King Fahd University of Petroleum and Minerals Department of Mathematics

> Math 208 Major Exam I 231 October 02, 2023

EXAM COVER

Number of versions: 4 Number of questions: 20

King Fahd University of Petroleum and Minerals Department of Mathematics **Math 208 Major Exam I** 231 October 02, 2023 Net Time Allowed: 120 Minutes

MASTER VERSION

1. Find the sum of all values of r such that $y = e^{rx}$ is a solution of the differential equation 5y'' - 6y' - y = 0.

2. Find a value of c such that $y = \tan(x^3 + c)$ is a solution of the initial value problem $y' = 3x^2(y^2 + 1), y(0) = 1.$

3. A particle is moving in a straight line with acceleration $a(t) = 18\cos(3t)$, and initial position x(0) = -7, and an initial velocity v(0) = 4.

Find $x(\pi)$ (the position of the particle at $t = \pi$).

- (a) $4\pi 3$ ______(correct) (b) $4\pi + 3$ (c) $2\pi - 3$ (d) $2\pi + 3$
- (e) $4\pi 7$

4. Find the general solution of the differential equation $\frac{dy}{dx} = xe^{-x}$.

(a) $y(x) = -(x+1)e^{-x} + c$ (correct) (b) $y(x) = 2(x+1)e^{-x} + c$ (c) $y(x) = xe^{-x} + c$ (d) $y(x) = -xe^{-x} + x + c$ (e) $y(x) = (x+2)e^{-x} + c$ 5. Find a general solution of the separable differential equation $x^2 \frac{dy}{dx} = 1 - x^2 + y^2 - x^2 y^2$.

(a)
$$y(x) = \tan\left(c - \frac{1}{x} - x\right)$$
 (correct)
(b) $y(x) = \tan\left(c - \frac{2}{x} + x\right)$
(c) $y(x) = \tan\left(c + \frac{2}{x} + x\right)$
(d) $y(x) = \tan\left(c + \frac{1}{x} + x\right)$
(e) $y(x) = \tan\left(c - \frac{3}{x} + x\right)$

6. In a certain culture of bacteria, the number of bacteria doubled after 3 hours. How long did it take for the population to triple?

(a)	$\frac{\ln 27}{\ln 2}$	(corre	ect)
(b)	$\frac{\ln 9}{\ln 2}$		
(c)	$\frac{\ln 2}{\ln 3}$		
(d)	$\frac{\ln 2}{\ln 12}$		
(u)	$\frac{\ln 2}{\ln 16}$		
(e)	$\overline{2}$		

MASTER

(correct)

- 7. Solve the initial-value problem y' + y = 2, y(0) = 0.
 - (a) $y(x) = 2 2e^{-x}$ (b) $y(x) = 1 - e^{-x}$ (c) $y(x) = 1 + e^{-x}$ (d) $y(x) = 2 - e^{-x}$ (e) $y(x) = 3 - 2e^{-x}$

8. Find a general solution of the linear differential equation $x\frac{dy}{dx} = 2y + x^3 \cos x$.

MASTER

9. Find a general solution of the differential equation $xy\frac{dy}{dx} = x^2 + 3y^2$.

- (a) $2y^2 = cx^6 x^2$ (correct) (b) $2y^2 = cx^6 + x^2$ (c) $2y^2 = cx^5 - x^2$ (d) $2y^2 = cx^5 + x^2$
- (e) $2y^2 = cx^4 + x^3$

10. Find a constant A that makes the differential equation (2x+Ay) dx + (3x+2y) dy = 0 exact.

11. Find a general solution of the exact differential equation

$$(1 + ye^{xy}) dx + (2y + xe^{xy}) dy = 0.$$

(a)
$$x + e^{xy} + y^2 = c$$
 (correct)
(b) $x - e^{xy} + y^2 = c$
(c) $x + e^{xy} - y^2 = c$
(d) $x^2 + e^{xy} + y^2 = c$
(e) $x^2 - e^{xy} + y^2 = c$

12. Find a general solution of the differential equation $y'' = 2y(y')^3$.

(a) $y^3 + 3x + Ay + B = 0$ (correct) (b) $y^3 - 3x + Ay + B = 0$ (c) $y^3 - 3x + Ay + B = 0$ (d) $y^2 + 3x + Ay + B = 0$ (e) $y^3 + 2x + Ay + B = 0$

MASTER

13. By making a suitable substitution, the differential equation $x^2y' + 2xy = 5y^3$ can be transformed into a linear differential equation

(a)
$$v' - \frac{4}{x}v = -\frac{10}{x^2}$$
 (correct)
(b) $v' - \frac{3}{x}v = -\frac{5}{x^2}$
(c) $v' - \frac{4}{x}v = \frac{5}{x^2}$
(d) $v' + \frac{3}{x}v = \frac{5}{x^2}$
(e) $v' - \frac{5}{x}v = \frac{10}{x^2}$

14. Find a general solution of the differential equation $y' = \sqrt{x + y + 1}$.

(a) $2\sqrt{x+y+1} - 2\ln(1+\sqrt{x+y+1}) = x+c$ ______(correct) (b) $2\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = -x+c$ (c) $3\sqrt{x+y+1} - 2\ln(1+\sqrt{x+y+1}) = x+c$ (d) $3\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = -x+c$ (e) $3\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = x+c$

