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1. If y(x) is the solution of the initial value problem

dy

dx
=

2x+ 1

2y
, y(−2) = −1, then y(2) =

(a) −
√

5 (correct)

(b)
√

5

(c) −
√

3

(d)
√

3

(e) 0

2. The general solution of the differential equation

x
dy

dx
− 3y = x3

is

(a) y = x3 lnx+ cx3 (correct)

(b) y = x2 lnx+ cx2

(c) y = x3 lnx+ cx2

(d) y = x3 lnx+ cx

(e) y = x2 lnx+ cx3
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3. The general solution of the exact differential equation

(3x2 + 2y2) dx+ (4xy + 6y2) dy = 0

is

(a) x3 + 2xy2 + 2y3 = c (correct)

(b) x3 − 2xy2 + 2y3 = c

(c) x3 − 2xy2 − 2y3 = c

(d) x3 − 2x2y − 2y3 = c

(e) x3 − 2x2y + 2y3 = c

4. If (x, y, z) = (a, b, c) is the solution of the system
2x+ 8y + 3z = 2
x+ 3y + 2z = 5
2x+ 7y + 4z = 8

then a+ b+ c =

(a) 5 (correct)

(b) 6

(c) 7

(d) 3

(e) 0
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5. Let S be a subspace of R4 defined by S = {(a, b, c, d)|a = b+ c+ d}. A basis for the
subspace is

(a) {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)} (correct)

(b) {(1, 1, 0, 0), (1, 0, 1, 0)}
(c) {(1, 0, 1, 0), (1, 0, 0, 1)}
(d) {(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 1, 1)}
(e) {(1, 1, 0, 0), (1, 0, 1, 0), (2, 0, 1, 2)}

6. If y(x) is the solution of the initial-value problem

y′′ + 4y = 2x; y(0) = 1, y′(0) = 2

then y(π) =

(a) 1 +
π

2
(correct)

(b) 1− π

2

(c) 1 +
π

4

(d) 1− π

4

(e) 1 +
π

3
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7. By using the method of variation of parameters, a particular solution yp of the
differential equation

y′′ − 9y =
9x

e3x

is

(a) yp = −3

4
x2e−3x − 1

4
xe−3x − 1

24
e−3x (correct)

(b) yp =
1

4
x3e−3x +

1

4
xe−3x − 1

24
e−3x

(c) yp =
3

4
x2e−3x +

1

2
xe−3x − 1

24
e−3x

(d) yp = −3

4
xe−3x +

1

4
xe−3x − 1

24
e−3x

(e) yp =
1

2
x2e−3x +

1

4
x3e−3x − 1

24
e−3x

8. Let A =

 1 −2 1
0 1 0
0 −2 2

. Using Cayley-Hamilton Theorem,

A4 = aA3 + bA2 + cA.
a+ b+ c =

(a) 1 (correct)

(b) 0

(c) 2

(d) 3

(e) 4
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9. The general solution of the first order homogeneous systemX ′ =

 1 2 1
6 −1 0
−1 −2 −1

X
is given by

X = c1

 a
b
−2

 e3t + c2

 α
β
1

 eλt + c3

 e
f
13


then a · b · λ =

(a) −24 (correct)

(b) 12

(c) 24

(d) −12

(e) 0

10. Let A =

 3 5 −2
0 2 0
0 2 1

 . An eigenvector corresponding to the eigenvalue λ = 2 of A

is

(a)

 −1
1
2

 (correct)

(b)

 −1
1
3


(c)

 2
1
2


(d)

 −1
3
2


(e)

 −1
0
2
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11. Let A =

[
9 −8
6 −5

]
. A diagonalization matrix P, such that P−1AP is diagonal is

(a) P =

[
1 4
1 3

]
(correct)

(b) P =

[
−1 4
1 −3

]
(c) P =

[
1 2
1 5

]
(d) P =

[
1 −2
2 5

]
(e) P =

[
1 1
2 3

]

12. The differential equation

t3x′′′ − 2t2x′′ + 3tx′ + 5x = ln t

is equivalent to the system of first-order equations.

(a) x′1 = x2, x
′
2 = x3, t

3 x′3 = −5x1 − 3tx2 + 2t2x3 + ln t (correct)

(b) x′1 = x2, x
′
2 = x3, x

′
3 = −5x1 − 3tx2 − 2x3 + ln t

(c) x′1 = x1, x
′
2 = x2, x

′
3 = −5x1 − 3tx2 + 2t2x3 + ln t

(d) x′1 = x2, x
′
2 = x3, x

′
3 = −5x1 − 3tx2 + 2t2x3 − ln t

(e) x′1 = x′2, x
′
2 = x1, t

3 x′3 = 5x1 + 3tx2 + 2t2x3 + ln t
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13. If X = c1

[
5
−6

]
e3t + c2

[
1
−1

]
e4t is the solution of the initial value problem

X ′ =

[
9 5
−6 −2

]
X, X(0) =

[
1
0

]
then c22 − c21 =

(a) 35 (correct)

(b) 36

(c) 37

(d) 34

(e) 32

14. The solution of X ′ =

(
1 −2
2 1

)
X, X(0) =

(
1
2

)
at t =

π

4
equals

(a)

(
−2
1

)
e

π
4 (correct)

(b)

(
2
1

)
e

π
4

(c)

(
1
2

)
e

π
4

(d)

(
−2
0

)
e

π
4

(e)

(
2
1

)
e−

π
4
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15. Let

A =

 0 3 4
0 0 3
0 0 0



If eAt =

 1 f(t) h(t)
0 1 3t
0 0 1

 , then f(2) + h(2) =

(a) 32 (correct)

