - 2)^{2}y'' + 3x(x - 2)y' + 7(x + 5)y = 0
$$

is

- (a) 0
- (b) 2
- (c) 3
- (d) 5
- (e) 1

15. If $X_1 =$ $\begin{pmatrix} 1 \end{pmatrix}$ −1 \setminus e^{-2t} and $X_2 =$ $\sqrt{3}$ 5 \setminus e^{6t} are two solution vectors of a homogeneous linear system $X' = AX$, then the Wronskian $W(X_1, X_2) =$

- (a) $8e^{4t}$
- (b) $6e^{4t}$
- (c) 6 e^{8t}
- (d) $8e^{6t}$
- (e) $8e^{8t}$

16. If $X_c = c_1$ $\begin{pmatrix} 1 \end{pmatrix}$ 1 \setminus e^t+c_2 $\left(1\right)$ 3 \setminus e^{-t} is the general solution of the homogeneous linear system $X' = AX$, then using the variation of parameters method, a particular solution X_p of the non-homogeneous system $X' = AX +$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 4_t \setminus is given by

(a)
$$
X_p = \begin{pmatrix} 4t \\ t+1 \end{pmatrix}
$$

\n(b) $X_p = \begin{pmatrix} 4t \\ 8t-4 \end{pmatrix}$
\n(c) $X_p = \begin{pmatrix} t \\ 8t-4 \end{pmatrix}$
\n(d) $X_p = \begin{pmatrix} 4t \\ t-1 \end{pmatrix}$
\n(e) $X_p = \begin{pmatrix} t \\ t-1 \end{pmatrix}$

17. The eigenvalues of the matrix

$$
A = \left(\begin{array}{rrr} 5 & -1 & 0 \\ 0 & -5 & 9 \\ 5 & -1 & 0 \end{array}\right)
$$

are

(a)
$$
\lambda = 1
$$
, $\lambda = 3$ and $\lambda = -3$
\n(b) $\lambda = 1$, $\lambda = 1 \pm 2i$
\n(c) $\lambda = 1$, $\lambda = 4$ and $\lambda = -4$
\n(d) $\lambda = 0$, $\lambda = 3$ and $\lambda = -3$
\n(e) $\lambda = 0$, $\lambda = 4$ and $\lambda = -4$

18. If $X_1 =$ $\left(1\right)$ 1 \setminus e^{-t} is a solution of the linear system $X' =$ $\left(\begin{array}{cc} -6 & 5 \\ -5 & 4 \end{array}\right)$ X that corresponds to the only eigenvalue $\lambda = -1$, then a second linearly independent solution of the system is given by

(a)
$$
X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t}
$$

\n(b) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$
\n(c) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
\n(d) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$
\n(e) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$

19. Given that $K =$ $\begin{pmatrix} 1 \end{pmatrix}$ $1 - 2i$ \setminus is an eigenvector that corresponds to the eigenvalue $\lambda = 5 + 2i$ of the matrix $A =$ $\left(\begin{array}{cc} 6 & -1 \\ 5 & 4 \end{array}\right)$. If $X(t)$ is the solution of the initial value problem $X' =$ $\left(\begin{array}{cc} 6 & -1 \\ 5 & 4 \end{array}\right)X, X(0) = \left(\begin{array}{cc} -2 \\ 8 \end{array}\right)$ 8 \setminus then $X\left(\frac{\pi}{2}\right)$ 2 $=$

(a)
$$
\begin{pmatrix} 2 \\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}
$$

\n(b) $\begin{pmatrix} 0 \\ 2 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(c) $\begin{pmatrix} 2 \\ 0 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(d) $\begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(e) $\begin{pmatrix} 1 \\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}$

- 20. Using the exponential of a matrix method, if the general solution of the system $X' =$ $\sqrt{ }$ $\overline{1}$ 0 0 0 3 0 0 5 1 0 \setminus X is given by $X =$ $\sqrt{ }$ $\overline{ }$ 1 0 0 $g(t)$ 1 0 $h(t)$ $f(t)$ 1 \setminus $\overline{ }$ $\sqrt{ }$ $\overline{1}$ c_1 $\overline{c_2}$ $\overline{c_3}$ \setminus \vert , then $q(2) + h(2) + f(2) =$
	- (a) 26
	- (b) 22
	- (c) 20
	- (d) 24
	- (e) 18