231, Math 208, Major Exam I

Page 8 of 10

15. Find the order of the differential equation

$$\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^8 + \sin^4 x = 0.$$

- (a) 3 _____(correct) (b) 8 (c) 4
- (d) 1
- (e) 5

16. Let $\mathbf{u} = (5, 1)$, $\mathbf{v} = (-2, -1)$, $\mathbf{w} = (5, -2)$ be vectors in \mathbb{R}^2 . If $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then $a^2 + b^2 =$

- (a) 34 _____(correct)
- (b) 8
- (c) 25
- (d) 16
- (e) 36

231, Math 208, Major Exam I

17. Find the value of k for which the vectors of \mathbb{R}^3

$$\mathbf{u} = (1, 1, 0), \ \mathbf{v} = (k, 3, 1), \ \mathbf{w} = (3, -2, -4)$$

are linearly dependent.

(a)
$$k = \frac{7}{4}$$
 (correct)
(b) $k = 0$
(c) $k = \frac{3}{4}$
(d) $k = -\frac{3}{4}$
(e) $k = 2$

18. Which one of the following statements is true about the subset V of \mathbb{R}^3 defined by

$$V = \{(x_1, x_2, x_3) : x_1 = 0\}$$

(a) V is a subspace of \mathbb{R}^3 _____(correct)

(b) V is not closed under addition

- (c) V is not closed under multiplication by scalars
- (d) V is closed under addition but not closed under multiplication by scalars
- (e) V is not closed under addition but closed under multiplication by scalars

19. The solution of the system

 $x_1 - 3x_2 - 7x_3 + 5x_4 = 0$ $3x_1 + x_2 + 9x_3 - 5x_4 = 0$ $x_1 - 2x_2 - 4x_3 + 4x_4 = 0$

is the set of all scalars multiples of a vector \mathbf{u} where $\mathbf{u} =$

(a) $(-2, -3, 1, 0)$	(correct)
(b) $(-1, -6, 1, 0)$	
(c) $(-2,3,0,1)$	
(d) $(-1, 3, 1, 0)$	
(e) $(-2, 3, 1, 2)$	

20. If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^3 and r and s are real numbers, then which one of the following statements is not true?

(a)
$$\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|$$
 ______(correct)
(b) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
(c) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
(d) $r(\mathbf{u} + \mathbf{v}) = r\mathbf{u} + r\mathbf{v}$

(e) $(r+s)\mathbf{u} = r\mathbf{u} + s\mathbf{u}$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01

CODE01

Math 208 Major Exam I 231 October 02, 2023 Net Time Allowed: 120 Minutes

Name		
ID	Sec	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

CODE01

1. Find the general solution of the differential equation $\frac{dy}{dx} = xe^{-x}$.

(a) $y(x) = 2(x+1)e^{-x} + c$ (b) $y(x) = -(x+1)e^{-x} + c$ (c) $y(x) = -xe^{-x} + x + c$ (d) $y(x) = xe^{-x} + c$ (e) $y(x) = (x+2)e^{-x} + c$

2. Find the value of k for which the vectors of \mathbb{R}^3

$$\mathbf{u} = (1, 1, 0), \, \mathbf{v} = (k, 3, 1), \, \mathbf{w} = (3, -2, -4)$$

are linearly dependent.

(a)
$$k = 0$$

(b) $k = \frac{3}{4}$
(c) $k = 2$
(d) $k = \frac{7}{4}$
(e) $k = -\frac{3}{4}$

(a)
$$r(\mathbf{u} + \mathbf{v}) = r\mathbf{u} + r\mathbf{v}$$

(b) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
(c) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
(d) $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|$

(e) $(r+s)\mathbf{u} = r\mathbf{u} + s\mathbf{u}$

4. Find a general solution of the separable differential equation $x^2 \frac{dy}{dx} = 1 - x^2 + y^2 - x^2 y^2$.

(a)
$$y(x) = \tan\left(c - \frac{1}{x} - x\right)$$

(b) $y(x) = \tan\left(c + \frac{1}{x} + x\right)$
(c) $y(x) = \tan\left(c - \frac{3}{x} + x\right)$
(d) $y(x) = \tan\left(c - \frac{2}{x} + x\right)$
(e) $y(x) = \tan\left(c + \frac{2}{x} + x\right)$

5. Find a general solution of the exact differential equation

$$(1 + ye^{xy}) dx + (2y + xe^{xy}) dy = 0.$$

(a) $x - e^{xy} + y^2 = c$ (b) $x + e^{xy} + y^2 = c$ (c) $x + e^{xy} - y^2 = c$ (d) $x^2 + e^{xy} + y^2 = c$ (e) $x^2 - e^{xy} + y^2 = c$

6. Find a general solution of the differential equation $xy\frac{dy}{dx} = x^2 + 3y^2$.

(a)
$$2y^2 = cx^6 - x^2$$

(b) $2y^2 = cx^4 + x^3$
(c) $2y^2 = cx^6 + x^2$
(d) $2y^2 = cx^5 - x^2$
(e) $2y^2 = cx^5 + x^2$

