King Fahd University of Petroleum and Minerals Department of Mathematics

> Math 208 Final Exam 221 December 24, 2022

EXAM COVER

Number of versions: 4 Number of questions: 20

King Fahd University of Petroleum and Minerals Department of Mathematics **Math 208** Final Exam 221 December 24, 2022 Net Time Allowed: 180 Minutes

MASTER VERSION

1. If y(x) is the solution of the initial value problem

$$\frac{dy}{dx} = \frac{2x+1}{2y}, y(-2) = -1$$
, then $y(2) =$

(a)
$$-\sqrt{5}$$
 _______(correct)
(b) $\sqrt{5}$
(c) $-\sqrt{3}$
(d) $\sqrt{3}$
(e) 0

2. The general solution of the differential equation

$$x\frac{dy}{dx} - 3y = x^3$$

is

(a)
$$y = x^{3} \ln x + cx^{3}$$
 ______(correct)
(b) $y = x^{2} \ln x + cx^{2}$
(c) $y = x^{3} \ln x + cx^{2}$
(d) $y = x^{3} \ln x + cx$
(e) $y = x^{2} \ln x + cx^{3}$

3. The general solution of the exact differential equation

$$(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0$$

is

(a)
$$x^3 + 2xy^2 + 2y^3 = c$$
 (correct)
(b) $x^3 - 2xy^2 + 2y^3 = c$
(c) $x^3 - 2xy^2 - 2y^3 = c$
(d) $x^3 - 2x^2y - 2y^3 = c$
(e) $x^3 - 2x^2y + 2y^3 = c$

4. If (x, y, z) = (a, b, c) is the solution of the system

$$\begin{cases} 2x + 8y + 3z = 2\\ x + 3y + 2z = 5\\ 2x + 7y + 4z = 8 \end{cases}$$

then a + b + c =

- (c) 7
- (d) 3
- (e) 0

- 5. Let S be a subspace of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis for the subspace is
 - (a) $\{(1,1,0,0), (1,0,1,0), (1,0,0,1)\}$ _____(correct)
 - (b) $\{(1,1,0,0), (1,0,1,0)\}$
 - (c) {(1,0,1,0), (1,0,0,1)}
 - (d) {(1,1,1,0), (1,0,1,0), (1,0,1,1)}
 - (e) $\{(1,1,0,0), (1,0,1,0), (2,0,1,2)\}$

6. If y(x) is the solution of the initial-value problem

$$y'' + 4y = 2x; y(0) = 1, y'(0) = 2$$

then $y(\pi) =$

(a)
$$1 + \frac{\pi}{2}$$
 (correct)
(b) $1 - \frac{\pi}{2}$
(c) $1 + \frac{\pi}{4}$
(d) $1 - \frac{\pi}{4}$
(e) $1 + \frac{\pi}{3}$

7. By using the method of variation of parameters, a particular solution y_p of the differential equation

$$y'' - 9y = \frac{9x}{e^{3x}}$$

is

(a)
$$y_p = -\frac{3}{4}x^2e^{-3x} - \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$$
 (correct)
(b) $y_p = \frac{1}{4}x^3e^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
(c) $y_p = \frac{3}{4}x^2e^{-3x} + \frac{1}{2}xe^{-3x} - \frac{1}{24}e^{-3x}$
(d) $y_p = -\frac{3}{4}xe^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
(e) $y_p = \frac{1}{2}x^2e^{-3x} + \frac{1}{4}x^3e^{-3x} - \frac{1}{24}e^{-3x}$

8. Let
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix}$$
. Using Cayley-Hamilton Theorem,
 $A^4 = aA^3 + bA^2 + cA$.
 $a + b + c =$

- (d) 3
- (e) 4

9. The general solution of the first order homogeneous system $X' = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix} X$

is given by

$$X = c_1 \begin{bmatrix} a \\ b \\ -2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} \alpha \\ \beta \\ 1 \end{bmatrix} e^{\lambda t} + c_3 \begin{bmatrix} e \\ f \\ 13 \end{bmatrix}$$

then $a \cdot b \cdot \lambda =$

MASTER

11. Let
$$A = \begin{bmatrix} 9 & -8 \\ 6 & -5 \end{bmatrix}$$
. A diagonalization matrix P , such that $P^{-1}AP$ is diagonal is

(a)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$
 (correct)
(b) $P = \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$
(c) $P = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$
(d) $P = \begin{bmatrix} 1 & -2 \\ 2 & 5 \end{bmatrix}$
(e) $P = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$

12. The differential equation

$$t^{3}x''' - 2t^{2}x'' + 3tx' + 5x = \ln t$$

is equivalent to the system of first-order equations.

(a)
$$x'_1 = x_2, x'_2 = x_3, t^3 x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$$
 (correct)
(b) $x'_1 = x_2, x'_2 = x_3, x'_3 = -5x_1 - 3tx_2 - 2x_3 + \ln t$
(c) $x'_1 = x_1, x'_2 = x_2, x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$
(d) $x'_1 = x_2, x'_2 = x_3, x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 - \ln t$
(e) $x'_1 = x'_2, x'_2 = x_1, t^3 x'_3 = 5x_1 + 3tx_2 + 2t^2x_3 + \ln t$

Page 7 of 11

MASTER

13. If $X = c_1 \begin{bmatrix} 5 \\ -6 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{4t}$ is the solution of the initial value problem $X' = \begin{bmatrix} 9 & 5 \\ -6 & -2 \end{bmatrix} X, X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ then $c_2^2 - c_1^2 =$

(e) 32

14. The solution of
$$X' = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} X$$
, $X(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ at $t = \frac{\pi}{4}$ equals

(a)
$$\begin{pmatrix} -2\\1 \end{pmatrix} e^{\frac{\pi}{4}}$$
 (correct)
(b) $\begin{pmatrix} 2\\1 \end{pmatrix} e^{\frac{\pi}{4}}$
(c) $\begin{pmatrix} 1\\2 \end{pmatrix} e^{\frac{\pi}{4}}$
(d) $\begin{pmatrix} -2\\0 \end{pmatrix} e^{\frac{\pi}{4}}$
(e) $\begin{pmatrix} 2\\1 \end{pmatrix} e^{-\frac{\pi}{4}}$