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04 CODE04

Math 202 Final Exam 222 May 22, 2023 Net Time Allowed: 180 Minutes

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If $y_1 = 1$ is a solution of the differential equation $(1 - x^2)y'' - 2xy' = 0$, then by using reduction of order, a second solution $y_2 =$

(a)
$$
\frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|
$$

\n(b)
$$
\frac{1}{3} \ln \left| \frac{1-x}{2+x} \right|
$$

\n(c)
$$
\frac{1}{3} \ln \left| \frac{1-x}{1+x} \right|
$$

\n(d)
$$
\frac{1}{2} \ln \left| \frac{2+x}{1-x} \right|
$$

\n(e)
$$
\frac{1}{2} \ln \left| \frac{1+x}{2-x} \right|
$$

2. If c is constant, then the solution of the exact differential equation

$$
(y^2 + y \sin x) dx + (2xy - \cos x - \frac{1}{1+y^2}) dy = 0
$$

is given by

(a) $xy^2 + y \sin x + \tan^{-1} y = c$ (b) $xy^2 - y \cos x + 2 \tan^{-1} y = c$ (c) $xy^2 - y \cos x + \tan^{-1} y = c$ (d) $xy^2 - y \cos x - \tan^{-1} y = c$ (e) $xy^2 - 2y \cos x + \tan^{-1} y = c$

3. If c is constant, then the solution of the differential equation

$$
y' + \frac{1}{x+1}y = \frac{\ln x}{x+1}
$$

is given by

(a)
$$
y = \frac{x+1}{x}
$$
 ln $x + \frac{x+1}{x} + c(x+1)$
\n(b) $y = \frac{x}{x+1}$ ln $x - \frac{x}{x+1} + \frac{c}{x+1}$
\n(c) $y = \frac{x+1}{x}$ ln $x - \frac{x+1}{x} + c(x+1)$
\n(d) $y = \frac{x}{x+1}$ ln $x + \frac{c}{x+1}$
\n(e) $y = \frac{x}{x+1}$ ln $x + \frac{x}{x+1} + \frac{c}{x+1}$

4. A homogeneous linear differential equation with constant coefficients whose general solution is

 $y = c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x$

(a)
$$
y^{(4)} - 5y'' + 4y = 0
$$

\n(b) $y^{(4)} + 5y'' + 6y = 0$
\n(c) $y^{(4)} + 5y'' - 4y = 0$
\n(d) $y^{(4)} + 4y'' + 5y = 0$
\n(e) $y^{(4)} + 5y'' + 4y = 0$

5. If c is constant, then the solution of the homogeneous differential equation

$$
(x+3y) dx - (3x + y) dy = 0
$$

is given by

(a)
$$
(y - x)^2 = c(y + x)
$$

\n(b) $y - x = c(y + x)^2$
\n(c) $(y + x)^2 = c(y - 2x)$
\n(d) $y - x = c(y + x)$
\n(e) $(y + x)^2 = c(y - x)$

6. The general solution of the differential equation $x^3y''' - 6y = 0$ is given by

(a)
$$
y = c_1x^3 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)
$$

\n(b) $y = c_1x^2 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x)$
\n(c) $y = c_1x^2 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
\n(d) $y = c_1x^3 + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x)$
\n(e) $y = c_1x^3 + c_2 \cos(3 \ln x) + c_3 \sin(3 \ln x)$

7. By using variation of parameters method, a particular solution of the differential equation

$$
y'' - 9y = \frac{9x}{e^{3x}}
$$
 is given by

(a)
$$
y_p = \left(\frac{1}{4} - x - \frac{3}{4}x^2\right)e^{-3x}
$$

\n(b) $y_p = \left(\frac{1}{24} + 3x - x^2\right)e^{-3x}$
\n(c) $y_p = \left(-\frac{1}{24} + x + \frac{3}{4}x^2\right)e^{-3x}$
\n(d) $y_p = \left(1 - \frac{1}{4}xe - \frac{3}{4}x^2\right)e^{-3x}$
\n(e) $y_p = \left(-\frac{1}{24} - \frac{1}{4}x - \frac{3}{4}x^2\right)e^{-3x}$

