Math 208-211, Exam I

King Fahd University of Petroleum and Minerals
Department of Mathematics and Statistics

MATH 208 - Major Exam I - Term 211
Duration: 90 minutes

1. The solution of the initial value problem:

dy —y

= 2)=1
dr  x+ 12 v(2)
is equal to
—> 1.y’ +y—z=0
2.y +y+ao=4
3.y —y—x=-2
4. ¥ +y+2r==6
5.9 —y—2x=—4
2. Consider the differential equation
, y—1 1
+ =
T T3 o1y

Given that its general solution is:
3 1
In|l—(y—1)° :1n|;|+C’

Then: (choose the true statement)
=% 1. the singular solution is y = 2 only.
2. the singular solution is y = —1 only.
3. the singular solutions are y = 1 and y = —1.
4. there is no singular solutions.
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5. the singular solution is y = 3
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3. In a certain culture of bacteria, the number of bacteria was initially 1000. After
two hours, the population became 1500. Assuming that the population of bacteria
grows at a rate proportional to the number of bacteria presented at time t, then the
time t when the bacteria population will be 2250 equals to

(calculational tip: (15)% = 225)
—3> 1. 4 hours.

2. 3.5 hours.

3. 3 hours.

4. 4.25 hours.

5. 2.5 hours.

4. Let A and B be two constants in the differential equation
[Azy + (A + B)ysin 2z]dr + [2* + Bcos® z]dy = 0.
Then the values of A and B that make the differential equation exact are

—> 1. A=2 B=-1.

2. A=1,B=1.

3.A=-1,B=—1.

4. A=1, B=-2.

5. A=1, B= 3L
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5. Let ¢; and ¢y be arbitrary constants. Verify that y = ciz +corlnz
is a solution of the differential equation
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6. Solve the differential equation:

zy' — 2y = 23e”,
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7. Find the one-parameter family of solutions of the following
differential equation:

d
ysecxgg:xyz_x_l+y2

oty
\9 (‘Q s )C ”'""T"“""‘ Py
o A

e(9r-1) (y*-)

s D EY

‘ec X
o 7 et AR'S
[~ {1 X o (B 4
= e = i)l

= [(x1)smX +ConX t |

’}; i
=) }‘i}’“ \‘“) -1\ LR

(en x
Finx

— oS X



Math 208-211, Exam I

8. Solve the exact differential equation:
(2zy + y — tany) dxr + (31:2 — z tan® y + sec? y) dy = 0.

(Do NOT verify that the differential equation is exact.)
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