MASTER

15. Let

$$A = \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

If $e^{At} = \begin{bmatrix} 1 & f(t) & h(t) \\ 0 & 1 & 3t \\ 0 & 0 & 1 \end{bmatrix}$, then $f(2) + h(2) =$
(a) 32 ______(correct)
(b) 30 _____(correct)
(c) 28 _____(d) 26 _____(correct)

16. A possible fundamental matrix for the system $X' = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix} X$ is

(a)
$$\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ -3e^{-2t} & e^{5t} \end{bmatrix}$$
 (c) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ 0 & e^{5t} \end{bmatrix}$
(c) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ e^{-2t} & 2e^{5t} \end{bmatrix}$
(d) $\Phi(t) = \begin{bmatrix} 3e^{-2t} & 0 \\ 5e^{-2t} & e^{5t} \end{bmatrix}$
(e) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ -3e^{-2t} & 0 \end{bmatrix}$

MASTER

17. Using variation of parameters to find a particular solution X_p of the nonhomogeneous system $X' = AX + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t$ where $X_c = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$ form a general solution of the associated homogeneous system, then $X_p(1) =$

18. The general solution of the differential equation

$$y''' + 3y'' - 4y = 0$$

is

(a)
$$y(x) = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$$
 (correct)
(b) $y(x) = c_1 e^{-x} + c_2 e^{-2x} + c_3 x e^{-2x}$
(c) $y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{3x}$
(d) $y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{4x}$
(e) $y(x) = c_1 e^{-x} + c_2 e^{3x} + c_3 x e^{3x}$

19. The characteristic equation of a matrix A is $(\lambda + 1)(\lambda - 5)^3 = 0$, where we have only two linearly independent eigenvectors corresponding to $\lambda = 5$. The Jordan normal form of A is

MASTER

20. The matrix $A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$ has only one eigenvalue $\lambda = -1$ which is defective of defect 2. If we choose $v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ such that $(A + I)^3 v_3 = 0$, and $(A + I)^2 v_3 \neq 0$, then the general solution of X' = AX is

(a)
$$X = \left(c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1\\\frac{t^2}{2}\\t \end{bmatrix}\right) e^{-t}$$
(correct)
(b)
$$X = \left(c_1 \begin{bmatrix} 0\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 1\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2}\\\frac{t^2}{2}\\t \end{bmatrix}\right) e^{-t}$$
(c)
$$X = \left(c_1 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\t\\t \end{bmatrix} + c_3 \begin{bmatrix} 1 + \frac{t^2}{2}\\\frac{t^2}{2}\\t \end{bmatrix}\right) e^{-t}$$
(d)
$$X = \left(c_1 \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\-t\\1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1\\t^2\\t \end{bmatrix}\right) e^{-t}$$
(e)
$$X = \left(c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} 1 - \frac{t^2}{2}\\\frac{t^2}{2}\\t \end{bmatrix}\right) e^{-t}$$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01

CODE01

Math 208 Final Exam 221 December 24, 2022 Net Time Allowed: 180 Minutes

Name		
ID	Sec	

Check that this exam has <u>20</u> questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The differential equation

 $t^{3}x''' - 2t^{2}x'' + 3tx' + 5x = \ln t$

is equivalent to the system of first-order equations.

(a)
$$x'_1 = x_2, x'_2 = x_3, x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 - \ln t$$

(b) $x'_1 = x'_2, x'_2 = x_1, t^3 x'_3 = 5x_1 + 3tx_2 + 2t^2x_3 + \ln t$
(c) $x'_1 = x_1, x'_2 = x_2, x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$
(d) $x'_1 = x_2, x'_2 = x_3, x'_3 = -5x_1 - 3tx_2 - 2x_3 + \ln t$
(e) $x'_1 = x_2, x'_2 = x_3, t^3 x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$

2. The solution of $X' = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} X$, $X(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ at $t = \frac{\pi}{4}$ equals

(a)
$$\begin{pmatrix} 2\\1 \end{pmatrix} e^{\frac{\pi}{4}}$$

(b) $\begin{pmatrix} -2\\0 \end{pmatrix} e^{\frac{\pi}{4}}$
(c) $\begin{pmatrix} 2\\1 \end{pmatrix} e^{-\frac{\pi}{4}}$
(d) $\begin{pmatrix} -2\\1 \end{pmatrix} e^{\frac{\pi}{4}}$
(e) $\begin{pmatrix} 1\\2 \end{pmatrix} e^{\frac{\pi}{4}}$

221, Math 208, Final Exam

CODE01

3. Let
$$A = \begin{bmatrix} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
. An eigenvector corresponding to the eigenvalue $\lambda = 2$ of A is

(a)
$$\begin{bmatrix} -1\\ 3\\ 2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2\\ 1\\ 2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -1\\ 1\\ 2 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -1\\ 0\\ 2 \end{bmatrix}$$

(e)
$$\begin{bmatrix} -1\\ 1\\ 3 \end{bmatrix}$$

4. By using the method of variation of parameters, a particular solution y_p of the differential equation

$$y'' - 9y = \frac{9x}{e^{3x}}$$

 \mathbf{is}

(a)
$$y_p = \frac{1}{4}x^3e^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$$

(b) $y_p = -\frac{3}{4}xe^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
(c) $y_p = -\frac{3}{4}x^2e^{-3x} - \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
(d) $y_p = \frac{1}{2}x^2e^{-3x} + \frac{1}{4}x^3e^{-3x} - \frac{1}{24}e^{-3x}$
(e) $y_p = \frac{3}{4}x^2e^{-3x} + \frac{1}{2}xe^{-3x} - \frac{1}{24}e^{-3x}$

221, Math 208, Final Exam

5. Let $A = \begin{bmatrix} 9 & -8 \\ 6 & -5 \end{bmatrix}$. A diagonalization matrix P, such that $P^{-1}AP$ is diagonal is

(a)
$$P = \begin{bmatrix} 1 & -2 \\ 2 & 5 \end{bmatrix}$$

(b)
$$P = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$$

(c)
$$P = \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$$

(d)
$$P = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$

(e)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$

6. The general solution of the differential equation

$$y''' + 3y'' - 4y = 0$$

is

(a)
$$y(x) = c_1 e^{-x} + c_2 e^{3x} + c_3 x e^{3x}$$

(b) $y(x) = c_1 e^{-x} + c_2 e^{-2x} + c_3 x e^{-2x}$
(c) $y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{3x}$
(d) $y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{4x}$
(e) $y(x) = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$