8. If $y = \sum$ ∞ $n=0$ $c_n x^n$ is a power series solution of the differential equation $(x^{2} + 1)y'' - 6y = 0$, then the recurrence relation is given by

(a)
$$
c_2 = 2c_0
$$
, $c_3 = 2c_1$, $c_{k+2} = \frac{4-k}{k+1}c_k$, $k = 2, 3, ...$
\n(b) $c_2 = 3c_0$, $c_3 = 2c_1$, $c_{k+2} = \frac{3+k}{k+1}c_k$, $k = 2, 3, ...$
\n(c) $c_2 = c_0$, $c_3 = c_1$, $c_{k+2} = \frac{k-3}{k+1}c_k$, $k = 2, 3, ...$
\n(d) $c_2 = 4c_0$, $c_3 = c_1$, $c_{k+2} = \frac{3-k}{k+1}c_k$, $k = 2, 3, ...$
\n(e) $c_2 = 3c_0$, $c_3 = c_1$, $c_{k+2} = \frac{3-k}{k+1}c_k$, $k = 2, 3, ...$

9. Using the undetermined coefficients, a form of a particular solution for the differential equation

$$
y'' + 3y' = 4x - 5
$$

(a)
$$
y_p = Ax^3 + Bx
$$

\n(b) $y_p = Ax^2 + Bx^4$
\n(c) $y_p = Ax + B$
\n(d) $y_p = Ax^2 + Bx$

(e)
$$
y_p = Ax^2 + Bx^3
$$

- 10. The minimum radius of convergence of a power series solution of the second order differential equation $(x^2 - 2x + 5)y'' + xy' - y = 0$ about the ordinary point $x = -1$ is equal to
	- (a) 3 √ 2
	- (b) 1
	- (c) 2 √ 2
	- (d) 2 $^{\bullet}$ 3
	- (e) 5

11. If $y = \sum$ ∞ $n=0$ $c_n x^{n+r}$ is a series solution for the differential equation $2xy'' - y' + 2y = 0$ about $x = 0$, then the non-integer indicial root is equal to

(a) $\frac{4}{2}$ 3 (b) $\frac{2}{3}$ 3 $(c) \frac{3}{4}$ 4 (d) $\frac{1}{2}$ 2 (e) $\frac{3}{2}$ 2

12. If the general solution of the system $X' =$ $\left(\begin{array}{cc} 2 & 2 \\ 1 & 3 \end{array}\right)$ X is given by

$$
X = c_1 \begin{pmatrix} -2 \\ m \end{pmatrix} e^{nt} + c_2 \begin{pmatrix} 1 \\ k \end{pmatrix} e^{4t},
$$

then $m + n + k =$

- $(a) -2$
- $(b) -4$
- (c) 3
- (d) 2
- (e) 4

13. If $c_0 \neq 0, c_1 = 0, c_k = -\frac{c_{k-2}}{k(2k-1)}, k = 2, 3, 4, \dots$ is the recurrence relation corresponding to the indicial root $r =$ 1 2 in the series solution of the differential equation $2x^2y'' - xy' + (x^2 + 1)y = 0$ about $x = 0$, then the solution is given by

(a)
$$
y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]
$$

\n(b) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{3}x^2 + \frac{1}{68}x^4 - \dots \right]$
\n(c) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{3}x^2 + \frac{1}{68}x^4 + \dots \right]$
\n(d) $y = x^{\frac{1}{2}} \left[1 + \frac{1}{6}x^2 + \frac{1}{168}x^4 - \dots \right]$
\n(e) $y = x^{\frac{1}{2}} \left[1 - \frac{1}{6}x^2 - \frac{1}{168}x^4 + \dots \right]$

14. If $X_1 =$ $\begin{pmatrix} 1 \end{pmatrix}$ −1 \setminus e^{-2t} and $X_2 =$ $\sqrt{3}$ 5 \setminus e^{6t} are two solution vectors of a homogeneous linear system $X' = AX$, then the Wronskian $W(X_1, X_2) =$

