King Fahd University of Petroleum and Minerals Department of Mathematics

> Math 208 Final Exam 221 December 24, 2022

EXAM COVER

Number of versions: 4 Number of questions: 20

King Fahd University of Petroleum and Minerals Department of Mathematics Math 208 Final Exam 221 December 24, 2022 Net Time Allowed: 180 Minutes

MASTER VERSION

1. If $y(x)$ is the solution of the initial value problem

$$
\frac{dy}{dx} = \frac{2x+1}{2y}, y(-2) = -1, \text{ then } y(2) =
$$

(a)
$$
-\sqrt{5}
$$

\n(b) $\sqrt{5}$
\n(c) $-\sqrt{3}$
\n(d) $\sqrt{3}$
\n(e) 0

2. The general solution of the differential equation

$$
x\frac{dy}{dx} - 3y = x^3
$$

is

(a)
$$
y = x^3 \ln x + cx^3
$$
 (b) $y = x^2 \ln x + cx^2$
\n(c) $y = x^3 \ln x + cx^2$
\n(d) $y = x^3 \ln x + cx$
\n(e) $y = x^2 \ln x + cx^3$

3. The general solution of the exact differential equation

$$
(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0
$$

is

(a)
$$
x^3 + 2xy^2 + 2y^3 = c
$$
 (correct)
\n(b) $x^3 - 2xy^2 + 2y^3 = c$
\n(c) $x^3 - 2xy^2 - 2y^3 = c$
\n(d) $x^3 - 2x^2y - 2y^3 = c$
\n(e) $x^3 - 2x^2y + 2y^3 = c$

4. If $(x, y, z) = (a, b, c)$ is the solution of the system

$$
\begin{cases}\n2x + 8y + 3z = 2 \\
x + 3y + 2z = 5 \\
2x + 7y + 4z = 8\n\end{cases}
$$

then $a + b + c =$

$$
\begin{array}{c}\n\text{(a) 5} \\
\text{(b) 6}\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{(correct)} \\
\text{(b) 6}\n\end{array}
$$

- (c) 7
- (d) 3
- (e) 0
- (a) $\{(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)\}\$ (correct)
- (b) $\{(1, 1, 0, 0), (1, 0, 1, 0)\}\$
- (c) $\{(1, 0, 1, 0), (1, 0, 0, 1)\}\$
- (d) $\{(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 1, 1)\}$
- (e) $\{(1, 1, 0, 0), (1, 0, 1, 0), (2, 0, 1, 2)\}$

6. If $y(x)$ is the solution of the initial-value problem

$$
y'' + 4y = 2x; y(0) = 1, y'(0) = 2
$$

then $y(\pi) =$

(a)
$$
1 + \frac{\pi}{2}
$$
 (correct)
\n(b) $1 - \frac{\pi}{2}$
\n(c) $1 + \frac{\pi}{4}$
\n(d) $1 - \frac{\pi}{4}$
\n(e) $1 + \frac{\pi}{3}$

7. By using the method of variation of parameters, a particular solution y_p of the differential equation

$$
y'' - 9y = \frac{9x}{e^{3x}}
$$

is

(a)
$$
y_p = -\frac{3}{4}x^2e^{-3x} - \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}
$$

\n(b) $y_p = \frac{1}{4}x^3e^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
\n(c) $y_p = \frac{3}{4}x^2e^{-3x} + \frac{1}{2}xe^{-3x} - \frac{1}{24}e^{-3x}$
\n(d) $y_p = -\frac{3}{4}xe^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
\n(e) $y_p = \frac{1}{2}x^2e^{-3x} + \frac{1}{4}x^3e^{-3x} - \frac{1}{24}e^{-3x}$

8. Let
$$
A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix}
$$
. Using Cayley-Hamilton Theorem,
\n
$$
A^4 = aA^3 + bA^2 + cA.
$$
\n
$$
a + b + c =
$$

(a)
$$
1
$$
 (correct)

\n(b) 0

\n(c) 2

- (d) 3
- (e) 4

9. The general solution of the first order homogeneous system $X' =$ $\sqrt{ }$ $\overline{}$ 1 2 1 6 −1 0 -1 -2 -1 1 $\vert X \vert$

is given by

$$
X = c_1 \begin{bmatrix} a \\ b \\ -2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} \alpha \\ \beta \\ 1 \end{bmatrix} e^{\lambda t} + c_3 \begin{bmatrix} e \\ f \\ 13 \end{bmatrix}
$$

then $a \cdot b \cdot \lambda =$

(a)
$$
-24
$$
 (correct)
\n(b) 12
\n(c) 24
\n(d) -12
\n(e) 0

11. Let
$$
A = \begin{bmatrix} 9 & -8 \\ 6 & -5 \end{bmatrix}
$$
. A diagonalization matrix *P*, such that $P^{-1}AP$ is diagonal is

(a)
$$
P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}
$$
 (correct)
\n(b) $P = \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$
\n(c) $P = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$
\n(d) $P = \begin{bmatrix} 1 & -2 \\ 2 & 5 \end{bmatrix}$
\n(e) $P = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$

12. The differential equation

 $t^3x''' - 2t^2x'' + 3tx' + 5x = \ln t$

is equivalent to the system of first-order equations.

(a)
$$
x'_1 = x_2
$$
, $x'_2 = x_3$, $t^3 x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$ (correct)
\n(b) $x'_1 = x_2$, $x'_2 = x_3$, $x'_3 = -5x_1 - 3tx_2 - 2x_3 + \ln t$
\n(c) $x'_1 = x_1$, $x'_2 = x_2$, $x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$
\n(d) $x'_1 = x_2$, $x'_2 = x_3$, $x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 - \ln t$
\n(e) $x'_1 = x'_2$, $x'_2 = x_1$, $t^3 x'_3 = 5x_1 + 3tx_2 + 2t^2x_3 + \ln t$

13. If $X = c_1$ $\begin{bmatrix} 5 \end{bmatrix}$ −6 1 $e^{3t} + c_2$ $\begin{bmatrix} 1 \end{bmatrix}$ −1 1 e^{4t} is the solution of the initial value problem $X'=\left[\begin{array}{cc} 9 & 5 \ 6 & 1 \end{array}\right]$ -6 -2 $X, X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 1 then $c_2^2 - c_1^2 =$

(e) 32

14. The solution of
$$
X' = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} X
$$
, $X(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ at $t = \frac{\pi}{4}$ equals

(a)
$$
\begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{\frac{\pi}{4}}
$$
 (correct)
\n(b) $\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$
\n(c) $\begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{\frac{\pi}{4}}$
\n(d) $\begin{pmatrix} -2 \\ 0 \end{pmatrix} e^{\frac{\pi}{4}}$
\n(e) $\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-\frac{\pi}{4}}$