(b) 30

(c) 28

(d) 26

(e) 24

16. A possible fundamental matrix for the system X ′ =

[
4 2
3 −1

]
X is

(a) Φ(t) =

[
e−2t 2e5t

−3e−2t e5t

]
(correct)

(b) Φ(t) =

[
e−2t 2e5t

0 e5t

]
(c) Φ(t) =

[
e−2t e5t

e−2t 2e5t

]
(d) Φ(t) =

[
3e−2t 0
5e−2t e5t

]
(e) Φ(t) =

[
e−2t e5t

−3e−2t 0

]
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17. Using variation of parameters to find a particular solutionXp of the nonhomogeneous

system X ′ = AX +

(
1
−1

)
et where Xc = c1

(
2
1

)
et + c2

(
1
1

)
e2t form a general

solution of the associated homogeneous system, then Xp(1) =

(a)

[
7e
5e

]
(correct)

(b)

[
3e
2e

]
(c)

[
7e
e

]
(d)

[
e
5e

]
(e)

[
0
3e

]

18. The general solution of the differential equation

y′′′ + 3y′′ − 4y = 0

is

(a) y(x) = c1e
x + c2e

−2x + c3xe
−2x (correct)

(b) y(x) = c1e
−x + c2e

−2x + c3xe
−2x

(c) y(x) = c1e
x + c2e

−2x + c3e
3x

(d) y(x) = c1e
x + c2e

−2x + c3e
4x

(e) y(x) = c1e
−x + c2e

3x + c3xe
3x
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19. The characteristic equation of a matrix A is (λ+1)(λ−5)3 = 0, where we have only
two linearly independent eigenvectors corresponding to λ = 5. The Jordan normal
form of A is

(a)


−1 0 0 0
0 5 0 0
0 0 5 1
0 0 0 5

 (correct)

(b)


−1 0 0 0
0 5 1 0
0 0 5 1
0 0 0 5



(c)


−1 1 0 0
0 5 0 0
0 0 5 1
0 0 0 5



(d)


−1 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5



(e)


5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 −1
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20. The matrix A =

 −1 0 1
0 −1 1
1 −1 −1

 has only one eigenvalue λ = −1 which is defective

of defect 2. If we choose v3 =

 1
0
0

 such that (A+ I)3 v3 = 0, and (A+ I)2v3 6= 0,

then the general solution of X ′ = AX is

(a) X =

c1
 1

1
0

+ c2

 t
t
1

+ c3

 t2

2 + 1
t2

2

t

 e−t (correct)

(b) X =

c1
 0

1
0

+ c2

 1
t
1

+ c3

 t2

2
t2

2

t

 e−t

(c) X =

c1
 0

1
1

+ c2

 1
t

t

+ c3

 1 + t2

2
t2

2

t

 e−t

(d) X =

c1
 1
−1
0

+ c2

 t

−t
1

+ c3

 t2

2 + 1
t2

t

 e−t

(e) X =

c1
 1

1
0

+ c2

 t

t
1

+ c3

 1− t2

2
t2

2

t

 e−t



King Fahd University of Petroleum and Minerals
Department of Mathematics

CODE01 CODE01
Math 208
Final Exam

221
December 24, 2022

Net Time Allowed: 180 Minutes

Name

ID Sec

Check that this exam has 20 questions.

Important Instructions:

1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.

2. Use HB 2.5 pencils only.

3. Use a good eraser. DO NOT use the erasers attached to the pencil.

4. Write your name, ID number and Section number on the examination paper and in the upper left
corner of the answer sheet.

5. When bubbling your ID number and Section number, be sure that the bubbles match with the
numbers that you write.

6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as
that printed on your question paper.

7. When bubbling, make sure that the bubbled space is fully covered.

8. When erasing a bubble, make sure that you do not leave any trace of penciling.



221, Math 208, Final Exam Page 1 of 11 CODE01

1. The differential equation

t3x′′′ − 2t2x′′ + 3tx′ + 5x = ln t

is equivalent to the system of first-order equations.

(a) x′1 = x2, x
′
2 = x3, x

′
3 = −5x1 − 3tx2 + 2t2x3 − ln t

(b) x′1 = x′2, x
′
2 = x1, t

3 x′3 = 5x1 + 3tx2 + 2t2x3 + ln t

(c) x′1 = x1, x
′
2 = x2, x

′
3 = −5x1 − 3tx2 + 2t2x3 + ln t

(d) x′1 = x2, x
′
2 = x3, x

′
3 = −5x1 − 3tx2 − 2x3 + ln t

(e) x′1 = x2, x
′
2 = x3, t

3 x′3 = −5x1 − 3tx2 + 2t2x3 + ln t

2. The solution of X ′ =

(
1 −2
2 1

)
X, X(0) =

(
1
2

)
at t =

π

4
equals

(a)

(
2
1

)
e

π
4

(b)

(
−2
0

)
e

π
4

(c)

(
2
1

)
e−

π
4

(d)

(
−2
1

)
e

π
4

(e)

(
1
2

)
e

π
4
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3. Let A =

 3 5 −2
0 2 0
0 2 1

 . An eigenvector corresponding to the eigenvalue λ = 2 of A

is

(a)

 −1
3
2


(b)

 2
1
2


(c)

 −1
1
2


(d)

 −1
0
2


(e)