- (a) $\{(1,1,1,0), (1,0,1,0), (1,0,1,1)\}$
- (b) $\{(1,1,0,0), (1,0,1,0), (2,0,1,2)\}$
- (c) {(1, 1, 0, 0), (1, 0, 1, 0)}
- (d) {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}
- (e) {(1,0,1,0), (1,0,0,1)}

8. If y(x) is the solution of the initial-value problem

y'' + 4y = 2x; y(0) = 1, y'(0) = 2then $y(\pi) =$

(a) $1 - \frac{\pi}{4}$ (b) $1 + \frac{\pi}{4}$ (c) $1 + \frac{\pi}{3}$ (d) $1 - \frac{\pi}{2}$ (e) $1 + \frac{\pi}{2}$ 9. If (x, y, z) = (a, b, c) is the solution of the system

$$\begin{cases} 2x + 8y + 3z = 2\\ x + 3y + 2z = 5\\ 2x + 7y + 4z = 8 \end{cases}$$

then a + b + c =

- (a) 3
- (b) 5
- (c) 0
- (d) 7
- (e) 6

10. The general solution of the exact differential equation

$$(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0$$

is

(a)
$$x^{3} + 2xy^{2} + 2y^{3} = c$$

(b) $x^{3} - 2xy^{2} - 2y^{3} = c$
(c) $x^{3} - 2x^{2}y + 2y^{3} = c$
(d) $x^{3} - 2x^{2}y - 2y^{3} = c$
(e) $x^{3} - 2xy^{2} + 2y^{3} = c$

Page 6 of 11

CODE01

11. If $X = c_1 \begin{bmatrix} 5 \\ -6 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{4t}$ is the solution of the initial value problem $X' = \begin{bmatrix} 9 & 5 \\ -6 & -2 \end{bmatrix} X, X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ then $c_2^2 - c_1^2 =$

- (a) 32
- (b) 36
- (c) 34
- (d) 37
- (e) 35

12. Let

$$A = \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

If $e^{At} = \begin{bmatrix} 1 & f(t) & h(t) \\ 0 & 1 & 3t \\ 0 & 0 & 1 \end{bmatrix}$, then $f(2) + h(2) =$

- (a) 26
- (b) 32
- (c) 28
- (d) 30
- (e) 24

13. If y(x) is the solution of the initial value problem

$$\frac{dy}{dx} = \frac{2x+1}{2y}, \ y(-2) = -1, \ \text{then} \ y(2) =$$

(a)
$$\sqrt{3}$$

(b) $-\sqrt{5}$
(c) 0
(d) $-\sqrt{3}$
(e) $\sqrt{5}$

14. Let
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix}$$
. Using Cayley-Hamilton Theorem,
 $A^4 = aA^3 + bA^2 + cA$.
 $a + b + c =$

(a) 1

(b) 3

- (c) 0
- (d) 4
- (e) 2

15. A possible fundamental matrix for the system $X' = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix} X$ is

(a)
$$\Phi(t) = \begin{bmatrix} 3e^{-2t} & 0\\ 5e^{-2t} & e^{5t} \end{bmatrix}$$

(b) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t}\\ -3e^{-2t} & e^{5t} \end{bmatrix}$
(c) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t}\\ 0 & e^{5t} \end{bmatrix}$
(d) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t}\\ e^{-2t} & 2e^{5t} \end{bmatrix}$
(e) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t}\\ -3e^{-2t} & 0 \end{bmatrix}$

16. The general solution of the differential equation

$$x\frac{dy}{dx} - 3y = x^3$$

is

(a)
$$y = x^{2} \ln x + cx^{2}$$

(b) $y = x^{2} \ln x + cx^{3}$
(c) $y = x^{3} \ln x + cx^{3}$
(d) $y = x^{3} \ln x + cx$
(e) $y = x^{3} \ln x + cx^{2}$

17. Using variation of parameters to find a particular solution X_p of the nonhomogeneous system $X' = AX + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t$ where $X_c = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$ form a general solution of the associated homogeneous system, then $X_p(1) =$

(a)
$$\begin{bmatrix} 0\\ 3e \end{bmatrix}$$

(b)
$$\begin{bmatrix} 7e\\ 5e \end{bmatrix}$$

(c)
$$\begin{bmatrix} 7e\\ e \end{bmatrix}$$

(d)
$$\begin{bmatrix} 3e\\ 2e \end{bmatrix}$$

(e)
$$\begin{bmatrix} e\\ 5e \end{bmatrix}$$

18. The general solution of the first order homogeneous system $X' = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix} X$ is given by

$$X = c_1 \begin{bmatrix} a \\ b \\ -2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} \alpha \\ \beta \\ 1 \end{bmatrix} e^{\lambda t} + c_3 \begin{bmatrix} e \\ f \\ 13 \end{bmatrix}$$

then $a \cdot b \cdot \lambda =$

- (a) -24
- (b) 12
- (c) 0
- (d) -12
- (e) 24

19. The matrix $A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$ has only one eigenvalue $\lambda = -1$ which is defective of defect 2. If we choose $v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ such that $(A + I)^3 v_3 = 0$, and $(A + I)^2 v_3 \neq 0$, then the general solution of X' = AX is

(a)
$$X = \left(c_1 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\t\\t \end{bmatrix} + c_3 \begin{bmatrix} 1+\frac{t^2}{2}\\\frac{t^2}{2}\\t \end{bmatrix}\right) e^{-t}$$

(b)
$$X = \left(c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} 1-\frac{t^2}{2}\\\frac{t^2}{2}\\t \end{bmatrix}\right) e^{-t}$$

(c)
$$X = \left(c_1 \begin{bmatrix} 0\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 1\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2}\\\frac{t^2}{2}\\t \end{bmatrix}\right) e^{-t}$$

(d)
$$X = \left(c_1 \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\-t\\1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2}+1\\t^2\\t \end{bmatrix}\right) e^{-t}$$

