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1. Find the sum of all values of r such that y = erx is a solution of the differential
equation 5y′′ − 6y′ − y = 0.

(a)
6

5
(correct)

(b) −4

5

(c)
3

5

(d)
4

5

(e) −6

5

2. Find a value of c such that y = tan(x3 + c) is a solution of the initial value problem
y′ = 3x2(y2 + 1), y(0) = 1.

(a)
5π

4
(correct)

(b)
π

3

(c)
5π

3

(d) −π
4

(e)
3π

4
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3. A particle is moving in a straight line with acceleration a(t) = 18 cos(3t), and initial
position x(0) = −7, and an initial velocity v(0) = 4.

Find x(π) (the position of the particle at t = π).

(a) 4π − 3 (correct)

(b) 4π + 3

(c) 2π − 3

(d) 2π + 3

(e) 4π − 7

4. Find the general solution of the differential equation
dy

dx
= xe−x.

(a) y(x) = −(x+ 1)e−x + c (correct)

(b) y(x) = 2(x+ 1)e−x + c

(c) y(x) = xe−x + c

(d) y(x) = −xe−x + x+ c

(e) y(x) = (x+ 2)e−x + c
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5. Find a general solution of the separable differential equation x2
dy

dx
= 1−x2+y2−x2y2.

(a) y(x) = tan

(
c− 1

x
− x

)
(correct)

(b) y(x) = tan

(
c− 2

x
+ x

)
(c) y(x) = tan

(
c+

2

x
+ x

)
(d) y(x) = tan

(
c+

1

x
+ x

)
(e) y(x) = tan

(
c− 3

x
+ x

)

6. In a certain culture of bacteria, the number of bacteria doubled after 3 hours. How
long did it take for the population to triple?

(a)
ln 27

ln 2
(correct)

(b)
ln 9

ln 2

(c)
ln 3

ln 2

(d)
ln 12

ln 2

(e)
ln 16

2
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7. Solve the initial-value problem y′ + y = 2, y(0) = 0.

(a) y(x) = 2− 2e−x (correct)

(b) y(x) = 1− e−x

(c) y(x) = 1 + e−x

(d) y(x) = 2− e−x

(e) y(x) = 3− 2e−x

8. Find a general solution of the linear differential equation x
dy

dx
= 2y + x3 cosx.

(a) y(x) = x2(sinx+ c) (correct)

(b) y(x) = x2(cosx+ c)

(c) y(x) = x3(sinx+ c)

(d) y(x) = x3(cosx+ c)

(e) y(x) = x(cosx+ c)
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9. Find a general solution of the differential equation xy
dy

dx
= x2 + 3y2.

(a) 2y2 = cx6 − x2 (correct)

(b) 2y2 = cx6 + x2

(c) 2y2 = cx5 − x2

(d) 2y2 = cx5 + x2

(e) 2y2 = cx4 + x3

10. Find a constant A that makes the differential equation (2x+Ay) dx+(3x+2y) dy = 0
exact.

(a) 3 (correct)

(b) −3

(c) 2

(d) −2

(e) 0
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11. Find a general solution of the exact differential equation

(1 + yexy) dx+ (2y + xexy) dy = 0.

(a) x+ exy + y2 = c (correct)

(b) x− exy + y2 = c

(c) x+ exy − y2 = c

(d) x2 + exy + y2 = c

(e) x2 − exy + y2 = c

12. Find a general solution of the differential equation y′′ = 2y(y′)3.

(a) y3 + 3x+ Ay +B = 0 (correct)

(b) y3 − 3x+ Ay +B = 0

(c) y3 − 3x+ Ay +B = 0

(d) y2 + 3x+ Ay +B = 0

(e) y3 + 2x+ Ay +B = 0
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13. By making a suitable substitution, the differential equation x2y′+ 2xy = 5y3 can be
transformed into a linear differential equation

(a) v′ − 4

x
v = −10

x2
(correct)

(b) v′ − 3

x
v = − 5

x2

(c) v′ − 4

x
v =

5

x2

(d) v′ +
3

x
v =

5

x2

(e) v′ − 5

x
v =

10

x2

14. Find a general solution of the differential equation y′ =
√
x+ y + 1.

(a) 2
√
x+ y + 1− 2 ln(1 +

√
x+ y + 1) = x+ c (correct)

(b) 2
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = −x+ c

(c) 3
√
x+ y + 1− 2 ln(1 +

√
x+ y + 1) = x+ c

(d) 3
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = −x+ c

(e) 3
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = x+ c
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15. Find the order of the differential equation

d3y

dx3
+

(
dy

dx

)8

+ sin4 x = 0.

(a) 3 (correct)

(b) 8

(c) 4

(d) 1

(e) 5

16. Let u = (5, 1), v = (−2,−1), w = (5,−2) be vectors in R2. If w = au + bv, then
a2 + b2 =

(a) 34 (correct)

(b) 8

(c) 25

(d) 16

(e) 36
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17. Find the value of k for which the vectors of R3

u = (1, 1, 0), v = (k, 3, 1), w = (3,−2,−4)

are linearly dependent.