7. Find the order of the differential equation

$$\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^8 + \sin^4 x = 0.$$

- (a) 4
- (b) 3
- (c) 8
- (d) 1
- (e) 5

- 8. Let $\mathbf{u} = (5, 1)$, $\mathbf{v} = (-2, -1)$, $\mathbf{w} = (5, -2)$ be vectors in \mathbb{R}^2 . If $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then $a^2 + b^2 =$
 - (a) 8
 - (b) 25
 - (c) 36
 - (d) 16
 - (e) 34

9. Find a general solution of the differential equation $y' = \sqrt{x + y + 1}$.

(a)
$$3\sqrt{x+y+1} - 2\ln(1+\sqrt{x+y+1}) = x+c$$

(b) $3\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = -x+c$
(c) $3\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = x+c$
(d) $2\sqrt{x+y+1} - 2\ln(1+\sqrt{x+y+1}) = x+c$
(e) $2\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = -x+c$

10. The solution of the system

 $\begin{aligned} x_1 - 3x_2 - 7x_3 + 5x_4 &= 0\\ 3x_1 + x_2 + 9x_3 - 5x_4 &= 0\\ x_1 - 2x_2 - 4x_3 + 4x_4 &= 0 \end{aligned}$

is the set of all scalars multiples of a vector \mathbf{u} where $\mathbf{u} =$

(a) (-2, 3, 0, 1)(b) (-1, 3, 1, 0)(c) (-2, -3, 1, 0)(d) (-2, 3, 1, 2)(e) (-1, -6, 1, 0)

Page 6 of 10

11. Find a general solution of the differential equation $y'' = 2y(y')^3$.

(a) $y^{3} + 3x + Ay + B = 0$ (b) $y^{2} + 3x + Ay + B = 0$ (c) $y^{3} + 2x + Ay + B = 0$ (d) $y^{3} - 3x + Ay + B = 0$ (e) $y^{3} - 3x + Ay + B = 0$

12. Find a value of c such that $y = \tan(x^3 + c)$ is a solution of the initial value problem $y' = 3x^2(y^2 + 1), y(0) = 1.$

(a)
$$\frac{5\pi}{4}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$-\frac{\pi}{4}$$

(d)
$$\frac{5\pi}{3}$$

(e)
$$\frac{3\pi}{4}$$

- 13. Find a constant A that makes the differential equation (2x+Ay) dx + (3x+2y) dy = 0 exact.
 - (a) -2
 - (b) 2(c) 3
 - (d) 0
 - (u) 0
 - (e) -3

14. By making a suitable substitution, the differential equation $x^2y' + 2xy = 5y^3$ can be transformed into a linear differential equation

(a)
$$v' - \frac{3}{x}v = -\frac{5}{x^2}$$

(b) $v' - \frac{5}{x}v = \frac{10}{x^2}$
(c) $v' + \frac{3}{x}v = \frac{5}{x^2}$
(d) $v' - \frac{4}{x}v = \frac{5}{x^2}$
(e) $v' - \frac{4}{x}v = -\frac{10}{x^2}$

231, Math 208, Major Exam I

15. Solve the initial-value problem y' + y = 2, y(0) = 0.

(a) $y(x) = 1 - e^{-x}$ (b) $y(x) = 1 + e^{-x}$ (c) $y(x) = 3 - 2e^{-x}$ (d) $y(x) = 2 - e^{-x}$ (e) $y(x) = 2 - 2e^{-x}$

16. In a certain culture of bacteria, the number of bacteria doubled after 3 hours. How long did it take for the population to triple?

(a) $\frac{\ln 9}{\ln 2}$ (b) $\frac{\ln 3}{\ln 2}$ (c) $\frac{\ln 27}{\ln 2}$ (d) $\frac{\ln 16}{2}$ (e) $\frac{\ln 12}{\ln 2}$ (a) $4\pi + 3$

- (b) $2\pi + 3$
- (c) $2\pi 3$
- (d) $4\pi 3$
- (e) $4\pi 7$

- 18. Find the sum of all values of r such that $y = e^{rx}$ is a solution of the differential equation 5y'' 6y' y = 0.
 - (a) $\frac{3}{5}$ (b) $-\frac{4}{5}$ (c) $\frac{4}{5}$ (d) $-\frac{6}{5}$ (e) $\frac{6}{5}$

CODE01

19. Find a general solution of the linear differential equation $x\frac{dy}{dx} = 2y + x^3 \cos x$.

(a) $y(x) = x^{2}(\sin x + c)$ (b) $y(x) = x(\cos x + c)$ (c) $y(x) = x^{3}(\cos x + c)$ (d) $y(x) = x^{2}(\cos x + c)$ (e) $y(x) = x^{3}(\sin x + c)$

20. Which one of the following statements is true about the subset V of \mathbb{R}^3 defined by

$$V = \{(x_1, x_2, x_3) : x_1 = 0\}$$

- (a) V is a subspace of \mathbb{R}^3
- (b) V is not closed under addition
- (c) V is not closed under addition but closed under multiplication by scalars
- (d) V is closed under addition but not closed under multiplication by scalars
- (e) V is not closed under multiplication by scalars

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02

CODE02

Math 208 Major Exam I 231 October 02, 2023 Net Time Allowed: 120 Minutes

Name		
ID	Sec	

Check that this exam has <u>20</u> questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

231, Math 208, Major Exam I

1. Find the value of k for which the vectors of \mathbb{R}^3

$$\mathbf{u} = (1, 1, 0), \ \mathbf{v} = (k, 3, 1), \ \mathbf{w} = (3, -2, -4)$$

are linearly dependent.

