King Fahd University of Petroleum and Minerals Department of Mathematics Math 208 Final Exam 222 May 18, 2023 Net Time Allowed: 180 Minutes

USE THIS AS A TEMPLATE

Write your questions, once you are satisfied upload this file.

1. If y = y(x) is the solution of the initial-value problem

$$xy' = 3y + x^4 \cos x, \ y(2\pi) = 0, \ \text{then} \ \left(\frac{2}{\pi}\right)^3 y \ \left(\frac{\pi}{2}\right) =$$

- (a) 1(b) −1
- (c) 2
- (d) -2
- (e) 3

2. Let F(x,y) = e be the solution of the initial-value problem

$$(\cos x + \ln y) dx + \left(\frac{x}{y} + e^y\right) dy = 0$$

$$y(0) = 1$$

Then F(0,2) equals to

- (a) e^2
- (b) *e*
- (c) e^{3}
- (d) e^4
- (e) e^{-1}

3. By using Cramer's Rule to solve the system

 $5x_1 + 4x_2 - 2x_3 = 4$ $2x_1 + + 3x_3 = 2$ $2x_1 - x_2 + x_3 = 1$

then $x_3 =$

(a)
$$\frac{2}{7}$$

(b) $\frac{13}{7}$
(c) $\frac{8}{7}$
(d) $\frac{5}{7}$
(e) $\frac{1}{7}$

- 4. Which of the following sets $s = \{(x_1, x_2, x_3)\}$ forms a subspace of \mathbb{R}^3 ?
 - (a) All vectors such that $(x_1)^2 + (x_2)^2 = 0$
 - (b) All vectors such that $x_2 = 1$
 - (c) All vectors such that $|x_1| + |x_3| = 1$
 - (d) All vectors such that $x_1 + x_2 + x_3 = 1$
 - (e) All vectors such that $x_1x_2 = x_3$

5. Let the solution space of the system

$$x_1 - 4x_2 - 3x_3 - 7x_4 = 0$$

$$2x_1 - x_2 + x_3 + 7x_4 = 0$$

$$x_1 + 2x_2 + 3x_3 + 11x_4 = 0$$

have the following vectors u = (-1, -1, 1, 0) and v = (a, b, 0, 1) as basis for the solution space. Then b - a =

- (a) 2
- (b) -2
- (c) 3
- (d) 1
- (e) -1

6. The general solution of the differential equation

$$y''' + 3y'' - 4y = 0$$
 is $y =$

(a) $c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$ (b) $c_1 e^{-x} + c_2 e^{2x} + c_3 x e^{2x}$

(c)
$$c_1 e^x + c_2 e^{-2x}$$

- (d) $c_1 e^x + c_2 e^{-x} + c_3 x e^{-x}$
- (e) $c_1 e^{-x} + c_2 e^{-2x} + c_3 x e^{-2x}$

7. If y_p is a particular solution of the differential equation $y'' + 4y = 3x^3$, with $y_p(0) = 0$ then $y_p(-1) =$

(a)
$$\frac{3}{8}$$

(b) $\frac{1}{2}$
(c) $\frac{-3}{8}$
(d) $\frac{-1}{2}$
(e) $\frac{9}{8}$

- 8. If $y_p = \cos x \ln |\csc x + \cot x| + u_2 \sin x$, is a particular solution of the differential equation $y'' + y = \csc^2 x$, then $u_2(x) =$
 - (a) $-\csc x$
 - (b) $-\cot x$
 - (c) $-\tan x$
 - (d) $-\sec x$
 - (e) $-\cos x$

9. A basis for \mathbb{R}^2 which consists of eigenvectors of the matrix $A = \begin{bmatrix} 10 & -8 \\ 6 & -4 \end{bmatrix}$ is

(a)
$$\left\{ \begin{bmatrix} 4\\3 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$$

(b) $\left\{ \begin{bmatrix} 3\\4 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$
(c) $\left\{ \begin{bmatrix} 4\\3 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$
(d) $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\2 \end{bmatrix} \right\}$
(e) $\left\{ \begin{bmatrix} 4\\3 \end{bmatrix}, \begin{bmatrix} 3\\2 \end{bmatrix} \right\}$

10. Suppose that $a \ 2 \times 2$ matrix A has the eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 1$ and their corresponding eigenvectors $v_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, respectively. If $A^2 = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$, then x + y + z + w =

(e) -9

222, Math 208, Final Exam

MASTER

11. Given that
$$A = \begin{bmatrix} 4 & -2 & 1 \\ 2 & 0 & 1 \\ 2 & -2 & 3 \end{bmatrix}$$
. If $A^{-1} = aA^2 + bA + cI$, then $12(a+b+c) = aA^2 + bA + cI$.