15. Let

$$
A = \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}
$$

If $e^{At} = \begin{bmatrix} 1 & f(t) & h(t) \\ 0 & 1 & 3t \\ 0 & 0 & 1 \end{bmatrix}$, then $f(2) + h(2) =$ (correct)
(a) 32 (c) 38
(d) 30
(e) 28
(d) 26
(e) 24

16. A possible fundamental matrix for the system $X' =$ $\begin{bmatrix} 4 & 2 \end{bmatrix}$ 3 −1 1 X is

(a)
$$
\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ -3e^{-2t} & e^{5t} \end{bmatrix}
$$

\n(b) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ 0 & e^{5t} \end{bmatrix}$
\n(c) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ e^{-2t} & 2e^{5t} \end{bmatrix}$
\n(d) $\Phi(t) = \begin{bmatrix} 3e^{-2t} & 0 \\ 5e^{-2t} & e^{5t} \end{bmatrix}$
\n(e) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ -3e^{-2t} & 0 \end{bmatrix}$

17. Using variation of parameters to find a particular solution X_p of the nonhomogeneous system $X' = AX +$ $\begin{pmatrix} 1 \end{pmatrix}$ −1 \setminus e^t where $X_c = c_1$ $\sqrt{2}$ 1 \setminus $e^t + c_2$ $\left(1\right)$ 1 \setminus e^{2t} form a general solution of the associated homogeneous system, then $X_p(1) =$

18. The general solution of the differential equation

$$
y''' + 3y'' - 4y = 0
$$

is

(a)
$$
y(x) = c_1e^x + c_2e^{-2x} + c_3xe^{-2x}
$$

\n(b) $y(x) = c_1e^{-x} + c_2e^{-2x} + c_3xe^{-2x}$
\n(c) $y(x) = c_1e^x + c_2e^{-2x} + c_3e^{3x}$
\n(d) $y(x) = c_1e^x + c_2e^{-2x} + c_3e^{4x}$
\n(e) $y(x) = c_1e^{-x} + c_2e^{3x} + c_3xe^{3x}$

19. The characteristic equation of a matrix A is $(\lambda + 1)(\lambda - 5)^3 = 0$, where we have only two linearly independent eigenvectors corresponding to $\lambda = 5$. The Jordan normal form of A is

20. The matrix $A =$ $\sqrt{ }$ $\overline{}$ −1 0 1 $0 -1 1$ 1 −1 −1 1 has only one eigenvalue $\lambda = -1$ which is defective of defect 2. If we choose $v_3 =$ $\sqrt{ }$ $\overline{}$ 1 $\overline{0}$ 0 1 such that $(A + I)^3 v_3 = 0$, and $(A + I)^2 v_3 \neq 0$, then the general solution of $X' = AX$ is

(a)
$$
X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \\ t \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1 \\ \frac{t^2}{2} \\ t \end{bmatrix} \end{pmatrix} e^{-t}
$$

\n(b) $X = \begin{pmatrix} c_1 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ t \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} \\ \frac{t^2}{2} \\ t \end{bmatrix} e^{-t}$
\n(c) $X = \begin{pmatrix} c_1 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ t \\ t \end{bmatrix} + c_3 \begin{bmatrix} 1 + \frac{t^2}{2} \\ \frac{t^2}{2} \\ t \end{bmatrix} e^{-t}$
\n(d) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \\ -t \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1 \\ t^2 \\ t \end{bmatrix} e^{-t}$
\n(e) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \\ t \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 - \frac{t^2}{2} \\ \frac{t^2}{2} \\ t \end{bmatrix} e^{-t}$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01 CODE01

Math 208 Final Exam 221 December 24, 2022 Net Time Allowed: 180 Minutes

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The differential equation

 $t^3x''' - 2t^2x'' + 3tx' + 5x = \ln t$

is equivalent to the system of first-order equations.

(a)
$$
x'_1 = x_2
$$
, $x'_2 = x_3$, $x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 - \ln t$
\n(b) $x'_1 = x'_2$, $x'_2 = x_1$, $t^3 x'_3 = 5x_1 + 3tx_2 + 2t^2x_3 + \ln t$
\n(c) $x'_1 = x_1$, $x'_2 = x_2$, $x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$
\n(d) $x'_1 = x_2$, $x'_2 = x_3$, $x'_3 = -5x_1 - 3tx_2 - 2x_3 + \ln t$
\n(e) $x'_1 = x_2$, $x'_2 = x_3$, $t^3 x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$

2. The solution of $X' =$ $\begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} X$, $X(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 2 \setminus at $t =$ π 4 equals

(a)
$$
\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{\frac{\pi}{4}}
$$

\n(b) $\begin{pmatrix} -2 \\ 0 \end{pmatrix} e^{\frac{\pi}{4}}$
\n(c) $\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-\frac{\pi}{4}}$
\n(d) $\begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$
\n(e) $\begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{\frac{\pi}{4}}$

3. Let
$$
A = \begin{bmatrix} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}
$$
. An eigenvector corresponding to the eigenvalue $\lambda = 2$ of A is

(a)
$$
\begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}
$$

\n(b)
$$
\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}
$$

\n(c)
$$
\begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}
$$

\n(d)
$$
\begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}
$$

\n(e)
$$
\begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}
$$

4. By using the method of variation of parameters, a particular solution y_p of the differential equation

$$
y'' - 9y = \frac{9x}{e^{3x}}
$$

is

(a)
$$
y_p = \frac{1}{4}x^3e^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}
$$

\n(b) $y_p = -\frac{3}{4}xe^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
\n(c) $y_p = -\frac{3}{4}x^2e^{-3x} - \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
\n(d) $y_p = \frac{1}{2}x^2e^{-3x} + \frac{1}{4}x^3e^{-3x} - \frac{1}{24}e^{-3x}$
\n(e) $y_p = \frac{3}{4}x^2e^{-3x} + \frac{1}{2}xe^{-3x} - \frac{1}{24}e^{-3x}$

221, Math 208, Final Exam Page 3 of 11 CODE01

5. Let
$$
A = \begin{bmatrix} 9 & -8 \\ 6 & -5 \end{bmatrix}
$$
. A diagonalization matrix *P*, such that $P^{-1}AP$ is diagonal is

(a)
$$
P = \begin{bmatrix} 1 & -2 \\ 2 & 5 \end{bmatrix}
$$

\n(b) $P = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$
\n(c) $P = \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$
\n(d) $P = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$
\n(e) $P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$