(a)
$$k = \frac{7}{4}$$

(b) $k = 2$
(c) $k = \frac{3}{4}$
(d) $k = 0$
(e) $k = -\frac{3}{4}$

2. Find a general solution of the exact differential equation

$$(1 + ye^{xy}) dx + (2y + xe^{xy}) dy = 0.$$

(a)
$$x^{2} - e^{xy} + y^{2} = c$$

(b) $x - e^{xy} + y^{2} = c$
(c) $x + e^{xy} - y^{2} = c$
(d) $x + e^{xy} + y^{2} = c$
(e) $x^{2} + e^{xy} + y^{2} = c$

3. By making a suitable substitution, the differential equation $x^2y' + 2xy = 5y^3$ can be transformed into a linear differential equation

(a)
$$v' - \frac{4}{x}v = \frac{5}{x^2}$$

(b) $v' - \frac{4}{x}v = -\frac{10}{x^2}$
(c) $v' - \frac{3}{x}v = -\frac{5}{x^2}$
(d) $v' + \frac{3}{x}v = \frac{5}{x^2}$
(e) $v' - \frac{5}{x}v = \frac{10}{x^2}$

4. Find a general solution of the differential equation $y' = \sqrt{x + y + 1}$.

(a)
$$2\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = -x+c$$

(b) $3\sqrt{x+y+1} - 2\ln(1+\sqrt{x+y+1}) = x+c$
(c) $3\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = -x+c$
(d) $3\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = x+c$
(e) $2\sqrt{x+y+1} - 2\ln(1+\sqrt{x+y+1}) = x+c$

5. A particle is moving in a straight line with acceleration $a(t) = 18\cos(3t)$, and initial position x(0) = -7, and an initial velocity v(0) = 4.

Find $x(\pi)$ (the position of the particle at $t = \pi$).

- (a) $2\pi 3$
- (b) $2\pi + 3$
- (c) $4\pi 3$
- (d) $4\pi + 3$
- (e) $4\pi 7$

6. Find a general solution of the linear differential equation $x\frac{dy}{dx} = 2y + x^3 \cos x$.

(a) $y(x) = x^{2}(\sin x + c)$ (b) $y(x) = x^{3}(\sin x + c)$ (c) $y(x) = x^{3}(\cos x + c)$ (d) $y(x) = x^{2}(\cos x + c)$ (e) $y(x) = x(\cos x + c)$

CODE02

7. Find a general solution of the differential equation $xy\frac{dy}{dx} = x^2 + 3y^2$.

(a) $2y^2 = cx^5 - x^2$ (b) $2y^2 = cx^6 + x^2$ (c) $2y^2 = cx^4 + x^3$ (d) $2y^2 = cx^5 + x^2$ (e) $2y^2 = cx^6 - x^2$

8. Find the general solution of the differential equation $\frac{dy}{dx} = xe^{-x}$.

(a)
$$y(x) = -(x+1)e^{-x} + c$$

(b) $y(x) = -xe^{-x} + x + c$
(c) $y(x) = (x+2)e^{-x} + c$
(d) $y(x) = xe^{-x} + c$
(e) $y(x) = 2(x+1)e^{-x} + c$

9. In a certain culture of bacteria, the number of bacteria doubled after 3 hours. How long did it take for the population to triple?

(a)
$$\frac{\ln 9}{\ln 2}$$

(b)
$$\frac{\ln 27}{\ln 2}$$

(c)
$$\frac{\ln 12}{\ln 2}$$

(d)
$$\frac{\ln 3}{\ln 2}$$

(e)
$$\frac{\ln 16}{2}$$

10. Find a general solution of the differential equation $y'' = 2y(y')^3$.

(a) $y^{3} + 3x + Ay + B = 0$ (b) $y^{3} + 2x + Ay + B = 0$ (c) $y^{3} - 3x + Ay + B = 0$ (d) $y^{3} - 3x + Ay + B = 0$ (e) $y^{2} + 3x + Ay + B = 0$ 11. The solution of the system

$$x_1 - 3x_2 - 7x_3 + 5x_4 = 0$$

$$3x_1 + x_2 + 9x_3 - 5x_4 = 0$$

$$x_1 - 2x_2 - 4x_3 + 4x_4 = 0$$

is the set of all scalars multiples of a vector \mathbf{u} where $\mathbf{u} =$

(a)
$$(-1, -6, 1, 0)$$

(b) $(-2, -3, 1, 0)$
(c) $(-2, 3, 0, 1)$
(d) $(-1, 3, 1, 0)$
(e) $(-2, 3, 1, 2)$

12. Solve the initial-value problem y' + y = 2, y(0) = 0.

(a) $y(x) = 3 - 2e^{-x}$ (b) $y(x) = 1 - e^{-x}$ (c) $y(x) = 1 + e^{-x}$ (d) $y(x) = 2 - e^{-x}$ (e) $y(x) = 2 - 2e^{-x}$