 −1
1
3



4. By using the method of variation of parameters, a particular solution yp of the
differential equation

y′′ − 9y =
9x

e3x

is

(a) yp =
1

4
x3e−3x +

1

4
xe−3x − 1

24
e−3x

(b) yp = −3

4
xe−3x +

1

4
xe−3x − 1

24
e−3x

(c) yp = −3

4
x2e−3x − 1

4
xe−3x − 1

24
e−3x

(d) yp =
1

2
x2e−3x +

1

4
x3e−3x − 1

24
e−3x

(e) yp =
3

4
x2e−3x +

1

2
xe−3x − 1

24
e−3x
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5. Let A =

[
9 −8
6 −5

]
. A diagonalization matrix P, such that P−1AP is diagonal is

(a) P =

[
1 −2
2 5

]
(b) P =

[
1 2
1 5

]
(c) P =

[
−1 4
1 −3

]
(d) P =

[
1 1
2 3

]
(e) P =

[
1 4
1 3

]

6. The general solution of the differential equation

y′′′ + 3y′′ − 4y = 0

is

(a) y(x) = c1e
−x + c2e

3x + c3xe
3x

(b) y(x) = c1e
−x + c2e

−2x + c3xe
−2x

(c) y(x) = c1e
x + c2e

−2x + c3e
3x

(d) y(x) = c1e
x + c2e

−2x + c3e
4x

(e) y(x) = c1e
x + c2e

−2x + c3xe
−2x
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7. Let S be a subspace of R4 defined by S = {(a, b, c, d)|a = b+ c+ d}. A basis for the
subspace is

(a) {(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 1, 1)}
(b) {(1, 1, 0, 0), (1, 0, 1, 0), (2, 0, 1, 2)}
(c) {(1, 1, 0, 0), (1, 0, 1, 0)}
(d) {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}
(e) {(1, 0, 1, 0), (1, 0, 0, 1)}

8. If y(x) is the solution of the initial-value problem

y′′ + 4y = 2x; y(0) = 1, y′(0) = 2

then y(π) =

(a) 1− π

4

(b) 1 +
π

4

(c) 1 +
π

3

(d) 1− π

2

(e) 1 +
π

2
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9. If (x, y, z) = (a, b, c) is the solution of the system
2x+ 8y + 3z = 2
x+ 3y + 2z = 5
2x+ 7y + 4z = 8

then a+ b+ c =

(a) 3

(b) 5

(c) 0

(d) 7

(e) 6

10. The general solution of the exact differential equation

(3x2 + 2y2) dx+ (4xy + 6y2) dy = 0

is

(a) x3 + 2xy2 + 2y3 = c

(b) x3 − 2xy2 − 2y3 = c

(c) x3 − 2x2y + 2y3 = c

(d) x3 − 2x2y − 2y3 = c

(e) x3 − 2xy2 + 2y3 = c
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11. If X = c1

[
5
−6

]
e3t + c2

[
1
−1

]
e4t is the solution of the initial value problem

X ′ =

[
9 5
−6 −2

]
X, X(0) =

[
1
0

]
then c22 − c21 =

(a) 32

(b) 36

(c) 34

(d) 37

(e) 35

12. Let

A =

 0 3 4
0 0 3
0 0 0



If eAt =

 1 f(t) h(t)
0 1 3t
0 0 1

 , then f(2) + h(2) =

(a) 26

(b) 32

(c) 28

(d) 30

(e) 24
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13. If y(x) is the solution of the initial value problem

dy

dx
=

2x+ 1

2y
, y(−2) = −1, then y(2) =

(a)
√

3

(b) −
√

5

(c) 0

(d) −
√

3

(e)
√

5

14. Let A =

 1 −2 1
0 1 0
0 −2 2

. Using Cayley-Hamilton Theorem,

A4 = aA3 + bA2 + cA.
a+ b+ c =

(a) 1

(b) 3

(c) 0

(d) 4

(e) 2
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15. A possible fundamental matrix for the system X ′ =

[
4 2
3 −1

]
X is

(a) Φ(t) =

[
3e−2t 0
5e−2t e5t

]
(b) Φ(t) =

[
e−2t 2e5t

−3e−2t e5t

]
(c) Φ(t) =

[
e−2t 2e5t

0 e5t

]
(d) Φ(t) =

[
e−2t e5t

e−2t 2e5t

]
(e) Φ(t) =

[
e−2t e5t

−3e−2t 0

]

16. The general solution of the differential equation

x
dy

dx
− 3y = x3

is

(a) y = x2 lnx+ cx2

(b) y = x2 lnx+ cx3

(c) y = x3 lnx+ cx3

(d) y = x3 lnx+ cx

(e) y = x3 lnx+ cx2
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17. Using variation of parameters to find a particular solutionXp of the nonhomogeneous

system X ′ = AX +

(
1
−1

)
et where Xc = c1

(
2
1

)
et + c2

(
1
1

)
e2t form a general

solution of the associated homogeneous system, then Xp(1) =

(a)

[
0
3e

]
(b)

[
7e
5e

]
(c)

[
7e
e

]
(d)

[
3e
2e

]
(e)

[
e

5e

]