6. The general solution of the differential equation

$$
y''' + 3y'' - 4y = 0
$$

is

(a)
$$
y(x) = c_1e^{-x} + c_2e^{3x} + c_3xe^{3x}
$$

\n(b) $y(x) = c_1e^{-x} + c_2e^{-2x} + c_3xe^{-2x}$
\n(c) $y(x) = c_1e^{x} + c_2e^{-2x} + c_3e^{3x}$
\n(d) $y(x) = c_1e^{x} + c_2e^{-2x} + c_3e^{4x}$
\n(e) $y(x) = c_1e^{x} + c_2e^{-2x} + c_3xe^{-2x}$

- 7. Let S be a subspace of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis for the subspace is
	- (a) $\{(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 1, 1)\}\$
	- (b) $\{(1, 1, 0, 0), (1, 0, 1, 0), (2, 0, 1, 2)\}$
	- (c) $\{(1, 1, 0, 0), (1, 0, 1, 0)\}\$
	- (d) $\{(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)\}\$
	- (e) $\{(1, 0, 1, 0), (1, 0, 0, 1)\}$

8. If $y(x)$ is the solution of the initial-value problem

 $y'' + 4y = 2x$; $y(0) = 1$, $y'(0) = 2$ then $y(\pi) =$ π

 $(a) 1 -$ 4 (b) $1 +$ π 4 $(c) 1 +$ π 3 (d) 1π 2 (e) 1 + π 2

9. If $(x, y, z) = (a, b, c)$ is the solution of the system

$$
\begin{cases}\n2x + 8y + 3z = 2 \\
x + 3y + 2z = 5 \\
2x + 7y + 4z = 8\n\end{cases}
$$

then $a + b + c =$

- (a) 3
- (b) 5
- (c) 0
- (d) 7
- (e) 6

10. The general solution of the exact differential equation

$$
(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0
$$

is

(a)
$$
x^3 + 2xy^2 + 2y^3 = c
$$

\n(b) $x^3 - 2xy^2 - 2y^3 = c$
\n(c) $x^3 - 2x^2y + 2y^3 = c$
\n(d) $x^3 - 2x^2y - 2y^3 = c$
\n(e) $x^3 - 2xy^2 + 2y^3 = c$

11. If $X = c_1$ $\begin{bmatrix} 5 \end{bmatrix}$ −6 1 $e^{3t} + c_2$ $\begin{bmatrix} 1 \end{bmatrix}$ −1 1 e^{4t} is the solution of the initial value problem $X'=\left[\begin{array}{cc} 9 & 5 \ 6 & 1 \end{array}\right]$ -6 -2 $X, X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 1 then $c_2^2 - c_1^2 =$

- (a) 32
- (b) 36
- (c) 34
- (d) 37
- (e) 35

12. Let

$$
A = \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}
$$

If $e^{At} = \begin{bmatrix} 1 & f(t) & h(t) \\ 0 & 1 & 3t \\ 0 & 0 & 1 \end{bmatrix}$, then $f(2) + h(2) =$

- (a) 26
- (b) 32
- (c) 28
- (d) 30
- (e) 24

13. If $y(x)$ is the solution of the initial value problem

$$
\frac{dy}{dx} = \frac{2x+1}{2y}, y(-2) = -1, \text{ then } y(2) =
$$

(a)
$$
\sqrt{3}
$$

\n(b) $-\sqrt{5}$
\n(c) 0
\n(d) $-\sqrt{3}$
\n(e) $\sqrt{5}$

14. Let
$$
A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix}
$$
. Using Cayley-Hamilton Theorem,
\n
$$
A^4 = aA^3 + bA^2 + cA.
$$
\n
$$
a + b + c =
$$

(a) 1

(b) 3

(c) 0

(d) 4

(e) 2

15. A possible fundamental matrix for the system $X' =$ $\begin{bmatrix} 4 & 2 \end{bmatrix}$ 3 −1 1 X is

(a)
$$
\Phi(t) = \begin{bmatrix} 3e^{-2t} & 0 \\ 5e^{-2t} & e^{5t} \end{bmatrix}
$$

\n(b) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ -3e^{-2t} & e^{5t} \end{bmatrix}$
\n(c) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ 0 & e^{5t} \end{bmatrix}$
\n(d) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ e^{-2t} & 2e^{5t} \end{bmatrix}$
\n(e) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ -3e^{-2t} & 0 \end{bmatrix}$

16. The general solution of the differential equation

$$
x\frac{dy}{dx} - 3y = x^3
$$

is

(a)
$$
y = x^2 \ln x + cx^2
$$

\n(b) $y = x^2 \ln x + cx^3$
\n(c) $y = x^3 \ln x + cx^3$
\n(d) $y = x^3 \ln x + cx$
\n(e) $y = x^3 \ln x + cx^2$

17. Using variation of parameters to find a particular solution X_p of the nonhomogeneous system $X' = AX +$ $\begin{pmatrix} 1 \end{pmatrix}$ −1 \setminus e^t where $X_c = c_1$ $\sqrt{2}$ 1 \setminus $e^t + c_2$ $\left(1\right)$ 1 \setminus e^{2t} form a general solution of the associated homogeneous system, then $X_p(1) =$

(a)
$$
\begin{bmatrix} 0 \\ 3e \end{bmatrix}
$$

\n(b) $\begin{bmatrix} 7e \\ 5e \end{bmatrix}$
\n(c) $\begin{bmatrix} 7e \\ e \end{bmatrix}$
\n(d) $\begin{bmatrix} 3e \\ 2e \end{bmatrix}$
\n(e) $\begin{bmatrix} e \\ 5e \end{bmatrix}$

18. The general solution of the first order homogeneous system $X' =$ $\sqrt{ }$ $\overline{}$ 1 2 1 6 −1 0 -1 -2 -1 1 $\vert X$ is given by

$$
X = c_1 \begin{bmatrix} a \\ b \\ -2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} \alpha \\ \beta \\ 1 \end{bmatrix} e^{\lambda t} + c_3 \begin{bmatrix} e \\ f \\ 13 \end{bmatrix}
$$

then $a \cdot b \cdot \lambda =$

- $(a) -24$
- (b) 12
- (c) 0
- $(d) -12$
- (e) 24

19. The matrix $A =$ $\sqrt{ }$ $\overline{}$ −1 0 1 $0 -1 1$ 1 −1 −1 1 has only one eigenvalue $\lambda = -1$ which is defective of defect 2. If we choose $v_3 =$ $\sqrt{ }$ $\overline{}$ 1 $\overline{0}$ 0 1 such that $(A + I)^3 v_3 = 0$, and $(A + I)^2 v_3 \neq 0$, then the general solution of $X' = AX$ is

(a)
$$
X = \begin{pmatrix} c_1 \begin{bmatrix} 0 \ 1 \ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 + \frac{t^2}{2} \ \frac{t^2}{2} \ t \end{bmatrix} \right) e^{-t}
$$

