King Fahd University of Petroleum and Minerals Department of Mathematics Math 208 Exam II 222 March 27, 2023 Net Time Allowed: 120 Minutes

USE THIS AS A TEMPLATE

Write your questions, once you are satisfied upload this file.

1. Which one of the following sets V is a subspace of \mathbb{R}^3 ?

- (a) V is the set of all (x, y, z) such that z = 2x + 3y
- (b) V is the set of all (x, y, z) such that y = 1
- (c) V is the set of all (x, y, z) such that x + y + z = 3
- (d) V is the set of all (x, y, z) such that $z \ge 0$
- (e) V is the set of all (x, y, z) such that xyz = 1

- 2. Consider the vectors $\vec{t} = (4, 20, 23)$, $\vec{u} = (1, 3, 2)$, $\vec{v} = (2, 8, 7)$ and $\vec{w} = (1, 7, 9)$. If $\vec{t} = a\vec{u} + b\vec{v} + c\vec{w}$, then a + b - c =
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) -1
 - (e) -2

- 3. The vectors $v_1 = (1, 0, 1)$, $v_2 = (2, -3, 4)$ and $v_3 = (3, 5, a)$ are linearly dependent if 3a =
 - (a) −1
 - (b) 0
 - (c) 2
 - (d) 1
 - (e) -2

- 4. Given that the vectors $v_1 = (2, 0, 0, 0), v_2 = (0, 3, 0, 0), v_3 = (0, 0, 7, 6)$ and $v_4 = (0, 0, 4, a)$ form a basis for \mathbb{R}^4 , then $7a \neq 100$
 - (a) 24
 - (b) 18
 - (c) 12
 - (d) 6
 - (e) 0

- 5. The dimension of the subspace consisting of the set of all vectors of the form (a, b, c, d) for which a + 2b = c + 3d = 0 is
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 1
 - (e) 0

222, Math 208, Exam II

6. The rank of the matrix
$$A = \begin{bmatrix} 1 & -2 & -3 & -5 \\ 1 & 4 & 9 & 2 \\ 1 & 3 & 7 & 1 \\ 2 & 2 & 6 & -3 \end{bmatrix}$$
 is

- (a) 3
- (b) 4
- (c) 2
- (d) 1
- (e) 0

7. If $y = c_1 \cos(\ln x) + c_2 \sin(\ln x)$ is a solution of the initial-value problem

$$x^{2}y'' + xy' + y = 0$$

y(1) = 7, y'(1) = 2,

then $c_1 + c_2 =$

(a) 9
(b) 5
(c) -5
(d) -9

(e) 0

- 8. Which of the following sets of solutions of homogeneous linear differential equations, is linearly independent?
 - (a) $\{1, e^x, \sinh x\}$
 - (b) $\{0, \sin x, e^x\}$
 - (c) $\{17, 2\sin^2 x, 3\cos^2 x\}$
 - (d) $\{e^x, \cosh x, \sinh x\}$
 - (e) $\{17, \cos^2 x, \cos 2x\}$

- 9. The general solution of the differential equation $y^{(4)} + 3y'' 4y = 0$ is y =
 - (a) $c_1 e^x + c_2 e^{-x} + c_3 \sin 2x + c_4 \cos 2x$
 - (b) $c_1 e^x + c_2 x e^x + c_3 \sin 2x + c_4 \cos 2x$
 - (c) $c_1 e^{-x} + c_2 x e^{-x} + c_3 \sin 2x + c_4 \cos 2x$
 - (d) $c_1 e^x + c_2 e^{-x} + c_3 \sin 2x$
 - (e) $c_1 e^x + c_2 e^{-x} + c_3 \sin 4x + c_4 \cos 4x$

10. If $y = c_1 e^{ax} + c_2 e^{-x} \sin x + c_3 g(x)$ is the general solution of the differential equation 9y''' + 11y'' + 4y' - 14y = 0, then a =(a) $\frac{7}{9}$ (b) $\frac{5}{9}$ (c) $\frac{1}{3}$

(d) -1

11. A linear homogeneous constant-coefficient equation which has the general solution $y(x) = (A + Bx)e^{2x} + Ce^{-2x}$ is

(a)
$$y''' - 2y'' - 4y' + 8y = 0$$

(b) $y''' + 6y'' - 4y' + 8y = 0$
(c) $y''' - 2y'' + 4y' + 8y = 0$
(d) $y''' - 2y'' - 4y' - 8y = 0$
(e) $y'' - 4y = 0$

$$(D-1)^3(D^2-4)y = xe^x + e^{2x} + e^{-2x}$$

is given by $y_p(x) =$

(a)
$$Axe^{2x} + Bxe^{-2x} + Cx^3e^x + Dx^4e^x$$

(b) $Ae^{2x} + Be^{-2x} + Ce^x + Dxe^x$
(c) $Axe^{2x} + Bxe^{-2x} + Ce^x + Dx^2e^x + Ex^3e^x$
(d) $Axe^{2x} + Be^{-2x} + Cx^3e^x + Dx^4e^x$
(e) $Axe^{2x} + Bxe^{-2x} + Ce^x + Dxe^x + Ex^2e^x$

- 13. Given that $y_p = u_1 \cos x \cos x \sin x$ is a particular solution of the differential equation $y'' + y = \tan x$, then $u_1(x) =$
 - (a) $\sin x \ln |\sec x + \tan x|$
 - (b) $\cos x \ln |\csc x + \cot x|$
 - (c) $\sin x + \ln |\sec x + \tan x|$
 - (d) $\sin x \ln |\sec x|$
 - (e) $\cos x + \ln |\cot x|$