- (a) $6e^{4t}$
- (b) $8e^{6t}$
- (c) $8e^{4t}$
- (d) $6e^{8t}$
- (e) $8e^{8t}$

15. The number of regular singular points of the differential equation

$$
x^{3}(x^{2} - 25)(x - 2)^{2}y'' + 3x(x - 2)y' + 7(x + 5)y = 0
$$

is

- (a) 5
- (b) 2
- (c) 0
- (d) 1
- (e) 3

16. Using the exponential of a matrix method, if the general solution of the system $X' =$ $\sqrt{ }$ \mathcal{L} 0 0 0 3 0 0 5 1 0 \setminus X is given by $X =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 $g(t)$ 1 0 $h(t)$ $f(t)$ 1 \setminus $\overline{ }$ $\sqrt{ }$ $\overline{1}$ c_1 $\overline{c_2}$ $\overline{c_3}$ \setminus \vert , then $g(2) + h(2) + f(2) =$

- (a) 18
- (b) 20
- (c) 24
- (d) 26
- (e) 22

17. If $X_1 =$ $\left(1\right)$ 1 \setminus e^{-t} is a solution of the linear system $X' =$ $\left(\begin{array}{cc} -6 & 5 \\ -5 & 4 \end{array}\right)$ X that corresponds to the only eigenvalue $\lambda = -1$, then a second linearly independent solution of the system is given by

(a)
$$
X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t}
$$

\n(b) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
\n(c) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + t \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$
\n(d) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} e^{-t}$
\n(e) $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} te^{-t} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e^{-t}$

18. Given that $K =$ $\begin{pmatrix} 1 \end{pmatrix}$ $1 - 2i$ \setminus is an eigenvector that corresponds to the eigenvalue $\lambda = 5 + 2i$ of the matrix $A =$ $\left(\begin{array}{cc} 6 & -1 \\ 5 & 4 \end{array}\right)$. If $X(t)$ is the solution of the initial value problem $X' =$ $\left(\begin{array}{cc} 6 & -1 \\ 5 & 4 \end{array}\right)X, X(0) = \left(\begin{array}{cc} -2 \\ 8 \end{array}\right)$ 8 \setminus then $X\left(\frac{\pi}{2}\right)$ 2 $=$

(a)
$$
\begin{pmatrix} 2 \\ 0 \end{pmatrix} e^{\frac{5\pi}{2}}
$$

\n(b) $\begin{pmatrix} 0 \\ 2 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(c) $\begin{pmatrix} 2 \\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(d) $\begin{pmatrix} 1 \\ -8 \end{pmatrix} e^{\frac{5\pi}{2}}$
\n(e) $\begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{\frac{5\pi}{2}}$

19. The eigenvalues of the matrix

$$
A = \left(\begin{array}{rrr} 5 & -1 & 0 \\ 0 & -5 & 9 \\ 5 & -1 & 0 \end{array}\right)
$$

are

(a) $\lambda = 1$, $\lambda = 4$ and $\lambda = -4$ (b) $\lambda = 0$, $\lambda = 3$ and $\lambda = -3$ (c) $\lambda = 0$, $\lambda = 4$ and $\lambda = -4$ (d) $\lambda = 1, \lambda = 3$ and $\lambda = -3$ (e) $\lambda = 1, \lambda = 1 \pm 2i$

20. If $X_c = c_1$ $\begin{pmatrix} 1 \end{pmatrix}$ 1 \setminus e^t+c_2 $\left(1\right)$ 3 \setminus e^{-t} is the general solution of the homogeneous linear system $X' = AX$, then using the variation of parameters method, a particular solution X_p of the non-homogeneous system $X' = AX +$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 4_t \setminus is given by

(a)
$$
X_p = \begin{pmatrix} 4t \\ t-1 \end{pmatrix}
$$

\n(b) $X_p = \begin{pmatrix} 4t \\ 8t-4 \end{pmatrix}$
\n(c) $X_p = \begin{pmatrix} t \\ t-1 \end{pmatrix}$
\n(d) $X_p = \begin{pmatrix} t \\ 8t-4 \end{pmatrix}$
\n(e) $X_p = \begin{pmatrix} 4t \\ t+1 \end{pmatrix}$

Math 202, 222, Final Exam $\boxed{\text{Answer KEY}}$

Answer Counts

