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Instructions:

1. All types of calculators, or mobile phones are NOT allowed during the exam.

2. Use HB 2.5 pencils only.

3. Use a good eraser. DO NOT use erasers attached to the pencil.

4. The Test Code Number is already bubbled in your OMR sheet.

5. Make sure that all bubbled space on the OMR sheet is fully covered.

6. While erasing a bubbled space, make sure that you do not leave any trace of
penciling.

7. There are 15 questions, The weight of each question is 7 marks. The
full mark is 105.
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1. The eigenvalues of the matrix A =

1 1 0

1 1 0

0 1 1

 are λ1 = 0,

λ2 = 1, and λ3 = 2.

If the general solution of the system X ′ = AX is

X = c1

−1

1

−1

 + c2 e
t

00
1

 + c3 X3,

then X3 is

(a) e2t

11
1



(b) e2t

 1

−1

1



(c) e2t

 1

−1

−1



(d) e2t

01
0



(e) e2t

10
1
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2. The solution of the initial value problem

X ′ =

[
1 −2

2 1

]
X, X(0) =

[
1

1

]
is

(a) X = et
[
cos(2t)− sin(2t)

cos(2t) + sin(2t)

]
(b) X = et

[
cos(2t) + sin(2t)

cos(2t) + sin(2t)

]
(c) X = e−t

[
sin(2t)− cos(2t)

sin(2t) + sin(2t)

]
(d) X = e−t

[
cos(2t)− sin(2t)

cos(2t) + sin(2t)

]
(e) X = et

[
2 cos(2t)− sin(2t)

cos(2t) + 2 sin(2t)

]
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3. The inverse of the matrix A =

 1 −1 0

−1 2 0

2 1 1

 is

(a) A−1 = A2 − 4A + 4I

(b) A−1 = A2 − 4A + I

(c) A−1 = A2 − 3A + I

(d) A−1 = −A2 + 4A− I

(e) A−1 = −A3 + 4A2 − 4A + I
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4. The Jordan normal form of the matrix

A =

3 0 1

0 3 1

0 0 3


is

(a) J =

3 0 0

0 3 1

0 0 3



(b) J =

3 1 0

0 3 1

0 0 3



(c) J =

3 0 0

0 3 0

0 0 3



(d) J =

3 0 0

1 3 1

0 0 3



(e) J =

3 0 1

0 3 1

0 0 3
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5. Consider the system of two differential equations:

x′′ = 2x− y

y′ = x′ − 2y

where x and y are two functions in t. Transforming this system

into an equivalent system of first-order differential equations, we

introduce the new functions: x1 = x, x2 = x′, and x3 = y.

If X =

x1x2
x3

, then the given system is equivalent to

(a) X ′ =

0 1 0

2 0 −1

0 1 −2

X

(b) X ′ =

0 1 1

2 0 1

1 1 −2

X

(c) X ′ =

2 −1 0

1 0 −2

0 0 0

X

(d) X ′ =

2 0 −1

0 1 −2

0 0 0

X

(e) X ′ =

0 0 0

2 0 −1

0 1 −2

X
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6. Consider the initial value problem

X ′ =

[
3 −1

1 1

]
X, X(0) =

[
1

−1

]
.

Knowing that the matrix A =

[
3 −1

1 1

]
has only one eigenvalue

λ = 2, and its defect is 1, the solution of the initial value problem

is:

(a) X = e2t
[
2t + 1

2t− 1

]
(b) X = e2t

[
t + 1

t− 1

]
(c) X = e2t

[
1− t

1

]
(d) X = e2t

[
3t + 1

t− 1

]
(e) X =

[
1

−1

]
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7. Let A =

1 2 3

0 1 2

0 0 1

 and consider the system X ′ = AX +

01
0

. Given that eAt =

et 2tet (3t + 2t2)et

0 et 2tet

0 0 et

, the variation of

parameters formula gives that a particular solution of the

system is

(a) Xp =

 2

−1

0



(b) Xp =

4t + 1

−t

1



(c) Xp =

01
0



(d) Xp =

2t1
0



(e) Xp =

2tetet

0
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8. Let A be a 2× 2 matrix, having two eigenvalues:

λ1 = 1 with associated eigenvector v1 =

[
1

−1

]
λ2 = −1 with associated eigenvector v1 =

[
1

−2

]
The exponential matrix eAt is

(a)

[
2et − e−t et − e−t

−2et + 2e−t −et + 2e−t

]
(b)

[
et − e−t et − 2e−t

−et + 2e−t −et + 4e−t

]
(c)

[
0 −e−t

et 3e−t

]
(d)

[
et 0

0 e−t

]
(e)

[
et e−t

−et −2e−t

]
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9. Let A =

1 0 1

0 1 0

0 0 2

, a diagonalizable matrix.

Then, a diagonal matrix D and an invertible matrix P such

that P−1AP = D (equivalently AP = PD) are:

(a) D =

1 0 0

0 1 0

0 0 2

, P =

1 0 1

0 1 0

0 0 1



(b) D =

1 0 0

0 1 0

0 0 2

, P =

1 0 1

0 1 0

1 0 0



(c) D =

1 0 0

0 1 0

0 0 2

, P =

1 0 0

0 1 0

0 0 1



(d) D =

1 0 0

0 1 0

0 0 −1

, P =

1 0 0

0 1 0

0 0 2



(e) D =

1 0 0

0 1 0

0 0 2

, P =

0 1 0

1 0 1

1 1 0
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10. The general solution of the differential equation

y(3) − 3y′′ + y′ + 5y = 0

is

(a) y = c1e
−x + e2x(c2 cosx + c3 sinx)

(b) y = c1e
−x + ex(c2 cos(2x) + c3 sin(2x))

(c) y = c1e
5x + e−x(c2 cosx + c3 sinx)

(d) y = c1e
5x + e2x(c2 cos(2x) + c3 sin(2x))

(e) y = c1e
x + e4x(c2 cos(2x) + c3 sin(2x))
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11. The vectorw =

21
0

 is a linear combination of the vectors

v1 =

12
1

 , v2 =

01
1

 , v3 =

01
2

 .

If w = c1v1 + c3v2 + c3v3, then c1 + c2 + c3 is equal to

(a) -1

(b) 2

(c) -4

(d) 0

(e) 3
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12. Let k be a constant, and consider the system:

x - y = 4

2x + 3y + 5z = 3

3x - y + kz = 0

The system has a unique solution when

(a) k is any number except 2.

(b) k = 2.

(c) k is only 0.

(d) k is only 3.

(e) k is any real number except -10.
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13. The inverse of the matrix A =

1 0 0

2 1 0

3 2 1

 is

(a)

 1 0 0

−2 1 0

1 −2 1



(b)

 1 0 0

−2 1 0

−3 0 1



(c)

1 −2 1

0 1 −2

0 0 1



(d)

1 −2 −3

0 1 0

0 0 1



(e)

 1 0 0

−2 1 0

3 −2 1
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14. Let y be the solution of the initial value problem:

dy − (y + xex)dx = 0, y(0) = 1.

Then, ye−x equals

(a) 1 + 1
2x

2

(b) 1 + 1
3x

2

(c) 1 + 1
4x

2

(d) 1 + 1
5x

2

(e) 1 + 1
6x

2
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15. Let F (x, y) = 5 be the solution of the initial value prob-

lem:
2x + 3y

3x + 2y
+

dy

dx
= 0

y(1) = 1

Then, F (−1, 1) equals

(a) −1.

(b) 0.

(c) 5.

(d) 4.

(e) −5.