\n(b) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 - \frac{t^2}{2} \ \frac{t^2}{2} \ t \end{bmatrix} \right) e^{-t}$
\n(c) $X = \begin{pmatrix} c_1 \begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} \ \frac{t^2}{2} \ t \end{bmatrix} e^{-t}$
\n(d) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \ -t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1 \ t^2 \ t \end{bmatrix} e^{-t}$
\n(e) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1 \ \frac{t^2}{2} \ t \end{bmatrix} e^{-t}$

221, Math 208, Final Exam Page 11 of 11 CODE01

20. The characteristic equation of a matrix A is $(\lambda + 1)(\lambda - 5)^3 = 0$, where we have only two linearly independent eigenvectors corresponding to $\lambda = 5$. The Jordan normal form of A is

(a)
$$
\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}
$$

\n(b)
$$
\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}
$$

\n(c)
$$
\begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}
$$

\n(d)
$$
\begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}
$$

\n(e)
$$
\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}
$$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02 \vert CODE02

Math 208 Final Exam 221 December 24, 2022 Net Time Allowed: 180 Minutes

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Let
$$
A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix}
$$
. Using Cayley-Hamilton Theorem,
\n
$$
A^4 = aA^3 + bA^2 + cA.
$$
\n
$$
a + b + c =
$$

- (a) 4
- (b) 3
- (c) 1
- (d) 0
- (e) 2

2. The solution of $X' =$ $\begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} X$, $X(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 2 \setminus at $t =$ π 4 equals

(a)
$$
\begin{pmatrix} -2 \\ 0 \end{pmatrix} e^{\frac{\pi}{4}}
$$

\n(b) $\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-\frac{\pi}{4}}$
\n(c) $\begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{\frac{\pi}{4}}$
\n(d) $\begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$
\n(e) $\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$

3. By using the method of variation of parameters, a particular solution y_p of the differential equation

$$
y'' - 9y = \frac{9x}{e^{3x}}
$$

is

(a)
$$
y_p = \frac{3}{4}x^2e^{-3x} + \frac{1}{2}xe^{-3x} - \frac{1}{24}e^{-3x}
$$

\n(b) $y_p = -\frac{3}{4}xe^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
\n(c) $y_p = -\frac{3}{4}x^2e^{-3x} - \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
\n(d) $y_p = \frac{1}{2}x^2e^{-3x} + \frac{1}{4}x^3e^{-3x} - \frac{1}{24}e^{-3x}$
\n(e) $y_p = \frac{1}{4}x^3e^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$

4. The differential equation

$$
t^3x''' - 2t^2x'' + 3tx' + 5x = \ln t
$$

is equivalent to the system of first-order equations.

(a)
$$
x'_1 = x_1
$$
, $x'_2 = x_2$, $x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$
\n(b) $x'_1 = x'_2$, $x'_2 = x_1$, $t^3 x'_3 = 5x_1 + 3tx_2 + 2t^2x_3 + \ln t$
\n(c) $x'_1 = x_2$, $x'_2 = x_3$, $t^3 x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$
\n(d) $x'_1 = x_2$, $x'_2 = x_3$, $x'_3 = -5x_1 - 3tx_2 - 2x_3 + \ln t$
\n(e) $x'_1 = x_2$, $x'_2 = x_3$, $x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 - \ln t$

5. A possible fundamental matrix for the system $X' =$ $\begin{bmatrix} 4 & 2 \end{bmatrix}$ 3 −1 1 X is

(a)
$$
\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ -3e^{-2t} & e^{5t} \end{bmatrix}
$$

\n(b) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ 0 & e^{5t} \end{bmatrix}$
\n(c) $\Phi(t) = \begin{bmatrix} 3e^{-2t} & 0 \\ 5e^{-2t} & e^{5t} \end{bmatrix}$
\n(d) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ e^{-2t} & 2e^{5t} \end{bmatrix}$
\n(e) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ -3e^{-2t} & 0 \end{bmatrix}$

6. Let

$$
A = \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}
$$

If $e^{At} = \begin{bmatrix} 1 & f(t) & h(t) \\ 0 & 1 & 3t \\ 0 & 0 & 1 \end{bmatrix}$, then $f(2) + h(2) =$

- (a) 32
- (b) 28
- (c) 30
- (d) 24
- (e) 26

221, Math 208, Final Exam Page 4 of 11 \qquad CODE02

7. Let
$$
A = \begin{bmatrix} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}
$$
. An eigenvector corresponding to the eigenvalue $\lambda = 2$ of A is

(a)
$$
\begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}
$$

\n(b)
$$
\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}
$$

\n(c)
$$
\begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}
$$

\n(d)
$$
\begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}
$$

\n(e)
$$
\begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}
$$

8. The general solution of the first order homogeneous system $X' =$ $\sqrt{ }$ $\overline{}$ 1 2 1 6 −1 0 -1 -2 -1 1 $\vert X \vert$ is given by

 $X = c_1$ $\sqrt{ }$ $\overline{}$ α b −2 1 $e^{3t} + c_2$ $\sqrt{ }$ $\overline{}$ α β 1 1 $\int e^{\lambda t} + c_3$ $\sqrt{ }$ \perp e f 13 1 $\overline{1}$

then $a \cdot b \cdot \lambda =$

- (a) 12
- (b) 0
- (c) 24
- $(d) -12$
- $(e) -24$

9. If $y(x)$ is the solution of the initial value problem

$$
\frac{dy}{dx} = \frac{2x+1}{2y}, y(-2) = -1, \text{ then } y(2) =
$$

 $(a) -$ √ 5 (b) − $^{\bullet}$ 3 (c) $\sqrt{3}$ (d) 0 $(e) \; \sqrt{5}$

10. If $y(x)$ is the solution of the initial-value problem

 $y'' + 4y = 2x$; $y(0) = 1$, $y'(0) = 2$ then $y(\pi) =$

(a)
$$
1 + \frac{\pi}{4}
$$

\n(b) $1 + \frac{\pi}{2}$
\n(c) $1 - \frac{\pi}{2}$
\n(d) $1 - \frac{\pi}{4}$
\n(e) $1 + \frac{\pi}{3}$

11. If $X = c_1$ $\begin{bmatrix} 5 \end{bmatrix}$ −6 1 $e^{3t} + c_2$ $\begin{bmatrix} 1 \end{bmatrix}$ −1 1 e^{4t} is the solution of the initial value problem $X'=\left[\begin{array}{cc} 9 & 5 \ 6 & 1 \end{array}\right]$ -6 -2 $X, X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 1 then $c_2^2 - c_1^2 =$