13. Find the order of the differential equation

$$\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^8 + \sin^4 x = 0.$$

- (a) 8
- (b) 4
- (c) 5
- (d) 3
- (e) 1

- 14. Find a constant A that makes the differential equation (2x+Ay) dx + (3x+2y) dy = 0 exact.
 - (a) 0
 - (b) 3
 - (c) -3
 - (d) -2
 - (e) 2

- (a) $r(\mathbf{u} + \mathbf{v}) = r\mathbf{u} + r\mathbf{v}$
- (b) $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|$
- (c) $(r+s)\mathbf{u} = r\mathbf{u} + s\mathbf{u}$
- (d) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- (e) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

16. Find the sum of all values of r such that $y = e^{rx}$ is a solution of the differential equation 5y'' - 6y' - y = 0.

(a)
$$-\frac{6}{5}$$

(b) $\frac{3}{5}$
(c) $\frac{4}{5}$
(d) $-\frac{4}{5}$
(e) $\frac{6}{5}$

CODE02

17. Find a general solution of the separable differential equation $x^2 \frac{dy}{dx} = 1 - x^2 + y^2 - x^2 y^2$.

(a)
$$y(x) = \tan\left(c - \frac{3}{x} + x\right)$$

(b) $y(x) = \tan\left(c - \frac{1}{x} - x\right)$
(c) $y(x) = \tan\left(c + \frac{2}{x} + x\right)$
(d) $y(x) = \tan\left(c + \frac{1}{x} + x\right)$
(e) $y(x) = \tan\left(c - \frac{2}{x} + x\right)$

- 18. Let $\mathbf{u} = (5, 1)$, $\mathbf{v} = (-2, -1)$, $\mathbf{w} = (5, -2)$ be vectors in \mathbb{R}^2 . If $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then $a^2 + b^2 =$
 - (a) 34
 - (b) 8
 - (c) 25
 - (d) 36
 - (e) 16

CODE02

19. Find a value of c such that $y = \tan(x^3 + c)$ is a solution of the initial value problem $y' = 3x^2(y^2 + 1), y(0) = 1.$

(a)
$$\frac{\pi}{3}$$

(b) $\frac{3\pi}{4}$
(c) $\frac{5\pi}{3}$
(d) $\frac{5\pi}{4}$
(e) $-\frac{\pi}{4}$

20. Which one of the following statements is true about the subset V of \mathbb{R}^3 defined by

$$V = \{(x_1, x_2, x_3) : x_1 = 0\}$$

- (a) V is not closed under addition
- (b) V is a subspace of \mathbb{R}^3
- (c) V is closed under addition but not closed under multiplication by scalars
- (d) V is not closed under addition but closed under multiplication by scalars
- (e) V is not closed under multiplication by scalars

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE03

CODE03

Math 208 Major Exam I 231 October 02, 2023 Net Time Allowed: 120 Minutes

Name		
ID	Sec	

Check that this exam has <u>20</u> questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Find the order of the differential equation

$$\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^8 + \sin^4 x = 0.$$

- (a) 8
- (b) 4
- (c) 5
- (d) 1
- (e) 3

2. The solution of the system

 $\begin{aligned} x_1 - 3x_2 - 7x_3 + 5x_4 &= 0\\ 3x_1 + x_2 + 9x_3 - 5x_4 &= 0\\ x_1 - 2x_2 - 4x_3 + 4x_4 &= 0 \end{aligned}$

is the set of all scalars multiples of a vector ${\bf u}$ where ${\bf u}=$

(a) (-1, 3, 1, 0)(b) (-2, -3, 1, 0)(c) (-2, 3, 1, 2)(d) (-2, 3, 0, 1)(e) (-1, -6, 1, 0) 3. Find a general solution of the differential equation $y' = \sqrt{x + y + 1}$.

(a) $3\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = x+c$ (b) $3\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = -x+c$ (c) $2\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = -x+c$ (d) $3\sqrt{x+y+1} - 2\ln(1+\sqrt{x+y+1}) = x+c$ (e) $2\sqrt{x+y+1} - 2\ln(1+\sqrt{x+y+1}) = x+c$

- 4. Let $\mathbf{u} = (5, 1)$, $\mathbf{v} = (-2, -1)$, $\mathbf{w} = (5, -2)$ be vectors in \mathbb{R}^2 . If $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then $a^2 + b^2 =$
 - (a) 8
 - (b) 25
 - (c) 36
 - (d) 34
 - (e) 16

CODE03

- 5. Find a constant A that makes the differential equation (2x+Ay) dx + (3x+2y) dy = 0 exact.
 - (a) -3
 - (b) -2
 - (c) 0
 - (d) 3
 - (e) 2

6. Find the value of k for which the vectors of \mathbb{R}^3

 $\mathbf{u} = (1, 1, 0), \, \mathbf{v} = (k, 3, 1), \, \mathbf{w} = (3, -2, -4)$

are linearly dependent.