18. The general solution of the first order homogeneous systemX ′ =

 1 2 1
6 −1 0
−1 −2 −1

X
is given by

X = c1

 a

b

−2

 e3t + c2

 α

β

1

 eλt + c3

 e

f

13


then a · b · λ =

(a) −24

(b) 12

(c) 0

(d) −12

(e) 24
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19. The matrix A =

 −1 0 1
0 −1 1
1 −1 −1

 has only one eigenvalue λ = −1 which is defective

of defect 2. If we choose v3 =

 1
0
0

 such that (A+ I)3 v3 = 0, and (A+ I)2v3 6= 0,

then the general solution of X ′ = AX is

(a) X =

c1
 0

1
1

+ c2

 1
t
t

+ c3

 1 + t2

2
t2

2

t

 e−t

(b) X =

c1
 1

1
0

+ c2

 t
t
1

+ c3

 1− t2

2
t2

2

t

 e−t

(c) X =

c1
 0

1
0

+ c2

 1
t

1

+ c3

 t2

2
t2

2

t

 e−t

(d) X =

c1
 1
−1
0

+ c2

 t

−t
1

+ c3

 t2

2 + 1
t2

t

 e−t

(e) X =

c1
 1

1
0

+ c2

 t

t
1

+ c3

 t2

2 + 1
t2

2

t

 e−t
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20. The characteristic equation of a matrix A is (λ+1)(λ−5)3 = 0, where we have only
two linearly independent eigenvectors corresponding to λ = 5. The Jordan normal
form of A is

(a)


−1 0 0 0
0 5 1 0
0 0 5 1
0 0 0 5



(b)


−1 0 0 0
0 5 0 0
0 0 5 1
0 0 0 5



(c)


5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 −1



(d)


−1 1 0 0
0 5 0 0
0 0 5 1
0 0 0 5



(e)


−1 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5
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1. Let A =

 1 −2 1
0 1 0
0 −2 2

. Using Cayley-Hamilton Theorem,

A4 = aA3 + bA2 + cA.
a+ b+ c =

(a) 4

(b) 3

(c) 1

(d) 0

(e) 2

2. The solution of X ′ =

(
1 −2
2 1

)
X, X(0) =

(
1
2

)
at t =

π

4
equals

(a)

(
−2
0

)
e

π
4

(b)

(
2
1

)
e−

π
4

(c)

(
1
2

)
e

π
4

(d)

(
−2
1

)
e

π
4

(e)

(
2
1

)
e

π
4
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3. By using the method of variation of parameters, a particular solution yp of the
differential equation

y′′ − 9y =
9x

e3x

is

(a) yp =
3

4
x2e−3x +

1

2
xe−3x − 1

24
e−3x

(b) yp = −3

4
xe−3x +

1

4
xe−3x − 1

24
e−3x

(c) yp = −3

4
x2e−3x − 1

4
xe−3x − 1

24
e−3x

(d) yp =
1

2
x2e−3x +

1

4
x3e−3x − 1

24
e−3x

(e) yp =
1

4
x3e−3x +

1

4
xe−3x − 1

24
e−3x

4. The differential equation

t3x′′′ − 2t2x′′ + 3tx′ + 5x = ln t

is equivalent to the system of first-order equations.

(a) x′1 = x1, x
′
2 = x2, x

′
3 = −5x1 − 3tx2 + 2t2x3 + ln t

(b) x′1 = x′2, x
′
2 = x1, t

3 x′3 = 5x1 + 3tx2 + 2t2x3 + ln t

(c) x′1 = x2, x
′
2 = x3, t

3 x′3 = −5x1 − 3tx2 + 2t2x3 + ln t

(d) x′1 = x2, x
′
2 = x3, x

′
3 = −5x1 − 3tx2 − 2x3 + ln t

(e) x′1 = x2, x
′
2 = x3, x

′
3 = −5x1 − 3tx2 + 2t2x3 − ln t
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5. A possible fundamental matrix for the system X ′ =

[
4 2
3 −1

]
X is

(a) Φ(t) =

[
e−2t 2e5t

−3e−2t e5t

]
(b) Φ(t) =

[
e−2t 2e5t

0 e5t

]
(c) Φ(t) =

[
3e−2t 0
5e−2t e5t

]
(d) Φ(t) =

[
e−2t e5t

e−2t 2e5t

]
(e) Φ(t) =

[
e−2t e5t

−3e−2t 0

]

6. Let

A =

 0 3 4
0 0 3
0 0 0



If eAt =

 1 f(t) h(t)
0 1 3t
0 0 1

 , then f(2) + h(2) =

(a) 32

(b) 28

(c) 30

(d) 24

(e) 26
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7. Let A =

 3 5 −2
0 2 0
0 2 1

 . An eigenvector corresponding to the eigenvalue λ = 2 of A

is

(a)

 −1
1
3


(b)

 2
1
2


(c)

 −1
0
2


(d)

 −1
1
2


(e)

 −1
3
2



8. The general solution of the first order homogeneous systemX ′ =

 1 2 1
6 −1 0
−1 −2 −1

X
is given by

X = c1

 a
b
−2

 e3t + c2

 α

β
1

 eλt + c3

 e
f
13


then a · b · λ =

(a) 12

(b) 0

(c) 24

(d) −12

(e) −24
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9. If y(x) is the solution of the initial value problem

dy

dx
=

2x+ 1

2y
, y(−2) = −1, then y(2) =

(a) −
√

5

(b) −
√

3

(c)
√

3

(d) 0

(e)
√

5

10. If y(x) is the solution of the initial-value problem

y′′ + 4y = 2x; y(0) = 1, y′(0) = 2

then y(π) =

(a) 1 +
π

4

(b) 1 +
π

2

(c) 1− π

2

(d) 1− π

4

(e) 1 +
π

3
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11. If X = c1

[
5
−6

]
e3t + c2

[
1
−1

]
e4t is the solution of the initial value problem

X ′ =

[
9 5
−6 −2

]
X, X(0) =

[
1
0

]
then c22 − c21 =

(a) 37

(b) 35

(c) 34

(d) 36

(e) 32

12. Let S be a subspace of R4 defined by S = {(a, b, c, d)|a = b+ c+ d}. A basis for the
subspace is

(a) {(1, 1, 0, 0), (1, 0, 1, 0), (2, 0, 1, 2)}
(b) {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}
(c) {(1, 1, 0, 0), (1, 0, 1, 0)}
(d) {(1, 0, 1, 0), (1, 0, 0, 1)}
(e) {(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 1, 1)}
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13. The general solution of the differential equation