- (a) 37
- (b) 35
- (c) 34
- (d) 36
- (e) 32

- 12. Let S be a subspace of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis for the subspace is
	- (a) $\{(1, 1, 0, 0), (1, 0, 1, 0), (2, 0, 1, 2)\}\$
	- (b) $\{(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)\}\$
	- (c) $\{(1, 1, 0, 0), (1, 0, 1, 0)\}\$
	- (d) $\{(1, 0, 1, 0), (1, 0, 0, 1)\}\$
	- (e) $\{(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 1, 1)\}\$

13. The general solution of the differential equation

$$
x\frac{dy}{dx} - 3y = x^3
$$

is

(a)
$$
y = x^2 \ln x + cx^2
$$

\n(b) $y = x^2 \ln x + cx^3$
\n(c) $y = x^3 \ln x + cx^2$
\n(d) $y = x^3 \ln x + cx^3$
\n(e) $y = x^3 \ln x + cx$

14. Let $A =$ $\begin{bmatrix} 9 & -8 \\ 9 & -8 \end{bmatrix}$ 6 −5 1 . A diagonalization matrix P, such that $P^{-1}AP$ is diagonal is

(a)
$$
P = \begin{bmatrix} 1 & -2 \\ 2 & 5 \end{bmatrix}
$$

\n(b) $P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$
\n(c) $P = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$
\n(d) $P = \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$
\n(e) $P = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$

15. The general solution of the differential equation

$$
y''' + 3y'' - 4y = 0
$$

is

(a)
$$
y(x) = c_1e^{-x} + c_2e^{-2x} + c_3xe^{-2x}
$$

\n(b) $y(x) = c_1e^{-x} + c_2e^{3x} + c_3xe^{3x}$
\n(c) $y(x) = c_1e^{x} + c_2e^{-2x} + c_3e^{3x}$
\n(d) $y(x) = c_1e^{x} + c_2e^{-2x} + c_3xe^{-2x}$
\n(e) $y(x) = c_1e^{x} + c_2e^{-2x} + c_3e^{4x}$

16. Using variation of parameters to find a particular solution X_p of the nonhomogeneous system $X' = AX +$ $\begin{pmatrix} 1 \end{pmatrix}$ −1 \setminus e^t where $X_c = c_1$ $\sqrt{2}$ 1 \setminus $e^t + c_2$ $\left(\begin{array}{c} 1 \end{array} \right)$ 1 \setminus e^{2t} form a general solution of the associated homogeneous system, then $X_p(1) =$

(a)
$$
\begin{bmatrix} 3e \\ 2e \end{bmatrix}
$$

\n(b)
$$
\begin{bmatrix} 7e \\ 5e \end{bmatrix}
$$

\n(c)
$$
\begin{bmatrix} e \\ 5e \end{bmatrix}
$$

\n(d)
$$
\begin{bmatrix} 0 \\ 3e \end{bmatrix}
$$

\n(e)
$$
\begin{bmatrix} 7e \\ e \end{bmatrix}
$$

17. The general solution of the exact differential equation

$$
(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0
$$

is

(a)
$$
x^3 - 2x^2y + 2y^3 = c
$$

\n(b) $x^3 + 2xy^2 + 2y^3 = c$
\n(c) $x^3 - 2xy^2 + 2y^3 = c$
\n(d) $x^3 - 2x^2y - 2y^3 = c$
\n(e) $x^3 - 2xy^2 - 2y^3 = c$

18. If $(x, y, z) = (a, b, c)$ is the solution of the system

$$
\begin{cases}\n2x + 8y + 3z = 2 \\
x + 3y + 2z = 5 \\
2x + 7y + 4z = 8\n\end{cases}
$$

then $a + b + c =$

- (a) 6
- (b) 5
- (c) 3
- (d) 0
- (e) 7

221, Math 208, Final Exam Page 10 of 11 CODE02

19. The characteristic equation of a matrix A is $(\lambda + 1)(\lambda - 5)^3 = 0$, where we have only two linearly independent eigenvectors corresponding to $\lambda = 5$. The Jordan normal form of A is

20. The matrix $A =$ $\sqrt{ }$ $\overline{}$ −1 0 1 $0 -1 1$ 1 −1 −1 1 has only one eigenvalue $\lambda = -1$ which is defective of defect 2. If we choose $v_3 =$ $\sqrt{ }$ $\overline{}$ 1 $\overline{0}$ 0 1 such that $(A + I)^3 v_3 = 0$, and $(A + I)^2 v_3 \neq 0$, then the general solution of $X' = AX$ is

(a)
$$
X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \ -t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1 \ t^2 \ t \end{bmatrix} \end{pmatrix} e^{-t}
$$

\n(b) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 - \frac{t^2}{2} \ \frac{t^2}{2} \ t \end{bmatrix} \end{pmatrix} e^{-t}$
\n(c) $X = \begin{pmatrix} c_1 \begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} \ \frac{t^2}{2} \ t \end{bmatrix} e^{-t}$
\n(d) $X = \begin{pmatrix} c_1 \begin{bmatrix} 0 \ 1 \ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \ t \ t \end{bmatrix} + c_3 \begin{bmatrix} 1 + \frac{t^2}{2} \ \frac{t^2}{2} \ t \end{bmatrix} e^{-t}$
\n(e) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1 \ \frac{t^2}{2} \ t \end{bmatrix} e^{-t}$

King Fahd University of Petroleum and Minerals Department of Mathematics

\Box CODE03 \Box

Math 208 Final Exam 221 December 24, 2022 Net Time Allowed: 180 Minutes

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If $(x, y, z) = (a, b, c)$ is the solution of the system

$$
\begin{cases}\n2x + 8y + 3z = 2 \\
x + 3y + 2z = 5 \\
2x + 7y + 4z = 8\n\end{cases}
$$

then $a + b + c =$

- (a) 3
- (b) 5
- (c) 0
- (d) 6
- (e) 7

2. If $y(x)$ is the solution of the initial-value problem

 $y'' + 4y = 2x$; $y(0) = 1$, $y'(0) = 2$

then $y(\pi) =$

 $(a) 1 +$ π 3 $(b) 1 \pi$ 4 $(c) 1 +$ π 4 $(d) 1 +$ π 2 $(e) 1 \pi$ 2

3. The differential equation

 $t^3x''' - 2t^2x'' + 3tx' + 5x = \ln t$

is equivalent to the system of first-order equations.

