King Fahd University of Petroleum and Minerals
Department of Mathematics and Statistics

MATH 208 - FINAL EXAM - Term 211
Duration: 150 minutes

MASTER|
Name: ID Number:
Section Number: Serial Number:

Instructions:

1. All types of calculators, or mobile phones are NOT allowed during the exam.
2. Use HB 2.5 pencils only.

3. Use a good eraser. DO NOT use erasers attached to the pencil.

4. The Test Code Number is already bubbled in your OMR sheet.

5. Make sure that all bubbled space on the OMR sheet is fully covered.

6. While erasing a bubbled space, make sure that you do not leave any trace of
penciling.

7. There are 15 questions, The weight of each question is 7 marks. The
full mark is 105.
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1. The eigenvalues of the matrix A = are \; = 0,

s R SN
— = =
— O O

)\2 = 1, and )\3 = 2.
If the general solution of the system X' = AX is

—1 0
X=c | 1]|+ece|0|+c Xs,
—1 1
then X3 is
(a) e
h
(b) e* | -1
- 1 -
e
(c) e? | —1
—_1—
0
(d) e* |1
_O_
"
(e) e* |0
_1_




2/Math 208-211, FINAL EXAM - MASTER

2. The solution of the initial value problem

; _12] X, X(0)= [
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1 =10
3. The inverse of the matrix A = |—1 2 0] is
2 1 1

) A7l = A% —4A + 41
)AL =A% —4A+ 1T
)AL =A% —3A+1

JA = —A2+4A -]

) A= — A%+ 4A% —4A+ T
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4. The Jordan normal form of the matrix

301
A=10 31
003

1S

300
(a) J= [0 3 1
00 3
(3 1 0]
(b) J=10 3 1
00 3
(3 0 0]
() J= 1030
00 3
(3 0 0]
(d) J=|131
00 3
3 0 1]
(e) J=10 3
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5. Consider the system of two differential equations:

2 =2x —vy
y' =1 -2y

where x and y are two functions in ¢. Transforming this system
into an equivalent system of first-order differential equations, we
introduce the new functions: x1 = z, 29 = 2/, and x5 = v.

x
If X = |x9], then the given system is equivalent to
I3
01 0]
(a) X'=120 —-1| X
01 —2]
01 1]
h) X' =120 1|X
11 —2]
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6. Consider the initial value problem

X' = E _11] X, X(0)= [_11] .
3 —1

1 1
A = 2, and its defect is 1, the solution of the initial value problem

Knowing that the matrix A = [ has only one eigenvalue

1S:
(2t + 1
ot
(a) X =e _2t—1]
4+ 1]
ot
(b) X =e 1)
(c) X = e 1It
3t + 1
Y
(d) X =e _t—l]
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1 23
7. Let A= {0 1 2| and consider the system X' = AX +
001
0 el 2te! (3t + 2t%)e!
1{. Given that et = |0 ¢! 2te , the variation of
0 0 0 e
parameters formula gives that a particular solution of the
system 1s
[ 2
(a) X, = [—1
| 0
4t + 1
(b) X, = | —t
1
[0
(c) X, = |1
0
2t
(d) X, =11
| 0
ote
(e) X, = | €
| 0
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8. Let A be a 2 X 2 matrix, having two eigenvalues:

1
A1 = 1 with associated eigenvector v; = [_1]

1
Ay = —1 with associated eigenvector v; = [_2]

The exponential matrix e’ i

¢l — et el — et ]

| —2¢' +2e7! —e! + 2e7!

S

el —et el —2e7!
_—et + 27t —el + 47t

O il
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9. Let A=

o O
o = O

1
0|, a diagonalizable matrix.
2

Then, a diagonal matrix D and an invertible matrix P such
that P"'AP = D (equivalently AP = PD) are:

100 10 1
@)D= 010[,P=1]010
00 2 00 1]
10 0] 10 1]
b)D=|010{,P=]010
00 2 100
10 0] 10 0]
(©)D=1[010],P=|010
00 2 00 1)
10 0 100
D=1f01 0|, P={010
00 —1 00 2
100 010
e)D=1]010]|,P=|101
00 2 110
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10. The general solution of the differential equation

Y@ =3y + 4y + 5y =0

a) y = cre " + e**(cycosx + cysin x
(
(

)
b) y = cre™™ + e"(co cos(2x) + c38in(2x))
)

) Y

) Y
(¢) y = c1e®® + e %(cycos T + c3sinw
(d) y = c1€>® + €2*(cy cos(2x) + c38in(2z))
)y

(e) y = cre® + e**(cy cos(2z) + c38in(2x))
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2
11. The vector w = | 1] is a linear combination of the vectors
0

N — O

1 0
v = |2 y U2 = 1 U3 =
1 1

If w = cjv1 + c3v9 + c3v3, then ¢ 4+ o + ¢3 is equal to

-1
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12. Let k£ be a constant, and consider the system:

X -y = 4

2x + 3y + 9z = 3

X -y + kz =0
The system has a unique solution when
(a) k is any number except 2.
(b) k
(¢) k is only 0.
(d) k is only 3.
)

(e) k is any real number except -10.
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100
13. The inverse of the matrix A = [2 1 0] is
321
1 0 0
(a) | -2 1
|1 -2 1
1 00
(b) [-2 10
-3 01
(1 —2 1]
(¢) [0 1 =2
0 0 1
1 =2 =3
(d) [0 1 0
0 0 1]
- 1 0
(e) |—2 1 0
| 3 -2 1
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14. Let y be the solution of the initial value problem:
dy — (y+ze*)dz =0, y(0)=1.

Then, ye™ equals
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15. Let F'(x,y) = 5 be the solution of the initial value prob-

lem: o 43 i
T
?J+ Y

3r+2y dx
y(1) =1

=0

Then, F(—1,1) equals
(a) —
(b) 0.
(c) 5.
(d) 4.

)

=~ ot O

d

(e) —b.