(a)
$$k = -\frac{3}{4}$$

(b) $k = \frac{7}{4}$
(c) $k = 0$
(d) $k = \frac{3}{4}$
(e) $k = 2$

CODE03

7. Find the general solution of the differential equation $\frac{dy}{dx} = xe^{-x}$.

(a)
$$y(x) = xe^{-x} + c$$

(b) $y(x) = -xe^{-x} + x + c$
(c) $y(x) = -(x+1)e^{-x} + c$
(d) $y(x) = 2(x+1)e^{-x} + c$
(e) $y(x) = (x+2)e^{-x} + c$

8. Find a general solution of the exact differential equation

$$(1 + ye^{xy}) \, dx + (2y + xe^{xy}) \, dy = 0.$$

(a)
$$x - e^{xy} + y^2 = c$$

(b) $x + e^{xy} - y^2 = c$
(c) $x^2 - e^{xy} + y^2 = c$
(d) $x^2 + e^{xy} + y^2 = c$
(e) $x + e^{xy} + y^2 = c$

9. Find a general solution of the differential equation $y'' = 2y(y')^3$.

- (a) $y^{3} + 2x + Ay + B = 0$ (b) $y^{3} - 3x + Ay + B = 0$ (c) $y^{2} + 3x + Ay + B = 0$ (d) $y^{3} - 3x + Ay + B = 0$
- (e) $y^3 + 3x + Ay + B = 0$

- 10. If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^3 and r and s are real numbers, then which one of the following statements is not true?
 - (a) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
 - (b) $(r+s)\mathbf{u} = r\mathbf{u} + s\mathbf{u}$
 - (c) $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|$
 - (d) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
 - (e) $r(\mathbf{u} + \mathbf{v}) = r\mathbf{u} + r\mathbf{v}$

11. Which one of the following statements is true about the subset V of \mathbb{R}^3 defined by

$$V = \{(x_1, x_2, x_3) : x_1 = 0\}$$

- (a) V is closed under addition but not closed under multiplication by scalars
- (b) V is not closed under addition
- (c) V is not closed under addition but closed under multiplication by scalars
- (d) V is not closed under multiplication by scalars
- (e) V is a subspace of \mathbb{R}^3

12. A particle is moving in a straight line with acceleration $a(t) = 18\cos(3t)$, and initial position x(0) = -7, and an initial velocity v(0) = 4.

Find $x(\pi)$ (the position of the particle at $t = \pi$).

- (a) $4\pi + 3$
- (b) $4\pi 7$
- (c) $2\pi + 3$
- (d) $4\pi 3$
- (e) $2\pi 3$

CODE03

13. Find a value of c such that $y = \tan(x^3 + c)$ is a solution of the initial value problem $y' = 3x^2(y^2 + 1), y(0) = 1.$

(a)
$$\frac{3\pi}{4}$$

(b) $-\frac{\pi}{4}$
(c) $\frac{5\pi}{4}$
(d) $\frac{\pi}{3}$
(e) $\frac{5\pi}{3}$

14. In a certain culture of bacteria, the number of bacteria doubled after 3 hours. How long did it take for the population to triple?

(a)
$$\frac{\ln 12}{\ln 2}$$

(b)
$$\frac{\ln 27}{\ln 2}$$

(c)
$$\frac{\ln 9}{\ln 2}$$

(d)
$$\frac{\ln 3}{\ln 2}$$

(e)
$$\frac{\ln 16}{2}$$

231, Math 208, Major Exam I

15. Solve the initial-value problem y' + y = 2, y(0) = 0.

(a) $y(x) = 2 - e^{-x}$ (b) $y(x) = 1 - e^{-x}$ (c) $y(x) = 1 + e^{-x}$ (d) $y(x) = 2 - 2e^{-x}$ (e) $y(x) = 3 - 2e^{-x}$

16. Find the sum of all values of r such that $y = e^{rx}$ is a solution of the differential equation 5y'' - 6y' - y = 0.

(a)
$$-\frac{4}{5}$$

(b) $-\frac{6}{5}$
(c) $\frac{4}{5}$
(d) $\frac{3}{5}$
(e) $\frac{6}{5}$

17. Find a general solution of the differential equation $xy\frac{dy}{dx} = x^2 + 3y^2$.

(a) $2y^2 = cx^6 - x^2$ (b) $2y^2 = cx^5 - x^2$ (c) $2y^2 = cx^5 + x^2$ (d) $2y^2 = cx^4 + x^3$ (e) $2y^2 = cx^6 + x^2$

18. By making a suitable substitution, the differential equation $x^2y' + 2xy = 5y^3$ can be transformed into a linear differential equation

(a)
$$v' - \frac{4}{x}v = \frac{5}{x^2}$$

(b) $v' - \frac{5}{x}v = \frac{10}{x^2}$
(c) $v' - \frac{3}{x}v = -\frac{5}{x^2}$
(d) $v' + \frac{3}{x}v = \frac{5}{x^2}$
(e) $v' - \frac{4}{x}v = -\frac{10}{x^2}$