x
dy

dx
− 3y = x3

is

(a) y = x2 lnx+ cx2

(b) y = x2 lnx+ cx3

(c) y = x3 lnx+ cx2

(d) y = x3 lnx+ cx3

(e) y = x3 lnx+ cx

14. Let A =

[
9 −8
6 −5

]
. A diagonalization matrix P, such that P−1AP is diagonal is

(a) P =

[
1 −2
2 5

]
(b) P =

[
1 4
1 3

]
(c) P =

[
1 1
2 3

]
(d) P =

[
−1 4
1 −3

]
(e) P =

[
1 2
1 5

]
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15. The general solution of the differential equation

y′′′ + 3y′′ − 4y = 0

is

(a) y(x) = c1e
−x + c2e

−2x + c3xe
−2x

(b) y(x) = c1e
−x + c2e

3x + c3xe
3x

(c) y(x) = c1e
x + c2e

−2x + c3e
3x

(d) y(x) = c1e
x + c2e

−2x + c3xe
−2x

(e) y(x) = c1e
x + c2e

−2x + c3e
4x

16. Using variation of parameters to find a particular solutionXp of the nonhomogeneous

system X ′ = AX +

(
1
−1

)
et where Xc = c1

(
2
1

)
et + c2

(
1
1

)
e2t form a general

solution of the associated homogeneous system, then Xp(1) =

(a)

[
3e
2e

]
(b)

[
7e
5e

]
(c)

[
e
5e

]
(d)

[
0
3e

]
(e)

[
7e
e

]
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17. The general solution of the exact differential equation

(3x2 + 2y2) dx+ (4xy + 6y2) dy = 0

is

(a) x3 − 2x2y + 2y3 = c

(b) x3 + 2xy2 + 2y3 = c

(c) x3 − 2xy2 + 2y3 = c

(d) x3 − 2x2y − 2y3 = c

(e) x3 − 2xy2 − 2y3 = c

18. If (x, y, z) = (a, b, c) is the solution of the system
2x+ 8y + 3z = 2
x+ 3y + 2z = 5
2x+ 7y + 4z = 8

then a+ b+ c =

(a) 6

(b) 5

(c) 3

(d) 0

(e) 7
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19. The characteristic equation of a matrix A is (λ+1)(λ−5)3 = 0, where we have only
two linearly independent eigenvectors corresponding to λ = 5. The Jordan normal
form of A is

(a)


−1 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5



(b)


−1 1 0 0
0 5 0 0
0 0 5 1
0 0 0 5



(c)


5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 −1



(d)


−1 0 0 0
0 5 1 0
0 0 5 1
0 0 0 5



(e)


−1 0 0 0
0 5 0 0
0 0 5 1
0 0 0 5





221, Math 208, Final Exam Page 11 of 11 CODE02

20. The matrix A =

 −1 0 1
0 −1 1
1 −1 −1

 has only one eigenvalue λ = −1 which is defective

of defect 2. If we choose v3 =

 1
0
0

 such that (A+ I)3 v3 = 0, and (A+ I)2v3 6= 0,

then the general solution of X ′ = AX is

(a) X =

c1
 1
−1
0

+ c2

 t
−t
1

+ c3

 t2

2 + 1
t2

t

 e−t

(b) X =

c1
 1

1
0

+ c2

 t
t
1

+ c3

 1− t2

2
t2

2

t

 e−t

(c) X =

c1
 0

1
0

+ c2

 1
t

1

+ c3

 t2

2
t2

2

t

 e−t

(d) X =

c1
 0

1
1

+ c2

 1
t
t

+ c3

 1 + t2

2
t2

2

t

 e−t

(e) X =

c1
 1

1
0

+ c2

 t

t

1

+ c3

 t2

2 + 1
t2

2

t

 e−t
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1. If (x, y, z) = (a, b, c) is the solution of the system
2x+ 8y + 3z = 2
x+ 3y + 2z = 5
2x+ 7y + 4z = 8

then a+ b+ c =

(a) 3

(b) 5

(c) 0

(d) 6

(e) 7

2. If y(x) is the solution of the initial-value problem

y′′ + 4y = 2x; y(0) = 1, y′(0) = 2

then y(π) =

(a) 1 +
π

3

(b) 1− π

4

(c) 1 +
π

4

(d) 1 +
π

2

(e) 1− π

2
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3. The differential equation

t3x′′′ − 2t2x′′ + 3tx′ + 5x = ln t

is equivalent to the system of first-order equations.