(e)
$$X = \left(c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2}+1\\t^2\\t \end{bmatrix}\right) e^{-t}$$

221, Math 208, Final Exam

20. The characteristic equation of a matrix A is $(\lambda + 1)(\lambda - 5)^3 = 0$, where we have only two linearly independent eigenvectors corresponding to $\lambda = 5$. The Jordan normal form of A is

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02

CODE02

Math 208 Final Exam 221 December 24, 2022 Net Time Allowed: 180 Minutes

Name		
ID	Sec	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Let
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix}$$
. Using Cayley-Hamilton Theorem,
 $A^4 = aA^3 + bA^2 + cA$.
 $a + b + c =$

- (a) 4
- (b) 3
- (c) 1
- (d) 0
- (e) 2

2. The solution of $X' = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} X$, $X(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ at $t = \frac{\pi}{4}$ equals

(a)
$$\begin{pmatrix} -2\\ 0 \end{pmatrix} e^{\frac{\pi}{4}}$$

(b) $\begin{pmatrix} 2\\ 1 \end{pmatrix} e^{-\frac{\pi}{4}}$
(c) $\begin{pmatrix} 1\\ 2 \end{pmatrix} e^{\frac{\pi}{4}}$
(d) $\begin{pmatrix} -2\\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$
(e) $\begin{pmatrix} 2\\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$

3. By using the method of variation of parameters, a particular solution y_p of the differential equation

$$y'' - 9y = \frac{9x}{e^{3x}}$$

is

(a)
$$y_p = \frac{3}{4}x^2e^{-3x} + \frac{1}{2}xe^{-3x} - \frac{1}{24}e^{-3x}$$

(b) $y_p = -\frac{3}{4}xe^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
(c) $y_p = -\frac{3}{4}x^2e^{-3x} - \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
(d) $y_p = \frac{1}{2}x^2e^{-3x} + \frac{1}{4}x^3e^{-3x} - \frac{1}{24}e^{-3x}$
(e) $y_p = \frac{1}{4}x^3e^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$

4. The differential equation

$$t^3x''' - 2t^2x'' + 3tx' + 5x = \ln t$$

is equivalent to the system of first-order equations.

(a)
$$x'_1 = x_1, x'_2 = x_2, x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$$

(b) $x'_1 = x'_2, x'_2 = x_1, t^3 x'_3 = 5x_1 + 3tx_2 + 2t^2x_3 + \ln t$
(c) $x'_1 = x_2, x'_2 = x_3, t^3 x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$
(d) $x'_1 = x_2, x'_2 = x_3, x'_3 = -5x_1 - 3tx_2 - 2x_3 + \ln t$
(e) $x'_1 = x_2, x'_2 = x_3, x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 - \ln t$

5. A possible fundamental matrix for the system $X' = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix} X$ is

(a)
$$\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ -3e^{-2t} & e^{5t} \end{bmatrix}$$

(b) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ 0 & e^{5t} \end{bmatrix}$
(c) $\Phi(t) = \begin{bmatrix} 3e^{-2t} & 0 \\ 5e^{-2t} & e^{5t} \end{bmatrix}$
(d) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ e^{-2t} & 2e^{5t} \end{bmatrix}$
(e) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ -3e^{-2t} & 0 \end{bmatrix}$

6. Let

$$A = \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

If $e^{At} = \begin{bmatrix} 1 & f(t) & h(t) \\ 0 & 1 & 3t \\ 0 & 0 & 1 \end{bmatrix}$, then $f(2) + h(2) =$

- (a) 32
- (b) 28
- (c) 30
- (d) 24
- (e) 26

221, Math 208, Final Exam

CODE02

7. Let
$$A = \begin{bmatrix} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
. An eigenvector corresponding to the eigenvalue $\lambda = 2$ of A is

(a)
$$\begin{bmatrix} -1\\1\\3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2\\1\\2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -1\\0\\2 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -1\\1\\2 \end{bmatrix}$$

(e)
$$\begin{bmatrix} -1\\3\\2 \end{bmatrix}$$

8. The general solution of the first order homogeneous system $X' = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix} X$ is given by

$$X = c_1 \begin{bmatrix} a \\ b \\ -2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} \alpha \\ \beta \\ 1 \end{bmatrix} e^{\lambda t} + c_3 \begin{bmatrix} e \\ f \\ 13 \end{bmatrix}$$

then $a \cdot b \cdot \lambda =$

- (a) 12
- (b) 0
- (c) 24
- (d) -12
- (e) -24

9. If y(x) is the solution of the initial value problem

$$\frac{dy}{dx} = \frac{2x+1}{2y}, \ y(-2) = -1, \ \text{then} \ y(2) =$$

(a) $-\sqrt{5}$ (b) $-\sqrt{3}$ (c) $\sqrt{3}$ (d) 0 (e) $\sqrt{5}$

10. If y(x) is the solution of the initial-value problem

 $y'' + 4y = 2x; \ y(0) = 1, \ y'(0) = 2$ then $y(\pi) =$

(a) $1 + \frac{\pi}{4}$ (b) $1 + \frac{\pi}{2}$ (c) $1 - \frac{\pi}{2}$ (d) $1 - \frac{\pi}{4}$ (e) $1 + \frac{\pi}{3}$

Page 6 of 11

CODE02

11. If $X = c_1 \begin{bmatrix} 5 \\ -6 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{4t}$ is the solution of the initial value problem $X' = \begin{bmatrix} 9 & 5 \\ -6 & -2 \end{bmatrix} X, X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ then $c_2^2 - c_1^2 =$

- (a) 37
- (b) 35
- (c) 34
- (d) 36
- (e) 32

- 12. Let S be a subspace of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis for the subspace is
 - (a) $\{(1,1,0,0), (1,0,1,0), (2,0,1,2)\}$
 - (b) $\{(1,1,0,0), (1,0,1,0), (1,0,0,1)\}$
 - (c) {(1, 1, 0, 0), (1, 0, 1, 0)}
 - (d) $\{(1,0,1,0), (1,0,0,1)\}$
 - (e) $\{(1,1,1,0), (1,0,1,0), (1,0,1,1)\}$