CODE03

19. Find a general solution of the separable differential equation $x^2 \frac{dy}{dx} = 1 - x^2 + y^2 - x^2 y^2$.

(a)
$$y(x) = \tan\left(c + \frac{1}{x} + x\right)$$

(b) $y(x) = \tan\left(c - \frac{1}{x} - x\right)$
(c) $y(x) = \tan\left(c - \frac{3}{x} + x\right)$
(d) $y(x) = \tan\left(c + \frac{2}{x} + x\right)$
(e) $y(x) = \tan\left(c - \frac{2}{x} + x\right)$

20. Find a general solution of the linear differential equation $x\frac{dy}{dx} = 2y + x^3 \cos x$.

(a) $y(x) = x(\cos x + c)$ (b) $y(x) = x^{3}(\sin x + c)$ (c) $y(x) = x^{2}(\cos x + c)$ (d) $y(x) = x^{2}(\sin x + c)$ (e) $y(x) = x^{3}(\cos x + c)$ King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04

CODE04

Math 208 Major Exam I 231 October 02, 2023 Net Time Allowed: 120 Minutes

Name		
ID	Sec	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The solution of the system
 - $x_1 3x_2 7x_3 + 5x_4 = 0$ $3x_1 + x_2 + 9x_3 - 5x_4 = 0$ $x_1 - 2x_2 - 4x_3 + 4x_4 = 0$

is the set of all scalars multiples of a vector ${\bf u}$ where ${\bf u}=$

(a) (-2, -3, 1, 0)(b) (-1, 3, 1, 0)(c) (-2, 3, 1, 2)(d) (-2, 3, 0, 1)(e) (-1, -6, 1, 0)

2. By making a suitable substitution, the differential equation $x^2y' + 2xy = 5y^3$ can be transformed into a linear differential equation

(a)
$$v' - \frac{3}{x}v = -\frac{5}{x^2}$$

(b) $v' - \frac{5}{x}v = \frac{10}{x^2}$
(c) $v' - \frac{4}{x}v = \frac{5}{x^2}$
(d) $v' + \frac{3}{x}v = \frac{5}{x^2}$
(e) $v' - \frac{4}{x}v = -\frac{10}{x^2}$

CODE04

3. Find a general solution of the linear differential equation $x\frac{dy}{dx} = 2y + x^3 \cos x$.

(a) $y(x) = x^{3}(\cos x + c)$ (b) $y(x) = x^{2}(\cos x + c)$ (c) $y(x) = x(\cos x + c)$ (d) $y(x) = x^{3}(\sin x + c)$ (e) $y(x) = x^{2}(\sin x + c)$

4. Find the sum of all values of r such that $y = e^{rx}$ is a solution of the differential equation 5y'' - 6y' - y = 0.

(a)
$$\frac{3}{5}$$

(b) $-\frac{4}{5}$
(c) $\frac{4}{5}$
(d) $-\frac{6}{5}$
(e) $\frac{6}{5}$

5. Find a general solution of the differential equation $y'' = 2y(y')^3$.

(a) $y^{3} + 2x + Ay + B = 0$ (b) $y^{3} + 3x + Ay + B = 0$ (c) $y^{2} + 3x + Ay + B = 0$ (d) $y^{3} - 3x + Ay + B = 0$ (e) $y^{3} - 3x + Ay + B = 0$

6. Find the order of the differential equation

$$\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^8 + \sin^4 x = 0.$$

- (a) 5
- (b) 8
- (c) 3
- (d) 1
- (e) 4

CODE04

7. Find the general solution of the differential equation $\frac{dy}{dx} = xe^{-x}$.

(a)
$$y(x) = xe^{-x} + c$$

(b) $y(x) = 2(x+1)e^{-x} + c$
(c) $y(x) = -xe^{-x} + x + c$
(d) $y(x) = -(x+1)e^{-x} + c$
(e) $y(x) = (x+2)e^{-x} + c$

8. Find a general solution of the exact differential equation

$$(1 + ye^{xy}) dx + (2y + xe^{xy}) dy = 0.$$

(a)
$$x^{2} - e^{xy} + y^{2} = c$$

(b) $x + e^{xy} - y^{2} = c$
(c) $x - e^{xy} + y^{2} = c$
(d) $x^{2} + e^{xy} + y^{2} = c$
(e) $x + e^{xy} + y^{2} = c$

- 9. Find a constant A that makes the differential equation (2x+Ay) dx + (3x+2y) dy = 0 exact.
 - (a) −3
 - (b) -2
 - (c) 3
 - (d) 0
 - (e) 2

10. In a certain culture of bacteria, the number of bacteria doubled after 3 hours. How long did it take for the population to triple?

(a)
$$\frac{\ln 9}{\ln 2}$$

(b)
$$\frac{\ln 12}{\ln 2}$$

(c)
$$\frac{\ln 27}{\ln 2}$$

(d)
$$\frac{\ln 16}{2}$$

(e)
$$\frac{\ln 3}{\ln 2}$$

11. Which one of the following statements is true about the subset V of \mathbb{R}^3 defined by

$$V = \{(x_1, x_2, x_3) : x_1 = 0\}$$

- (a) V is not closed under addition
- (b) V is a subspace of \mathbb{R}^3
- (c) V is not closed under addition but closed under multiplication by scalars
- (d) V is closed under addition but not closed under multiplication by scalars
- (e) V is not closed under multiplication by scalars

12. A particle is moving in a straight line with acceleration $a(t) = 18\cos(3t)$, and initial position x(0) = -7, and an initial velocity v(0) = 4.