(a) x′1 = x2, x
′
2 = x3, x

′
3 = −5x1 − 3tx2 − 2x3 + ln t

(b) x′1 = x′2, x
′
2 = x1, t

3 x′3 = 5x1 + 3tx2 + 2t2x3 + ln t

(c) x′1 = x2, x
′
2 = x3, x

′
3 = −5x1 − 3tx2 + 2t2x3 − ln t

(d) x′1 = x2, x
′
2 = x3, t

3 x′3 = −5x1 − 3tx2 + 2t2x3 + ln t

(e) x′1 = x1, x
′
2 = x2, x

′
3 = −5x1 − 3tx2 + 2t2x3 + ln t

4. Let A =

 3 5 −2
0 2 0
0 2 1

 . An eigenvector corresponding to the eigenvalue λ = 2 of A

is

(a)

 −1
0
2


(b)

 −1
1
3


(c)

 2
1
2


(d)

 −1
1
2


(e)

 −1
3
2
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5. Using variation of parameters to find a particular solutionXp of the nonhomogeneous

system X ′ = AX +

(
1
−1

)
et where Xc = c1

(
2
1

)
et + c2

(
1
1

)
e2t form a general

solution of the associated homogeneous system, then Xp(1) =

(a)

[
7e
e

]
(b)

[
7e
5e

]
(c)

[
e
5e

]
(d)

[
3e
2e

]
(e)

[
0
3e

]

6. A possible fundamental matrix for the system X ′ =

[
4 2
3 −1

]
X is

(a) Φ(t) =

[
3e−2t 0
5e−2t e5t

]
(b) Φ(t) =

[
e−2t e5t

−3e−2t 0

]
(c) Φ(t) =

[
e−2t 2e5t

0 e5t

]
(d) Φ(t) =

[
e−2t e5t

e−2t 2e5t

]
(e) Φ(t) =

[
e−2t 2e5t

−3e−2t e5t

]
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7. Let A =

 1 −2 1
0 1 0
0 −2 2

. Using Cayley-Hamilton Theorem,

A4 = aA3 + bA2 + cA.
a+ b+ c =

(a) 1

(b) 3

(c) 0

(d) 4

(e) 2

8. The general solution of the exact differential equation

(3x2 + 2y2) dx+ (4xy + 6y2) dy = 0

is

(a) x3 − 2xy2 + 2y3 = c

(b) x3 − 2x2y − 2y3 = c

(c) x3 − 2xy2 − 2y3 = c

(d) x3 + 2xy2 + 2y3 = c

(e) x3 − 2x2y + 2y3 = c
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9. Let A =

[
9 −8
6 −5

]
. A diagonalization matrix P, such that P−1AP is diagonal is

(a) P =

[
1 2
1 5

]
(b) P =

[
1 1
2 3

]
(c) P =

[
1 4
1 3

]
(d) P =

[
−1 4
1 −3

]
(e) P =

[
1 −2
2 5

]

10. The solution of X ′ =

(
1 −2
2 1

)
X, X(0) =

(
1
2

)
at t =

π

4
equals

(a)

(
−2
0

)
e

π
4

(b)

(
2
1

)
e

π
4

(c)

(
1
2

)
e

π
4

(d)

(
2
1

)
e−

π
4

(e)

(
−2
1

)
e

π
4
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11. By using the method of variation of parameters, a particular solution yp of the
differential equation

y′′ − 9y =
9x

e3x

is

(a) yp =
3

4
x2e−3x +

1

2
xe−3x − 1

24
e−3x

(b) yp = −3

4
x2e−3x − 1

4
xe−3x − 1

24
e−3x

(c) yp = −3

4
xe−3x +

1

4
xe−3x − 1

24
e−3x

(d) yp =
1

2
x2e−3x +

1

4
x3e−3x − 1

24
e−3x

(e) yp =
1

4
x3e−3x +

1

4
xe−3x − 1

24
e−3x

12. Let S be a subspace of R4 defined by S = {(a, b, c, d)|a = b+ c+ d}. A basis for the
subspace is

(a) {(1, 1, 0, 0), (1, 0, 1, 0)}
(b) {(1, 0, 1, 0), (1, 0, 0, 1)}
(c) {(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 1, 1)}
(d) {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}
(e) {(1, 1, 0, 0), (1, 0, 1, 0), (2, 0, 1, 2)}
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13. The general solution of the differential equation

x
dy

dx
− 3y = x3

is

(a) y = x3 lnx+ cx2

(b) y = x3 lnx+ cx3

(c) y = x2 lnx+ cx3

(d) y = x2 lnx+ cx2

(e) y = x3 lnx+ cx

14. Let

A =

 0 3 4
0 0 3
0 0 0



If eAt =

 1 f(t) h(t)
0 1 3t
0 0 1

 , then f(2) + h(2) =

(a) 26

(b) 32

(c) 24

(d) 30

(e) 28
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15. If y(x) is the solution of the initial value problem

dy

dx
=

2x+ 1

2y
, y(−2) = −1, then y(2) =

(a)
√

3

(b) −
√

3

(c) 0

(d) −
√

5

(e)
√

5

16. If X = c1

[
5
−6

]
e3t + c2

[
1
−1

]
e4t is the solution of the initial value problem

X ′ =

[
9 5
−6 −2

]
X, X(0) =

[
1
0

]
then c22 − c21 =

(a) 36

(b) 32

(c) 37

(d) 34

(e) 35
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17. The general solution of the first order homogeneous systemX ′ =

 1 2 1
6 −1 0
−1 −2 −1

X
is given by

X = c1

 a
b
−2

 e3t + c2

 α
β
1

 eλt + c3

 e
f
13


then a · b · λ =

(a) −24

(b) −12

(c) 0

(d) 24

(e) 12

18. The general solution of the differential equation

y′′′ + 3y′′ − 4y = 0

is

(a) y(x) = c1e
x + c2e

−2x + c3xe
−2x

(b) y(x) = c1e
x + c2e

−2x + c3e
3x

(c) y(x) = c1e
x + c2e

−2x + c3e
4x

(d) y(x) = c1e
−x + c2e

−2x + c3xe
−2x

(e) y(x) = c1e
−x + c2e

3x + c3xe
3x
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19. The matrix A =