13. The general solution of the differential equation

$$x\frac{dy}{dx} - 3y = x^3$$

is

(a)
$$y = x^{2} \ln x + cx^{2}$$

(b) $y = x^{2} \ln x + cx^{3}$
(c) $y = x^{3} \ln x + cx^{2}$
(d) $y = x^{3} \ln x + cx^{3}$
(e) $y = x^{3} \ln x + cx$

14. Let $A = \begin{bmatrix} 9 & -8 \\ 6 & -5 \end{bmatrix}$. A diagonalization matrix P, such that $P^{-1}AP$ is diagonal is

(a)
$$P = \begin{bmatrix} 1 & -2 \\ 2 & 5 \end{bmatrix}$$

(b)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$

(c)
$$P = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$

(d)
$$P = \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$$

(e)
$$P = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$$

15. The general solution of the differential equation

$$y''' + 3y'' - 4y = 0$$

is

(a)
$$y(x) = c_1 e^{-x} + c_2 e^{-2x} + c_3 x e^{-2x}$$

(b) $y(x) = c_1 e^{-x} + c_2 e^{3x} + c_3 x e^{3x}$
(c) $y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{3x}$
(d) $y(x) = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$
(e) $y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{4x}$

16. Using variation of parameters to find a particular solution X_p of the nonhomogeneous system $X' = AX + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t$ where $X_c = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$ form a general solution of the associated homogeneous system, then $X_p(1) =$

(a)
$$\begin{bmatrix} 3e\\ 2e \end{bmatrix}$$

(b)
$$\begin{bmatrix} 7e\\ 5e \end{bmatrix}$$

(c)
$$\begin{bmatrix} e\\ 5e \end{bmatrix}$$

(d)
$$\begin{bmatrix} 0\\ 3e \end{bmatrix}$$

(e)
$$\begin{bmatrix} 7e\\ e \end{bmatrix}$$

17. The general solution of the exact differential equation

$$(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0$$

is

(a)
$$x^{3} - 2x^{2}y + 2y^{3} = c$$

(b) $x^{3} + 2xy^{2} + 2y^{3} = c$
(c) $x^{3} - 2xy^{2} + 2y^{3} = c$
(d) $x^{3} - 2x^{2}y - 2y^{3} = c$
(e) $x^{3} - 2xy^{2} - 2y^{3} = c$

18. If (x, y, z) = (a, b, c) is the solution of the system

$$\begin{cases} 2x + 8y + 3z = 2\\ x + 3y + 2z = 5\\ 2x + 7y + 4z = 8 \end{cases}$$

then a + b + c =

- (a) 6
- (b) 5
- (c) 3
- (d) 0
- (e) 7

221, Math 208, Final Exam

19. The characteristic equation of a matrix A is $(\lambda + 1)(\lambda - 5)^3 = 0$, where we have only two linearly independent eigenvectors corresponding to $\lambda = 5$. The Jordan normal form of A is

20. The matrix $A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$ has only one eigenvalue $\lambda = -1$ which is defective of defect 2. If we choose $v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ such that $(A + I)^3 v_3 = 0$, and $(A + I)^2 v_3 \neq 0$, then the general solution of X' = AX is

(a)
$$X = \left(c_1 \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} + c_2 \begin{bmatrix} t\\ -t\\ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1\\ t^2\\ t \end{bmatrix}\right) e^{-t}$$

(b)
$$X = \left(c_1 \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix} + c_2 \begin{bmatrix} t\\ t\\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 - \frac{t^2}{2}\\ \frac{t^2}{2}\\ t \end{bmatrix}\right) e^{-t}$$

(c)
$$X = \left(c_1 \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1\\ t\\ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2}\\ \frac{t^2}{2}\\ t \end{bmatrix}\right) e^{-t}$$

(d)
$$X = \left(c_1 \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\ t\\ t \end{bmatrix} + c_3 \begin{bmatrix} 1 + \frac{t^2}{2}\\ \frac{t^2}{2}\\ t \end{bmatrix}\right) e^{-t}$$

(e)
$$X = \left(c_1 \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix} + c_2 \begin{bmatrix} t\\ t\\ 1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1\\ \frac{t^2}{2} \\ t \end{bmatrix}\right) e^{-t}$$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE03

CODE03

Math 208 Final Exam 221 December 24, 2022 Net Time Allowed: 180 Minutes

Name		
ID	Sec	

Check that this exam has <u>20</u> questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If (x, y, z) = (a, b, c) is the solution of the system

$$\begin{cases} 2x + 8y + 3z = 2\\ x + 3y + 2z = 5\\ 2x + 7y + 4z = 8 \end{cases}$$

then a + b + c =

- (a) 3
- (b) 5
- (c) 0
- (d) 6
- (e) 7

2. If y(x) is the solution of the initial-value problem

y'' + 4y = 2x; y(0) = 1, y'(0) = 2

then $y(\pi) =$

(a) $1 + \frac{\pi}{3}$ (b) $1 - \frac{\pi}{4}$ (c) $1 + \frac{\pi}{4}$ (d) $1 + \frac{\pi}{2}$ (e) $1 - \frac{\pi}{2}$

3. The differential equation

 $t^{3}x''' - 2t^{2}x'' + 3tx' + 5x = \ln t$

is equivalent to the system of first-order equations.

(a)
$$x'_1 = x_2, x'_2 = x_3, x'_3 = -5x_1 - 3tx_2 - 2x_3 + \ln t$$

(b) $x'_1 = x'_2, x'_2 = x_1, t^3 x'_3 = 5x_1 + 3tx_2 + 2t^2x_3 + \ln t$
(c) $x'_1 = x_2, x'_2 = x_3, x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 - \ln t$
(d) $x'_1 = x_2, x'_2 = x_3, t^3 x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$
(e) $x'_1 = x_1, x'_2 = x_2, x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$

4. Let
$$A = \begin{bmatrix} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
. An eigenvector corresponding to the eigenvalue $\lambda = 2$ of A is

5. Using variation of parameters to find a particular solution X_p of the nonhomogeneous system $X' = AX + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t$ where $X_c = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$ form a general solution of the associated homogeneous system, then $X_p(1) =$