Find $x(\pi)$ (the position of the particle at $t = \pi$).

- (a) $4\pi 7$
- (b) $4\pi + 3$
- (c) $2\pi 3$
- (d) $4\pi 3$
- (e) $2\pi + 3$

13. Find a general solution of the differential equation $xy\frac{dy}{dx} = x^2 + 3y^2$.

(a) $2y^2 = cx^4 + x^3$ (b) $2y^2 = cx^6 + x^2$ (c) $2y^2 = cx^5 + x^2$ (d) $2y^2 = cx^5 - x^2$ (e) $2y^2 = cx^6 - x^2$

14. Find a general solution of the separable differential equation $x^2 \frac{dy}{dx} = 1 - x^2 + y^2 - x^2 y^2$.

(a)
$$y(x) = \tan\left(c - \frac{3}{x} + x\right)$$

(b) $y(x) = \tan\left(c - \frac{1}{x} - x\right)$
(c) $y(x) = \tan\left(c + \frac{2}{x} + x\right)$
(d) $y(x) = \tan\left(c + \frac{1}{x} + x\right)$
(e) $y(x) = \tan\left(c - \frac{2}{x} + x\right)$

231, Math 208, Major Exam I

15. Solve the initial-value problem y' + y = 2, y(0) = 0.

(a) $y(x) = 1 + e^{-x}$ (b) $y(x) = 2 - 2e^{-x}$ (c) $y(x) = 2 - e^{-x}$ (d) $y(x) = 1 - e^{-x}$ (e) $y(x) = 3 - 2e^{-x}$

- 16. Find a value of c such that $y = \tan(x^3 + c)$ is a solution of the initial value problem $y' = 3x^2(y^2 + 1), y(0) = 1.$
 - (a) $\frac{3\pi}{4}$ (b) $\frac{\pi}{3}$ (c) $\frac{5\pi}{3}$ (d) $\frac{5\pi}{4}$ (e) $-\frac{\pi}{4}$

231, Math 208, Major Exam I

17. Find the value of k for which the vectors of \mathbb{R}^3

$$\mathbf{u} = (1, 1, 0), \, \mathbf{v} = (k, 3, 1), \, \mathbf{w} = (3, -2, -4)$$

are linearly dependent.

(a)
$$k = -\frac{3}{4}$$

(b) $k = 0$
(c) $k = \frac{7}{4}$
(d) $k = \frac{3}{4}$
(e) $k = 2$

18. Find a general solution of the differential equation $y' = \sqrt{x + y + 1}$.

(a)
$$2\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = -x+c$$

(b) $3\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = x+c$
(c) $2\sqrt{x+y+1} - 2\ln(1+\sqrt{x+y+1}) = x+c$
(d) $3\sqrt{x+y+1} + 2\ln(1+\sqrt{x+y+1}) = -x+c$
(e) $3\sqrt{x+y+1} - 2\ln(1+\sqrt{x+y+1}) = x+c$

19. If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^3 and r and s are real numbers, then which one of the following statements is not true?

 $\mathbf{w})$

(a)
$$\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|$$

(b) $(r+s)\mathbf{u} = r\mathbf{u} + s\mathbf{u}$
(c) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{u})$
(d) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
(e) $r(\mathbf{u} + \mathbf{v}) = r\mathbf{u} + r\mathbf{v}$

- 20. Let $\mathbf{u} = (5, 1)$, $\mathbf{v} = (-2, -1)$, $\mathbf{w} = (5, -2)$ be vectors in \mathbb{R}^2 . If $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then $a^2 + b^2 =$
 - (a) 36
 - (b) 34
 - (c) 16
 - (d) 25
 - (e) 8

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	А	B 4	A 17	Е 15	A 19
2	А	D 17	D 11	В 19	Е 13
3	А	D 20	В 13	Е 14	E ₈
4	А	A 5	Е 14	D 16	E 1
5	A	В 11	Сз	D 10	В 12
6	A	A ₉	A ₈	В 17	С 15
7	А	В 15	Е 9	С 4	D 4
8	A	Е 16	A 4	Е 11	Е 11
9	А	D 14	В 6	Е 12	С 10
10	А	С 19	A 12	C 20	С 6
11	A	A 12	В 19	Е 18	В 18
12	А	A 2	E ₇	D 3	D 3
13	А	С 10	D 15	С 2	Е 9
14	А	Е 13	В 10	В 6	B 5
15	А	E ₇	B 20	D ₇	B ₇
16	А	С 6	E 1	E 1	D 2
17	А	D 3	B 5	А 9	С 17
18	A	E 1	A 16	Е 13	С 14
19	A	A ₈	D 2	B 5	A 20
20	A	A 18	В 18	D 8	В 16

Answer Counts

V	A	В	С	D	Е
1	6	3	3	4	4
2	5	7	1	3	4
3	1	4	3	5	7
4	2	5	5	3	5