 −1 0 1
0 −1 1
1 −1 −1

 has only one eigenvalue λ = −1 which is defective

of defect 2. If we choose v3 =

 1
0
0

 such that (A+ I)3 v3 = 0, and (A+ I)2v3 6= 0,

then the general solution of X ′ = AX is

(a) X =

c1
 0

1
0

+ c2

 1
t
1

+ c3

 t2

2
t2

2

t

 e−t

(b) X =

c1
 1

1
0

+ c2

 t
t
1

+ c3

 1− t2

2
t2

2

t

 e−t

(c) X =

c1
 0

1
1

+ c2

 1
t

t

+ c3

 1 + t2

2
t2

2

t

 e−t

(d) X =

c1
 1

1
0

+ c2

 t

t

1

+ c3

 t2

2 + 1
t2

2

t

 e−t

(e) X =

c1
 1
−1
0

+ c2

 t

−t
1

+ c3

 t2

2 + 1
t2

t

 e−t
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20. The characteristic equation of a matrix A is (λ+1)(λ−5)3 = 0, where we have only
two linearly independent eigenvectors corresponding to λ = 5. The Jordan normal
form of A is

(a)


−1 0 0 0
0 5 0 0
0 0 5 1
0 0 0 5



(b)


−1 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5



(c)


−1 0 0 0
0 5 1 0
0 0 5 1
0 0 0 5



(d)


5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 −1



(e)


−1 1 0 0
0 5 0 0
0 0 5 1
0 0 0 5
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1. If (x, y, z) = (a, b, c) is the solution of the system
2x+ 8y + 3z = 2
x+ 3y + 2z = 5
2x+ 7y + 4z = 8

then a+ b+ c =

(a) 5

(b) 7

(c) 3

(d) 0

(e) 6

2. A possible fundamental matrix for the system X ′ =

[
4 2
3 −1

]
X is

(a) Φ(t) =

[
e−2t 2e5t

0 e5t

]
(b) Φ(t) =

[
e−2t e5t

e−2t 2e5t

]
(c) Φ(t) =

[
e−2t 2e5t

−3e−2t e5t

]
(d) Φ(t) =

[
e−2t e5t

−3e−2t 0

]
(e) Φ(t) =

[
3e−2t 0
5e−2t e5t

]
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3. Let A =

[
9 −8
6 −5

]
. A diagonalization matrix P, such that P−1AP is diagonal is

(a) P =

[
1 4
1 3

]
(b) P =

[
1 2
1 5

]
(c) P =

[
−1 4
1 −3

]
(d) P =

[
1 1
2 3

]
(e) P =

[
1 −2
2 5

]

4. Let A =

 3 5 −2
0 2 0
0 2 1

 . An eigenvector corresponding to the eigenvalue λ = 2 of A

is

(a)

 −1
3
2


(b)

 −1
0
2


(c)

 2
1
2


(d)

 −1
1
2


(e)

 −1
1
3
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5. The general solution of the first order homogeneous systemX ′ =

 1 2 1
6 −1 0
−1 −2 −1

X
is given by

X = c1

 a
b
−2

 e3t + c2

 α
β
1

 eλt + c3

 e
f
13


then a · b · λ =

(a) −12

(b) 12

(c) 24

(d) −24

(e) 0

6. Let A =

 1 −2 1
0 1 0
0 −2 2

. Using Cayley-Hamilton Theorem,

A4 = aA3 + bA2 + cA.
a+ b+ c =

(a) 4

(b) 1

(c) 3

(d) 0

(e) 2
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7. If y(x) is the solution of the initial value problem

dy

dx
=

2x+ 1

2y
, y(−2) = −1, then y(2) =

(a)
√

5

(b) −
√

3

(c) 0

(d)
√

3

(e) −
√

5

8. The general solution of the exact differential equation

(3x2 + 2y2) dx+ (4xy + 6y2) dy = 0

is

(a) x3 − 2x2y + 2y3 = c

(b) x3 + 2xy2 + 2y3 = c

(c) x3 − 2xy2 + 2y3 = c

(d) x3 − 2xy2 − 2y3 = c

(e) x3 − 2x2y − 2y3 = c
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9. The general solution of the differential equation

y′′′ + 3y′′ − 4y = 0

is

(a) y(x) = c1e
x + c2e

−2x + c3e
3x

(b) y(x) = c1e
x + c2e

−2x + c3xe
−2x

(c) y(x) = c1e
−x + c2e

3x + c3xe
3x

(d) y(x) = c1e
−x + c2e

−2x + c3xe
−2x

(e) y(x) = c1e
x + c2e

−2x + c3e
4x

10. If X = c1

[
5
−6

]
e3t + c2

[
1
−1

]
e4t is the solution of the initial value problem

X ′ =

[
9 5
−6 −2

]
X, X(0) =

[
1
0

]
then c22 − c21 =

(a) 37

(b) 34

(c) 36

(d) 35

(e) 32
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11. By using the method of variation of parameters, a particular solution yp of the
differential equation

y′′ − 9y =
9x

e3x

is

(a) yp = −3

4
x2e−3x − 1

4
xe−3x − 1

24
e−3x

(b) yp =
1

4
x3e−3x +

1

4
xe−3x − 1

24
e−3x

(c) yp = −3

4
xe−3x +

1

4
xe−3x − 1

24
e−3x

(d) yp =
3

4
x2e−3x +

1

2
xe−3x − 1

24
e−3x

(e) yp =
1

2
x2e−3x +

1

4
x3e−3x − 1

24
e−3x

12. If y(x) is the solution of the initial-value problem

y′′ + 4y = 2x; y(0) = 1, y′(0) = 2

then y(π) =

(a) 1 +
π

4

(b) 1− π

4

(c) 1 +
π

3

(d) 1 +
π

2

(e) 1− π

2
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13. The solution of X ′ =

(
1 −2
2 1

)
X, X(0) =

(
1
2

)
at t =

π

4
equals

(a)