(a)
$$\begin{bmatrix} 7e \\ e \end{bmatrix}$$

(b)
$$\begin{bmatrix} 7e \\ 5e \end{bmatrix}$$

(c)
$$\begin{bmatrix} e \\ 5e \end{bmatrix}$$

(d)
$$\begin{bmatrix} 3e \\ 2e \end{bmatrix}$$

(e)
$$\begin{bmatrix} 0 \\ 3e \end{bmatrix}$$

6. A possible fundamental matrix for the system $X' = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix} X$ is

(a)
$$\Phi(t) = \begin{bmatrix} 3e^{-2t} & 0\\ 5e^{-2t} & e^{5t} \end{bmatrix}$$

(b) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t}\\ -3e^{-2t} & 0 \end{bmatrix}$
(c) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t}\\ 0 & e^{5t} \end{bmatrix}$
(d) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t}\\ e^{-2t} & 2e^{5t} \end{bmatrix}$
(e) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t}\\ -3e^{-2t} & e^{5t} \end{bmatrix}$

7. Let
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix}$$
. Using Cayley-Hamilton Theorem,
 $A^4 = aA^3 + bA^2 + cA$.
 $a + b + c =$

- (a) 1
- (b) 3
- (c) 0
- (d) 4
- (e) 2

8. The general solution of the exact differential equation

$$(3x^2 + 2y^2) \, dx + (4xy + 6y^2) \, dy = 0$$

is

(a)
$$x^{3} - 2xy^{2} + 2y^{3} = c$$

(b) $x^{3} - 2x^{2}y - 2y^{3} = c$
(c) $x^{3} - 2xy^{2} - 2y^{3} = c$
(d) $x^{3} + 2xy^{2} + 2y^{3} = c$
(e) $x^{3} - 2x^{2}y + 2y^{3} = c$

221, Math 208, Final Exam

9. Let
$$A = \begin{bmatrix} 9 & -8 \\ 6 & -5 \end{bmatrix}$$
. A diagonalization matrix P , such that $P^{-1}AP$ is diagonal is

(a)
$$P = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$$

(b)
$$P = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$

(c)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$

(d)
$$P = \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$$

(e)
$$P = \begin{bmatrix} 1 & -2 \\ 2 & 5 \end{bmatrix}$$

10. The solution of
$$X' = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} X$$
, $X(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ at $t = \frac{\pi}{4}$ equals

(a)
$$\begin{pmatrix} -2 \\ 0 \end{pmatrix} e^{\frac{\pi}{4}}$$

(b) $\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$
(c) $\begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{\frac{\pi}{4}}$
(d) $\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-\frac{\pi}{4}}$
(e) $\begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$

11. By using the method of variation of parameters, a particular solution y_p of the differential equation

$$y'' - 9y = \frac{9x}{e^{3x}}$$

is

(a)
$$y_p = \frac{3}{4}x^2e^{-3x} + \frac{1}{2}xe^{-3x} - \frac{1}{24}e^{-3x}$$

(b) $y_p = -\frac{3}{4}x^2e^{-3x} - \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
(c) $y_p = -\frac{3}{4}xe^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
(d) $y_p = \frac{1}{2}x^2e^{-3x} + \frac{1}{4}x^3e^{-3x} - \frac{1}{24}e^{-3x}$
(e) $y_p = \frac{1}{4}x^3e^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$

- 12. Let S be a subspace of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis for the subspace is
 - (a) {(1, 1, 0, 0), (1, 0, 1, 0)}
 - (b) $\{(1,0,1,0), (1,0,0,1)\}$
 - (c) {(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 1, 1)}
 - (d) {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}
 - (e) $\{(1,1,0,0), (1,0,1,0), (2,0,1,2)\}$

13. The general solution of the differential equation

$$x\frac{dy}{dx} - 3y = x^3$$

is

(a)
$$y = x^{3} \ln x + cx^{2}$$

(b) $y = x^{3} \ln x + cx^{3}$
(c) $y = x^{2} \ln x + cx^{3}$
(d) $y = x^{2} \ln x + cx^{2}$
(e) $y = x^{3} \ln x + cx$

14. Let

$$\begin{split} A &= \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} \\ \text{If } e^{At} &= \begin{bmatrix} 1 & f(t) & h(t) \\ 0 & 1 & 3t \\ 0 & 0 & 1 \end{bmatrix}, \text{ then } f(2) + h(2) = \end{split}$$

- (a) 26
- (b) 32
- (c) 24
- (d) 30
- (e) 28

15. If y(x) is the solution of the initial value problem

$$\frac{dy}{dx} = \frac{2x+1}{2y}, \ y(-2) = -1, \ \text{then} \ y(2) =$$

(a)
$$\sqrt{3}$$

(b) $-\sqrt{3}$
(c) 0
(d) $-\sqrt{5}$
(e) $\sqrt{5}$

16. If $X = c_1 \begin{bmatrix} 5 \\ -6 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{4t}$ is the solution of the initial value problem $X' = \begin{bmatrix} 9 & 5 \\ -6 & -2 \end{bmatrix} X, X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ then $c_2^2 - c_1^2 =$

- (a) 36
- (b) 32
- (c) 37
- (d) 34
- (e) 35

17. The general solution of the first order homogeneous system $X' = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix} X$ is given by

is given by

$$X = c_1 \begin{bmatrix} a \\ b \\ -2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} \alpha \\ \beta \\ 1 \end{bmatrix} e^{\lambda t} + c_3 \begin{bmatrix} e \\ f \\ 13 \end{bmatrix}$$

then $a \cdot b \cdot \lambda =$

- (a) -24
- (b) -12
- (c) 0
- (d) 24
- (e) 12

18. The general solution of the differential equation

$$y''' + 3y'' - 4y = 0$$

is

(a)
$$y(x) = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$$

(b) $y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{3x}$
(c) $y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{4x}$
(d) $y(x) = c_1 e^{-x} + c_2 e^{-2x} + c_3 x e^{-2x}$
(e) $y(x) = c_1 e^{-x} + c_2 e^{3x} + c_3 x e^{3x}$

19. The matrix $A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$ has only one eigenvalue $\lambda = -1$ which is defective of defect 2. If we choose $v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ such that $(A + I)^3 v_3 = 0$, and $(A + I)^2 v_3 \neq 0$, then the general solution of X' = AX is