- (a) 10
- (b) 9
- (c) 11
- (d) 8
- (e) 12
- 12. The differential equation $x^{(4)} + 6x'' 3x' + x = \cos 3t$ can be transferred into a system of linear first-order differential equations of the form

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}' = A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \cos 3t \end{bmatrix}$$

where A =

(a)
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 3 & -6 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 3 & 6 & 0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & -3 & -6 & 0 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & -3 & -6 & 0 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 3 & 6 & 0 \end{bmatrix}$$

222, Math 208, Final Exam

MASTER

13. If
$$X = c_1 \begin{bmatrix} 2\\2\\1 \end{bmatrix} e^t + c_2 \begin{bmatrix} 2\\0\\-1 \end{bmatrix} e^{3t} + c_3 \begin{bmatrix} 2\\-2\\1 \end{bmatrix} e^{5t}$$
 is the solution of the initial value
problem $X' = \begin{bmatrix} 3 & -2 & 0\\-1 & 3 & -2\\0 & -1 & 3 \end{bmatrix} X, X(0) = \begin{bmatrix} 0\\2\\6 \end{bmatrix}$, then $c_1^2 + c_2^2 =$

- (a) 13
- (b) 15
- (c) 14
- (d) 12
- (e) 11

14. The solution of
$$X' = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix} X$$
, $X(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ at $t = \pi$ is equal to

(a)
$$\begin{pmatrix} -1 \\ -2 \end{pmatrix} e^{4\pi}$$

(b) $\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{4\pi}$
(c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4\pi}$
(d) $\begin{pmatrix} 2 \\ 2 \end{pmatrix} e^{4\pi}$
(e) $\begin{pmatrix} -2 \\ 2 \end{pmatrix} e^{4\pi}$

- 15. If the general solution of $X' = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix} X$ is $X = c_1 \begin{bmatrix} 1 \\ a \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} b \\ 1 \end{bmatrix} e^{\lambda t}$, then $a + b + \lambda =$
 - (a) 4
 - (b) 5
 - (c) 3
 - (d) 6
 - (e) 2

16. The general solution of $X' = \begin{bmatrix} 1 & -3 \\ 3 & 7 \end{bmatrix} X$ is X =

(a)
$$c_1 \begin{bmatrix} -3\\3 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -3t+1\\3t \end{bmatrix} e^{4t}$$

(b) $c_1 \begin{bmatrix} -3\\3 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} 3t+2\\3t \end{bmatrix} e^{4t}$
(c) $c_1 \begin{bmatrix} -3\\3 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -2t+1\\3t \end{bmatrix} e^{4t}$
(d) $c_1 \begin{bmatrix} -3\\3 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -3t+1\\2t \end{bmatrix} e^{4t}$
(e) $c_1 \begin{bmatrix} -3\\3 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} 3t+1\\3t \end{bmatrix} e^{4t}$

17. The characteristic equation of a matrix A is $(\lambda - 1)(\lambda + 2)^3 = 0$, where we have only two linearly independent eigenvectors corresponding to $\lambda = -2$. The Jordan normal form of A is

(a)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

(e)
$$\begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

18. A possible fundamental matrix for the system $X' = \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} X$ is $\Phi(t) =$

(a)
$$\begin{bmatrix} 1 & e^{4t} \\ 2 & -2e^{4t} \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & e^{4t} \\ 1 & -e^{4t} \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 2e^{4t} \\ 2 & -e^{4t} \end{bmatrix}$$

(d)
$$\begin{bmatrix} 2 & e^{4t} \\ 1 & 2e^{4t} \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & e^{4t} \\ 0 & -2e^{4t} \end{bmatrix}$$

222, Math 208, Final Exam

Page 10 of 10

MASTER

19. Let
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$
. If $e^{At} = \begin{bmatrix} e^{2t} & f(t) & h(t) \\ 0 & e^{2t} & 6te^{2t} \\ 0 & 0 & e^{2t} \end{bmatrix}$, then $f(1) + h(1) =$
(Hint: Consider $A = D + B$, where B is a nilpotent matrix)

- (a) $16e^2$
- (b) $17e^2$
- (c) $18e^2$
- (d) $15e^2$
- (e) $14e^2$

20. Let
$$F(t) = \begin{bmatrix} 2\\1 \end{bmatrix}$$
 and $e^{At} = \begin{bmatrix} 1+2t & -4t\\t & 1-2t \end{bmatrix}$. A particular solution for the system $X' = AX + F(t)$ with $X_p(0) = \begin{pmatrix} 0\\0 \end{pmatrix}$ will satisfy $X_p(1) =$

$$(a) \begin{bmatrix} 2\\1 \end{bmatrix}$$
$$(b) \begin{bmatrix} 1\\2 \end{bmatrix}$$
$$(c) \begin{bmatrix} 3\\2 \end{bmatrix}$$
$$(d) \begin{bmatrix} 3\\1 \end{bmatrix}$$
$$(e) \begin{bmatrix} 1\\3 \end{bmatrix}$$