(a)
$$
x'_1 = x_2
$$
, $x'_2 = x_3$, $x'_3 = -5x_1 - 3tx_2 - 2x_3 + \ln t$
\n(b) $x'_1 = x'_2$, $x'_2 = x_1$, $t^3 x'_3 = 5x_1 + 3tx_2 + 2t^2x_3 + \ln t$
\n(c) $x'_1 = x_2$, $x'_2 = x_3$, $x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 - \ln t$
\n(d) $x'_1 = x_2$, $x'_2 = x_3$, $t^3 x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$
\n(e) $x'_1 = x_1$, $x'_2 = x_2$, $x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$

4. Let
$$
A = \begin{bmatrix} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}
$$
. An eigenvector corresponding to the eigenvalue $\lambda = 2$ of A is

5. Using variation of parameters to find a particular solution X_p of the nonhomogeneous system $X' = AX +$ $\begin{pmatrix} 1 \end{pmatrix}$ −1 \setminus e^t where $X_c = c_1$ $\sqrt{2}$ 1 \setminus $e^t + c_2$ $\left(1\right)$ 1 \setminus e^{2t} form a general solution of the associated homogeneous system, then $X_p(1) =$

(a)
$$
\begin{bmatrix} 7e \\ e \end{bmatrix}
$$

\n(b) $\begin{bmatrix} 7e \\ 5e \end{bmatrix}$
\n(c) $\begin{bmatrix} e \\ 5e \end{bmatrix}$
\n(d) $\begin{bmatrix} 3e \\ 2e \end{bmatrix}$
\n(e) $\begin{bmatrix} 0 \\ 3e \end{bmatrix}$

6. A possible fundamental matrix for the system $X' =$ $\begin{bmatrix} 4 & 2 \end{bmatrix}$ 3 −1 1 X is

(a)
$$
\Phi(t) = \begin{bmatrix} 3e^{-2t} & 0 \\ 5e^{-2t} & e^{5t} \end{bmatrix}
$$

\n(b) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ -3e^{-2t} & 0 \end{bmatrix}$
\n(c) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ 0 & e^{5t} \end{bmatrix}$
\n(d) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ e^{-2t} & 2e^{5t} \end{bmatrix}$
\n(e) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ -3e^{-2t} & e^{5t} \end{bmatrix}$

7. Let
$$
A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix}
$$
. Using Cayley-Hamilton Theorem,
\n
$$
A^4 = aA^3 + bA^2 + cA.
$$
\n
$$
a + b + c =
$$

- (a) 1
- (b) 3
- (c) 0
- (d) 4
- (e) 2

8. The general solution of the exact differential equation

$$
(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0
$$

is

(a)
$$
x^3 - 2xy^2 + 2y^3 = c
$$

\n(b) $x^3 - 2x^2y - 2y^3 = c$
\n(c) $x^3 - 2xy^2 - 2y^3 = c$
\n(d) $x^3 + 2xy^2 + 2y^3 = c$
\n(e) $x^3 - 2x^2y + 2y^3 = c$

221, Math 208, Final Exam Page 5 of 11 CODE03

9. Let
$$
A = \begin{bmatrix} 9 & -8 \\ 6 & -5 \end{bmatrix}
$$
. A diagonalization matrix *P*, such that $P^{-1}AP$ is diagonal is

(a)
$$
P = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}
$$

\n(b) $P = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$
\n(c) $P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$
\n(d) $P = \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$
\n(e) $P = \begin{bmatrix} 1 & -2 \\ 2 & 5 \end{bmatrix}$

10. The solution of
$$
X' = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} X
$$
, $X(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ at $t = \frac{\pi}{4}$ equals

(a)
$$
\begin{pmatrix} -2 \\ 0 \end{pmatrix} e^{\frac{\pi}{4}}
$$

\n(b) $\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$
\n(c) $\begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{\frac{\pi}{4}}$
\n(d) $\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-\frac{\pi}{4}}$
\n(e) $\begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$

11. By using the method of variation of parameters, a particular solution y_p of the differential equation

$$
y'' - 9y = \frac{9x}{e^{3x}}
$$

is

(a)
$$
y_p = \frac{3}{4}x^2e^{-3x} + \frac{1}{2}xe^{-3x} - \frac{1}{24}e^{-3x}
$$

\n(b) $y_p = -\frac{3}{4}x^2e^{-3x} - \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
\n(c) $y_p = -\frac{3}{4}xe^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
\n(d) $y_p = \frac{1}{2}x^2e^{-3x} + \frac{1}{4}x^3e^{-3x} - \frac{1}{24}e^{-3x}$
\n(e) $y_p = \frac{1}{4}x^3e^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$

- 12. Let S be a subspace of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis for the subspace is
	- (a) $\{(1, 1, 0, 0), (1, 0, 1, 0)\}$
	- (b) $\{(1, 0, 1, 0), (1, 0, 0, 1)\}$
	- (c) $\{(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 1, 1)\}\$
	- (d) $\{(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)\}\$
	- (e) $\{(1, 1, 0, 0), (1, 0, 1, 0), (2, 0, 1, 2)\}\$

13. The general solution of the differential equation

$$
x\frac{dy}{dx} - 3y = x^3
$$

is

(a)
$$
y = x^3 \ln x + cx^2
$$

\n(b) $y = x^3 \ln x + cx^3$
\n(c) $y = x^2 \ln x + cx^3$
\n(d) $y = x^2 \ln x + cx^2$
\n(e) $y = x^3 \ln x + cx$

14. Let

$$
A = \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}
$$

If $e^{At} = \begin{bmatrix} 1 & f(t) & h(t) \\ 0 & 1 & 3t \\ 0 & 0 & 1 \end{bmatrix}$, then $f(2) + h(2) =$

- (a) 26
- (b) 32
- (c) 24
- (d) 30
- (e) 28

15. If $y(x)$ is the solution of the initial value problem

$$
\frac{dy}{dx} = \frac{2x+1}{2y}, y(-2) = -1, \text{ then } y(2) =
$$

(a)
$$
\sqrt{3}
$$

\n(b) $-\sqrt{3}$
\n(c) 0
\n(d) $-\sqrt{5}$
\n(e) $\sqrt{5}$

16. If $X = c_1$ $\begin{bmatrix} 5 \end{bmatrix}$ −6 1 $e^{3t} + c_2$ $\begin{bmatrix} 1 \end{bmatrix}$ −1 1 e^{4t} is the solution of the initial value problem $X'=\left[\begin{array}{cc} 9 & 5 \ 6 & 1 \end{array}\right]$ -6 -2 $X, X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 1 then $c_2^2 - c_1^2 =$