(a)
$$X = \begin{pmatrix} c_1 \begin{bmatrix} 0\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 1\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2}\\\frac{t^2}{2}\\t \end{bmatrix} \end{pmatrix} e^{-t}$$

(b) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} 1 - \frac{t^2}{2}\\\frac{t^2}{2}\\t \end{bmatrix} \end{pmatrix} e^{-t}$
(c) $X = \begin{pmatrix} c_1 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\t\\t \end{bmatrix} + c_3 \begin{bmatrix} 1 + \frac{t^2}{2}\\\frac{t^2}{2}\\t \end{bmatrix} \end{pmatrix} e^{-t}$
(d) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1\\\frac{t^2}{2}\\t \end{bmatrix} \end{pmatrix} e^{-t}$
(e) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1\\\frac{t^2}{2}\\t \end{bmatrix} \end{pmatrix} e^{-t}$

221, Math 208, Final Exam

20. The characteristic equation of a matrix A is $(\lambda + 1)(\lambda - 5)^3 = 0$, where we have only two linearly independent eigenvectors corresponding to $\lambda = 5$. The Jordan normal form of A is

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04

CODE04

Math 208 Final Exam 221 December 24, 2022 Net Time Allowed: 180 Minutes

Name		
ID	Sec	

Check that this exam has $\underline{20}$ questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If (x, y, z) = (a, b, c) is the solution of the system

$$\begin{cases} 2x + 8y + 3z = 2\\ x + 3y + 2z = 5\\ 2x + 7y + 4z = 8 \end{cases}$$

then a + b + c =

- (a) 5
- (b) 7
- (c) 3
- (d) 0
- (e) 6

2. A possible fundamental matrix for the system $X' = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix} X$ is

(a)
$$\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ 0 & e^{5t} \end{bmatrix}$$

(b) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ e^{-2t} & 2e^{5t} \end{bmatrix}$
(c) $\Phi(t) = \begin{bmatrix} e^{-2t} & 2e^{5t} \\ -3e^{-2t} & e^{5t} \end{bmatrix}$
(d) $\Phi(t) = \begin{bmatrix} e^{-2t} & e^{5t} \\ -3e^{-2t} & 0 \end{bmatrix}$
(e) $\Phi(t) = \begin{bmatrix} 3e^{-2t} & 0 \\ 5e^{-2t} & e^{5t} \end{bmatrix}$

221, Math 208, Final Exam

3. Let
$$A = \begin{bmatrix} 9 & -8 \\ 6 & -5 \end{bmatrix}$$
. A diagonalization matrix P , such that $P^{-1}AP$ is diagonal is

(a)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$

(b)
$$P = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$$

(c)
$$P = \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix}$$

(d)
$$P = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$

(e)
$$P = \begin{bmatrix} 1 & -2 \\ 2 & 5 \end{bmatrix}$$

4. Let $A = \begin{bmatrix} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$. An eigenvector corresponding to the eigenvalue $\lambda = 2$ of A is

5. The general solution of the first order homogeneous system $X' = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix} X$

is given by

$$X = c_1 \begin{bmatrix} a \\ b \\ -2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} \alpha \\ \beta \\ 1 \end{bmatrix} e^{\lambda t} + c_3 \begin{bmatrix} e \\ f \\ 13 \end{bmatrix}$$

then $a \cdot b \cdot \lambda =$

- (a) -12
- (b) 12
- (c) 24
- (d) -24
- (e) 0

6. Let
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix}$$
. Using Cayley-Hamilton Theorem,
 $A^4 = aA^3 + bA^2 + cA$.
 $a + b + c =$

- (a) 4
- (b) 1
- (c) 3
- (d) 0
- (e) 2

7. If y(x) is the solution of the initial value problem

$$\frac{dy}{dx} = \frac{2x+1}{2y}, \ y(-2) = -1, \ \text{then} \ y(2) =$$

- (a) $\sqrt{5}$ (b) $-\sqrt{3}$ (c) 0 (d) $\sqrt{3}$ (e) $-\sqrt{5}$

8. The general solution of the exact differential equation

$$(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0$$

is

(a)
$$x^{3} - 2x^{2}y + 2y^{3} = c$$

(b) $x^{3} + 2xy^{2} + 2y^{3} = c$
(c) $x^{3} - 2xy^{2} + 2y^{3} = c$
(d) $x^{3} - 2xy^{2} - 2y^{3} = c$
(e) $x^{3} - 2x^{2}y - 2y^{3} = c$

9. The general solution of the differential equation

$$y''' + 3y'' - 4y = 0$$

is

(a)
$$y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{3x}$$

(b) $y(x) = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$
(c) $y(x) = c_1 e^{-x} + c_2 e^{3x} + c_3 x e^{3x}$
(d) $y(x) = c_1 e^{-x} + c_2 e^{-2x} + c_3 x e^{-2x}$
(e) $y(x) = c_1 e^x + c_2 e^{-2x} + c_3 e^{4x}$

10. If $X = c_1 \begin{bmatrix} 5 \\ -6 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{4t}$ is the solution of the initial value problem $X' = \begin{bmatrix} 9 & 5 \\ -6 & -2 \end{bmatrix} X, X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ then $c_2^2 - c_1^2 =$

(a) 37

(b) 34

- (c) 36
- (d) 35
- (e) 32

11. By using the method of variation of parameters, a particular solution y_p of the differential equation

$$y'' - 9y = \frac{9x}{e^{3x}}$$

is

(a)
$$y_p = -\frac{3}{4}x^2e^{-3x} - \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$$

(b) $y_p = \frac{1}{4}x^3e^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
(c) $y_p = -\frac{3}{4}xe^{-3x} + \frac{1}{4}xe^{-3x} - \frac{1}{24}e^{-3x}$
(d) $y_p = \frac{3}{4}x^2e^{-3x} + \frac{1}{2}xe^{-3x} - \frac{1}{24}e^{-3x}$
(e) $y_p = \frac{1}{2}x^2e^{-3x} + \frac{1}{4}x^3e^{-3x} - \frac{1}{24}e^{-3x}$