(
−2
0

)
e

π
4

(b)

(
2
1

)
e

π
4

(c)

(
−2
1

)
e

π
4

(d)

(
1
2

)
e

π
4

(e)

(
2
1

)
e−

π
4

14. Let S be a subspace of R4 defined by S = {(a, b, c, d)|a = b+ c+ d}. A basis for the
subspace is

(a) {(1, 1, 0, 0), (1, 0, 1, 0), (2, 0, 1, 2)}
(b) {(1, 1, 0, 0), (1, 0, 1, 0)}
(c) {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}
(d) {(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 1, 1)}
(e) {(1, 0, 1, 0), (1, 0, 0, 1)}
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15. Using variation of parameters to find a particular solutionXp of the nonhomogeneous

system X ′ = AX +

(
1
−1

)
et where Xc = c1

(
2
1

)
et + c2

(
1
1

)
e2t form a general

solution of the associated homogeneous system, then Xp(1) =

(a)

[
3e
2e

]
(b)

[
e
5e

]
(c)

[
7e
e

]
(d)

[
7e
5e

]
(e)

[
0
3e

]

16. The differential equation

t3x′′′ − 2t2x′′ + 3tx′ + 5x = ln t

is equivalent to the system of first-order equations.

(a) x′1 = x2, x
′
2 = x3, t

3 x′3 = −5x1 − 3tx2 + 2t2x3 + ln t

(b) x′1 = x2, x
′
2 = x3, x

′
3 = −5x1 − 3tx2 − 2x3 + ln t

(c) x′1 = x′2, x
′
2 = x1, t

3 x′3 = 5x1 + 3tx2 + 2t2x3 + ln t

(d) x′1 = x2, x
′
2 = x3, x

′
3 = −5x1 − 3tx2 + 2t2x3 − ln t

(e) x′1 = x1, x
′
2 = x2, x

′
3 = −5x1 − 3tx2 + 2t2x3 + ln t
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17. The general solution of the differential equation

x
dy

dx
− 3y = x3

is

(a) y = x3 lnx+ cx2

(b) y = x3 lnx+ cx

(c) y = x2 lnx+ cx3

(d) y = x3 lnx+ cx3

(e) y = x2 lnx+ cx2

18. Let

A =

 0 3 4
0 0 3
0 0 0



If eAt =

 1 f(t) h(t)
0 1 3t
0 0 1

 , then f(2) + h(2) =

(a) 32

(b) 24

(c) 28

(d) 26

(e) 30
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19. The matrix A =

 −1 0 1
0 −1 1
1 −1 −1

 has only one eigenvalue λ = −1 which is defective

of defect 2. If we choose v3 =

 1
0
0

 such that (A+ I)3 v3 = 0, and (A+ I)2v3 6= 0,

then the general solution of X ′ = AX is

(a) X =

c1
 1

1
0

+ c2

 t
t
1

+ c3

 1− t2

2
t2

2

t

 e−t

(b) X =

c1
 0

1
1

+ c2

 1
t
t

+ c3

 1 + t2

2
t2

2

t

 e−t

(c) X =

c1
 0

1
0

+ c2

 1
t

1

+ c3

 t2

2
t2

2

t

 e−t

(d) X =

c1
 1

1
0

+ c2

 t

t

1

+ c3

 t2

2 + 1
t2

2

t

 e−t

(e) X =

c1
 1
−1
0

+ c2

 t

−t
1

+ c3

 t2

2 + 1
t2

t

 e−t
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20. The characteristic equation of a matrix A is (λ+1)(λ−5)3 = 0, where we have only
two linearly independent eigenvectors corresponding to λ = 5. The Jordan normal
form of A is

(a)


−1 0 0 0
0 5 1 0
0 0 5 1
0 0 0 5



(b)


5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 −1



(c)


−1 1 0 0
0 5 0 0
0 0 5 1
0 0 0 5



(d)


−1 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5



(e)


−1 0 0 0
0 5 0 0
0 0 5 1
0 0 0 5
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Q MASTER CODE01 CODE02 CODE03 CODE04
1 A E 12 C 8 B 4 A 4

2 A D 14 D 14 D 6 C 16

3 A C 10 C 7 D 12 A 11

4 A C 7 C 12 D 10 D 10

5 A E 11 A 16 B 17 D 9

6 A E 18 A 15 E 16 B 8

7 A D 5 D 10 A 8 E 1

8 A E 6 E 9 D 3 B 3

9 A B 4 A 1 C 11 B 18

10 A A 3 B 6 E 14 D 13

11 A E 13 B 13 B 7 A 7

12 A B 15 B 5 D 5 D 6

13 A B 1 D 2 B 2 C 14

14 A A 8 B 11 B 15 C 5

15 A B 16 D 18 D 1 D 17

16 A C 2 B 17 E 13 A 12

17 A B 17 B 3 A 9 D 2

18 A A 9 B 4 A 18 A 15

19 A E 20 E 19 D 20 D 20

20 A B 19 E 20 A 19 E 19
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V A B C D E
1 3 6 3 2 6
2 3 7 3 4 3
3 4 5 1 7 3
4 5 3 3 7 2