- (a) 36
- (b) 32
- (c) 37
- (d) 34
- (e) 35

17. The general solution of the first order homogeneous system $X' =$ $\sqrt{ }$ $\overline{}$ 1 2 1 6 −1 0 -1 -2 -1 1 $\vert X \vert$

is given by

$$
X = c_1 \begin{bmatrix} a \\ b \\ -2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} \alpha \\ \beta \\ 1 \end{bmatrix} e^{\lambda t} + c_3 \begin{bmatrix} e \\ f \\ 13 \end{bmatrix}
$$

then $a \cdot b \cdot \lambda =$

- $(a) -24$
- $(b) -12$
- (c) 0
- (d) 24
- (e) 12

18. The general solution of the differential equation

$$
y''' + 3y'' - 4y = 0
$$

is

(a)
$$
y(x) = c_1e^x + c_2e^{-2x} + c_3xe^{-2x}
$$

\n(b) $y(x) = c_1e^x + c_2e^{-2x} + c_3e^{3x}$
\n(c) $y(x) = c_1e^x + c_2e^{-2x} + c_3e^{4x}$
\n(d) $y(x) = c_1e^{-x} + c_2e^{-2x} + c_3xe^{-2x}$
\n(e) $y(x) = c_1e^{-x} + c_2e^{3x} + c_3xe^{3x}$

19. The matrix $A =$ $\sqrt{ }$ $\overline{}$ −1 0 1 $0 -1 1$ 1 −1 −1 1 has only one eigenvalue $\lambda = -1$ which is defective of defect 2. If we choose $v_3 =$ $\sqrt{ }$ $\overline{}$ 1 $\overline{0}$ 0 1 such that $(A + I)^3 v_3 = 0$, and $(A + I)^2 v_3 \neq 0$, then the general solution of $X' = AX$ is

(a)
$$
X = \begin{pmatrix} c_1 \begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} \ \frac{t^2}{2} \ t \end{bmatrix} e^{-t}
$$

\n(b) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 - \frac{t^2}{2} \ \frac{t^2}{2} \ t \end{bmatrix} e^{-t}$
\n(c) $X = \begin{pmatrix} c_1 \begin{bmatrix} 0 \ 1 \ 1 \end{bmatrix} + c_2 \begin{bmatrix} t \ t \ t \end{bmatrix} + c_3 \begin{bmatrix} 1 + \frac{t^2}{2} \ \frac{t^2}{2} \ t \end{bmatrix} e^{-t}$
\n(d) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1 \ \frac{t^2}{2} \ t \end{bmatrix} e^{-t}$
\n(e) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \ 1 \ 0 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1 \ \frac{t^2}{2} + 1 \ t \end{bmatrix} e^{-t}$

221, Math 208, Final Exam Page 11 of 11 CODE03

20. The characteristic equation of a matrix A is $(\lambda + 1)(\lambda - 5)^3 = 0$, where we have only two linearly independent eigenvectors corresponding to $\lambda = 5$. The Jordan normal form of A is

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04 CODE04

Math 208 Final Exam 221 December 24, 2022 Net Time Allowed: 180 Minutes

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If $(x, y, z) = (a, b, c)$ is the solution of the system

$$
\begin{cases}\n2x + 8y + 3z = 2 \\
x + 3y + 2z = 5 \\
2x + 7y + 4z = 8\n\end{cases}
$$

then $a + b + c =$

- (a) 5
- (b) 7
- (c) 3
- (d) 0
- (e) 6

2. A possible fundamental matrix for the system $X' =$ $\begin{bmatrix} 4 & 2 \end{bmatrix}$ 3 −1 1 X is

(a)
$$
\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ 0 & e^{5t} \end{bmatrix}
$$

\n(b) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ e^{-2t} & 2e^{5t} \end{bmatrix}$
\n(c) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ -3e^{-2t} & e^{5t} \end{bmatrix}$
\n(d) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ -3e^{-2t} & 0 \end{bmatrix}$
\n(e) $\Phi(t) = \begin{bmatrix} 3e^{-2t} & 0 \\ 5e^{-2t} & e^{5t} \end{bmatrix}$

221, Math 208, Final Exam Page 2 of 11 CODE04

3. Let
$$
A = \begin{bmatrix} 9 & -8 \\ 6 & -5 \end{bmatrix}
$$
. A diagonalization matrix *P*, such that $P^{-1}AP$ is diagonal is

(a)
$$
P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}
$$

\n(b) $P = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$
\n(c) $P = \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$
\n(d) $P = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$
\n(e) $P = \begin{bmatrix} 1 & -2 \\ 2 & 5 \end{bmatrix}$

4. Let $A =$ $\sqrt{ }$ \vert $3\quad 5\quad -2$ 0 2 0 0 2 1 1 . An eigenvector corresponding to the eigenvalue $\lambda = 2$ of A is

5. The general solution of the first order homogeneous system $X' =$ $\sqrt{ }$ $\overline{}$ 1 2 1 6 −1 0 -1 -2 -1 1 $\vert X \vert$

is given by

$$
X = c_1 \begin{bmatrix} a \\ b \\ -2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} \alpha \\ \beta \\ 1 \end{bmatrix} e^{\lambda t} + c_3 \begin{bmatrix} e \\ f \\ 13 \end{bmatrix}
$$

then $a \cdot b \cdot \lambda =$

- $(a) -12$
- (b) 12
- (c) 24
- (d) -24
- (e) 0

6. Let
$$
A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix}
$$
. Using Cayley-Hamilton Theorem,
\n
$$
A^4 = aA^3 + bA^2 + cA.
$$
\n
$$
a + b + c =
$$

- (a) 4
- (b) 1
- (c) 3
- (d) 0
- (e) 2

7. If $y(x)$ is the solution of the initial value problem

$$
\frac{dy}{dx} = \frac{2x+1}{2y}, y(-2) = -1, \text{ then } y(2) =
$$

(a)
$$
\sqrt{5}
$$

\n(b) $-\sqrt{3}$
\n(c) 0
\n(d) $\sqrt{3}$
\n(e) $-\sqrt{5}$

8. The general solution of the exact differential equation

$$
(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0
$$

is

(a)
$$
x^3 - 2x^2y + 2y^3 = c
$$

\n(b) $x^3 + 2xy^2 + 2y^3 = c$
\n(c) $x^3 - 2xy^2 + 2y^3 = c$
\n(d) $x^3 - 2xy^2 - 2y^3 = c$
\n(e) $x^3 - 2x^2y - 2y^3 = c$

9. The general solution of the differential equation

$$
y''' + 3y'' - 4y = 0
$$

is

(a)
$$
y(x) = c_1e^x + c_2e^{-2x} + c_3e^{3x}
$$

\n(b) $y(x) = c_1e^x + c_2e^{-2x} + c_3xe^{-2x}$
\n(c) $y(x) = c_1e^{-x} + c_2e^{3x} + c_3xe^{3x}$
\n(d) $y(x) = c_1e^{-x} + c_2e^{-2x} + c_3xe^{-2x}$
\n(e) $y(x) = c_1e^x + c_2e^{-2x} + c_3e^{4x}$