12. If y(x) is the solution of the initial-value problem

y'' + 4y = 2x; y(0) = 1, y'(0) = 2then $y(\pi) =$

(a)
$$1 + \frac{\pi}{4}$$

(b) $1 - \frac{\pi}{4}$
(c) $1 + \frac{\pi}{3}$
(d) $1 + \frac{\pi}{2}$
(e) $1 - \frac{\pi}{2}$

221, Math 208, Final Exam

CODE04

13. The solution of
$$X' = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} X$$
, $X(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ at $t = \frac{\pi}{4}$ equals

(a)
$$\begin{pmatrix} -2\\ 0 \end{pmatrix} e^{\frac{\pi}{4}}$$

(b) $\begin{pmatrix} 2\\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$
(c) $\begin{pmatrix} -2\\ 1 \end{pmatrix} e^{\frac{\pi}{4}}$
(d) $\begin{pmatrix} 1\\ 2 \end{pmatrix} e^{\frac{\pi}{4}}$
(e) $\begin{pmatrix} 2\\ 1 \end{pmatrix} e^{-\frac{\pi}{4}}$

14. Let S be a subspace of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis for the subspace is

- (a) {(1, 1, 0, 0), (1, 0, 1, 0), (2, 0, 1, 2)}
- (b) $\{(1,1,0,0), (1,0,1,0)\}$
- (c) {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}
- (d) {(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 1, 1)}
- (e) $\{(1,0,1,0), (1,0,0,1)\}$

15. Using variation of parameters to find a particular solution X_p of the nonhomogeneous system $X' = AX + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t$ where $X_c = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$ form a general solution of the associated homogeneous system, then $X_p(1) =$

(a)
$$\begin{bmatrix} 3e\\ 2e \end{bmatrix}$$

(b)
$$\begin{bmatrix} e\\ 5e \end{bmatrix}$$

(c)
$$\begin{bmatrix} 7e\\ e \end{bmatrix}$$

(d)
$$\begin{bmatrix} 7e\\ 5e \end{bmatrix}$$

(e)
$$\begin{bmatrix} 0\\ 3e \end{bmatrix}$$

16. The differential equation

$$t^3 x''' - 2t^2 x'' + 3tx' + 5x = \ln t$$

is equivalent to the system of first-order equations.

(a)
$$x'_1 = x_2, x'_2 = x_3, t^3 x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$$

(b) $x'_1 = x_2, x'_2 = x_3, x'_3 = -5x_1 - 3tx_2 - 2x_3 + \ln t$
(c) $x'_1 = x'_2, x'_2 = x_1, t^3 x'_3 = 5x_1 + 3tx_2 + 2t^2x_3 + \ln t$
(d) $x'_1 = x_2, x'_2 = x_3, x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 - \ln t$
(e) $x'_1 = x_1, x'_2 = x_2, x'_3 = -5x_1 - 3tx_2 + 2t^2x_3 + \ln t$

17. The general solution of the differential equation

$$x\frac{dy}{dx} - 3y = x^3$$

is

(a)
$$y = x^{3} \ln x + cx^{2}$$

(b) $y = x^{3} \ln x + cx$
(c) $y = x^{2} \ln x + cx^{3}$
(d) $y = x^{3} \ln x + cx^{3}$
(e) $y = x^{2} \ln x + cx^{2}$

18. Let

$$\begin{split} A &= \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} \\ \text{If } e^{At} &= \begin{bmatrix} 1 & f(t) & h(t) \\ 0 & 1 & 3t \\ 0 & 0 & 1 \end{bmatrix}, \text{ then } f(2) + h(2) = \end{split}$$

- (a) 32
- (b) 24
- (c) 28
- (d) 26
- (e) 30

19. The matrix $A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$ has only one eigenvalue $\lambda = -1$ which is defective of defect 2. If we choose $v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ such that $(A + I)^3 v_3 = 0$, and $(A + I)^2 v_3 \neq 0$, then the general solution of X' = AX is

(a)
$$X = \begin{pmatrix} c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} 1 - \frac{t^2}{2}\\\frac{t^2}{2}\\t \end{bmatrix} \end{pmatrix} e^{-t}$$

(b) $X = \begin{pmatrix} c_1 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\t\\t \end{bmatrix} + c_3 \begin{bmatrix} 1 + \frac{t^2}{2}\\\frac{t^2}{2}\\t \end{bmatrix} \end{pmatrix} e^{-t}$
(c) $X = \begin{pmatrix} c_1 \begin{bmatrix} 0\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 1\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2}\\\frac{t^2}{2}\\t \end{bmatrix} \end{pmatrix} e^{-t}$
(d) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1\\\frac{t^2}{2}\\t \end{bmatrix} \end{pmatrix} e^{-t}$
(e) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + 1\\\frac{t^2}{2}\\t \end{bmatrix} \end{pmatrix} e^{-t}$

221, Math 208, Final Exam

20. The characteristic equation of a matrix A is $(\lambda + 1)(\lambda - 5)^3 = 0$, where we have only two linearly independent eigenvectors corresponding to $\lambda = 5$. The Jordan normal form of A is

Math 208, 221, Final Exam

Answer KEY

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	A	Е 12	С 8	B 4	A 4
2	А	D 14	D 14	D 6	С 16
3	А	С 10	С 7	D 12	A 11
4	A	С 7	С 12	D 10	D 10
5	A	Е 11	A 16	В 17	D 9
6	А	Е 18	A 15	Е 16	B 8
7	A	D 5	D 10	A ₈	E 1
8	A	Е 6	E 9	D 3	Вз
9	A	B 4	A 1	С 11	В 18
10	A	Аз	В 6	Е 14	D 13
11	A	Е 13	В 13	B ₇	A ₇
12	A	В 15	B 5	D 5	D 6
13	A	В 1	D 2	В 2	С 14
14	A	A ₈	В 11	В 15	С 5
15	A	В 16	D 18	D 1	D 17
16	A	С 2	В 17	Е 13	A 12
17	A	В 17	Вз	А 9	D 2
18	A	A 9	B 4	A 18	A 15
19	A	E 20	Е 19	D 20	D 20
20	A	В 19	Е 20	A 19	Е 19

Answer Counts

V	A	В	С	D	Е
1	3	6	3	2	6
2	3	7	3	4	3
3	4	5	1	7	3
4	5	3	3	7	2