10. If $X = c_1$ $\begin{bmatrix} 5 \end{bmatrix}$ −6 1 $e^{3t} + c_2$ $\begin{bmatrix} 1 \end{bmatrix}$ −1 1 e^{4t} is the solution of the initial value problem $X'=\left[\begin{array}{cc} 9 & 5 \ 6 & 1 \end{array}\right]$ -6 -2 $X, X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 1 then $c_2^2 - c_1^2 =$

- (a) 37
- (b) 34
- (c) 36
- (d) 35
- (e) 32

11. By using the method of variation of parameters, a particular solution y_p of the differential equation

$$
y'' - 9y = \frac{9x}{e^{3x}}
$$

is

(a)
$$
y_p = -\frac{3}{4}x^2e^{-3x} - \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}
$$

\n(b) $y_p = \frac{1}{4}x^3e^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
\n(c) $y_p = -\frac{3}{4}xe^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
\n(d) $y_p = \frac{3}{4}x^2e^{-3x} + \frac{1}{2}xe^{-3x} - \frac{1}{24}e^{-3x}$
\n(e) $y_p = \frac{1}{2}x^2e^{-3x} + \frac{1}{4}x^3e^{-3x} - \frac{1}{24}e^{-3x}$

12. If $y(x)$ is the solution of the initial-value problem

 $y'' + 4y = 2x$; $y(0) = 1$, $y'(0) = 2$

then $y(\pi) =$

(a)
$$
1 + \frac{\pi}{4}
$$

\n(b) $1 - \frac{\pi}{4}$
\n(c) $1 + \frac{\pi}{3}$
\n(d) $1 + \frac{\pi}{2}$
\n(e) $1 - \frac{\pi}{2}$

221, Math 208, Final Exam Page 7 of 11 CODE04

13. The solution of $X' =$ $\begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} X$, $X(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 2 \setminus at $t =$ π 4 equals

(a)
$$
\begin{pmatrix} -2 \\ 0 \end{pmatrix} e^{\frac{\pi}{4}}
$$

\n(b) $\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$
\n(c) $\begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$
\n(d) $\begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{\frac{\pi}{4}}$
\n(e) $\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-\frac{\pi}{4}}$

14. Let S be a subspace of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis for the subspace is

(a) $\{(1, 1, 0, 0), (1, 0, 1, 0), (2, 0, 1, 2)\}\$ (b) $\{(1, 1, 0, 0), (1, 0, 1, 0)\}$ (c) $\{(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)\}\$ (d) $\{(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 1, 1)\}\$ (e) $\{(1, 0, 1, 0), (1, 0, 0, 1)\}$

15. Using variation of parameters to find a particular solution X_p of the nonhomogeneous system $X' = AX +$ $\begin{pmatrix} 1 \end{pmatrix}$ −1 \setminus e^t where $X_c = c_1$ $\sqrt{2}$ 1 \setminus $e^t + c_2$ $\left(1\right)$ 1 \setminus e^{2t} form a general solution of the associated homogeneous system, then $X_p(1) =$

(a)
$$
\begin{bmatrix} 3e \\ 2e \end{bmatrix}
$$

\n(b) $\begin{bmatrix} e \\ 5e \end{bmatrix}$
\n(c) $\begin{bmatrix} 7e \\ e \end{bmatrix}$
\n(d) $\begin{bmatrix} 7e \\ 5e \end{bmatrix}$
\n(e) $\begin{bmatrix} 0 \\ 3e \end{bmatrix}$

16. The differential equation

$$
t^3x''' - 2t^2x'' + 3tx' + 5x = \ln t
$$

is equivalent to the system of first-order equations.

(a)
$$
x'_1 = x_2
$$
, $x'_2 = x_3$, $t^3 x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$
\n(b) $x'_1 = x_2$, $x'_2 = x_3$, $x'_3 = -5x_1 - 3tx_2 - 2x_3 + \ln t$
\n(c) $x'_1 = x'_2$, $x'_2 = x_1$, $t^3 x'_3 = 5x_1 + 3tx_2 + 2t^2x_3 + \ln t$
\n(d) $x'_1 = x_2$, $x'_2 = x_3$, $x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 - \ln t$
\n(e) $x'_1 = x_1$, $x'_2 = x_2$, $x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$

17. The general solution of the differential equation

$$
x\frac{dy}{dx} - 3y = x^3
$$

is

(a)
$$
y = x^3 \ln x + cx^2
$$

\n(b) $y = x^3 \ln x + cx$
\n(c) $y = x^2 \ln x + cx^3$
\n(d) $y = x^3 \ln x + cx^3$
\n(e) $y = x^2 \ln x + cx^2$

18. Let

$$
A = \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}
$$

If $e^{At} = \begin{bmatrix} 1 & f(t) & h(t) \\ 0 & 1 & 3t \\ 0 & 0 & 1 \end{bmatrix}$, then $f(2) + h(2) =$

- (a) 32
- (b) 24
- (c) 28
- (d) 26
- (e) 30

19. The matrix $A =$ $\sqrt{ }$ $\overline{}$ −1 0 1 $0 -1 1$ 1 −1 −1 1 has only one eigenvalue $\lambda = -1$ which is defective of defect 2. If we choose $v_3 =$ $\sqrt{ }$ $\overline{}$ 1 $\overline{0}$ $\overline{0}$ 1 such that $(A + I)^3 v_3 = 0$, and $(A + I)^2 v_3 \neq 0$, then the general solution of $X' = AX$ is

(a)
$$
X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 - \frac{t^2}{2} \ \frac{t^2}{2} \end{bmatrix} \right) e^{-t}
$$

\n(b) $X = \begin{pmatrix} c_1 \begin{bmatrix} 0 \ 1 \ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \ t \ t \end{bmatrix} + c_3 \begin{bmatrix} 1 + \frac{t^2}{2} \ \frac{t^2}{2} \end{bmatrix} \right) e^{-t}$
\n(c) $X = \begin{pmatrix} c_1 \begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} \ \frac{t^2}{2} \end{bmatrix} e^{-t}$
\n(d) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1 \ \frac{t^2}{2} \end{bmatrix} e^{-t}$
\n(e) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} t \ t \ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1 \ \frac{t^2}{2} \end{bmatrix} e^{-t}$

221, Math 208, Final Exam Page 11 of 11 CODE04

20. The characteristic equation of a matrix A is $(\lambda + 1)(\lambda - 5)^3 = 0$, where we have only two linearly independent eigenvectors corresponding to $\lambda = 5$. The Jordan normal form of A is

(a)
$$
\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}
$$

\n(b)
$$
\begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}
$$

\n(c)
$$
\begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}
$$

\n(d)
$$
\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}
$$

\n(e)
$$
\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}
$$

Math 208, 221, Final Exam Answer KEY

Answer Counts