(a) k =
7

4
(correct)

(b) k = 0

(c) k =
3

4

(d) k = −3

4
(e) k = 2

18. Which one of the following statements is true about the subset V of R3 defined by

V = {(x1, x2, x3) : x1 = 0}

(a) V is a subspace of R3 (correct)

(b) V is not closed under addition

(c) V is not closed under multiplication by scalars

(d) V is closed under addition but not closed under multiplication by scalars

(e) V is not closed under addition but closed under multiplication by scalars
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19. The solution of the system

x1 − 3x2 − 7x3 + 5x4 = 0
3x1 + x2 + 9x3 − 5x4 = 0
x1 − 2x2 − 4x3 + 4x4 = 0

is the set of all scalars multiples of a vector u where u =

(a) (−2,−3, 1, 0) (correct)

(b) (−1,−6, 1, 0)

(c) (−2, 3, 0, 1)

(d) (−1, 3, 1, 0)

(e) (−2, 3, 1, 2)

20. If u,v and w are vectors in R3 and r and s are real numbers, then which one of the
following statements is not true?

(a) u · u = |u| (correct)

(b) u + v = v + u

(c) (u + v) + w = u + (v + w)

(d) r(u + v) = ru + rv

(e) (r + s)u = ru + su
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1. Find the general solution of the differential equation
dy

dx
= xe−x.

(a) y(x) = 2(x+ 1)e−x + c

(b) y(x) = −(x+ 1)e−x + c

(c) y(x) = −xe−x + x+ c

(d) y(x) = xe−x + c

(e) y(x) = (x+ 2)e−x + c

2. Find the value of k for which the vectors of R3

u = (1, 1, 0), v = (k, 3, 1), w = (3,−2,−4)

are linearly dependent.

(a) k = 0

(b) k =
3

4
(c) k = 2

(d) k =
7

4

(e) k = −3

4
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3. If u,v and w are vectors in R3 and r and s are real numbers, then which one of the
following statements is not true?

(a) r(u + v) = ru + rv

(b) u + v = v + u

(c) (u + v) + w = u + (v + w)

(d) u · u = |u|
(e) (r + s)u = ru + su

4. Find a general solution of the separable differential equation x2
dy

dx
= 1−x2+y2−x2y2.

(a) y(x) = tan

(
c− 1

x
− x

)
(b) y(x) = tan

(
c+

1

x
+ x

)
(c) y(x) = tan

(
c− 3

x
+ x

)
(d) y(x) = tan

(
c− 2

x
+ x

)
(e) y(x) = tan

(
c+

2

x
+ x

)
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5. Find a general solution of the exact differential equation

(1 + yexy) dx+ (2y + xexy) dy = 0.

(a) x− exy + y2 = c

(b) x+ exy + y2 = c

(c) x+ exy − y2 = c

(d) x2 + exy + y2 = c

(e) x2 − exy + y2 = c

6. Find a general solution of the differential equation xy
dy

dx
= x2 + 3y2.

(a) 2y2 = cx6 − x2

(b) 2y2 = cx4 + x3

(c) 2y2 = cx6 + x2

(d) 2y2 = cx5 − x2

(e) 2y2 = cx5 + x2
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7. Find the order of the differential equation

d3y

dx3
+

(
dy

dx

)8

+ sin4 x = 0.

(a) 4

(b) 3

(c) 8

(d) 1

(e) 5

8. Let u = (5, 1), v = (−2,−1), w = (5,−2) be vectors in R2. If w = au + bv, then
a2 + b2 =

(a) 8

(b) 25

(c) 36

(d) 16

(e) 34
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9. Find a general solution of the differential equation y′ =
√
x+ y + 1.

(a) 3
√
x+ y + 1− 2 ln(1 +

√
x+ y + 1) = x+ c

(b) 3
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = −x+ c

(c) 3
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = x+ c

(d) 2
√
x+ y + 1− 2 ln(1 +

√
x+ y + 1) = x+ c

(e) 2
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = −x+ c

10. The solution of the system

x1 − 3x2 − 7x3 + 5x4 = 0
3x1 + x2 + 9x3 − 5x4 = 0
x1 − 2x2 − 4x3 + 4x4 = 0

is the set of all scalars multiples of a vector u where u =

(a) (−2, 3, 0, 1)

(b) (−1, 3, 1, 0)

(c) (−2,−3, 1, 0)

(d) (−2, 3, 1, 2)

(e) (−1,−6, 1, 0)
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11. Find a general solution of the differential equation y′′ = 2y(y′)3.

(a) y3 + 3x+ Ay +B = 0

(b) y2 + 3x+ Ay +B = 0

(c) y3 + 2x+ Ay +B = 0

(d) y3 − 3x+ Ay +B = 0

(e) y3 − 3x+ Ay +B = 0

12. Find a value of c such that y = tan(x3 + c) is a solution of the initial value problem
y′ = 3x2(y2 + 1), y(0) = 1.

(a)
5π

4

(b)
π

3

(c) −π
4

(d)
5π

3

(e)
3π

4



231, Math 208, Major Exam I Page 7 of 10 CODE01

13. Find a constant A that makes the differential equation (2x+Ay) dx+(3x+2y) dy = 0
exact.

(a) −2

(b) 2

(c) 3

(d) 0

(e) −3

14. By making a suitable substitution, the differential equation x2y′+ 2xy = 5y3 can be
transformed into a linear differential equation

(a) v′ − 3

x
v = − 5

x2

(b) v′ − 5

x
v =

10

x2

(c) v′ +
3

x
v =

5

x2

(d) v′ − 4

x
v =

5

x2

(e) v′ − 4

x
v = −10

x2
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15. Solve the initial-value problem y′ + y = 2, y(0) = 0.

(a) y(x) = 1− e−x

(b) y(x) = 1 + e−x

(c) y(x) = 3− 2e−x

(d) y(x) = 2− e−x

(e) y(x) = 2− 2e−x

16. In a certain culture of bacteria, the number of bacteria doubled after 3 hours. How
long did it take for the population to triple?

(a)
ln 9

ln 2

(b)
ln 3

ln 2

(c)
ln 27

ln 2

(d)
ln 16

2

(e)
ln 12

ln 2
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17. A particle is moving in a straight line with acceleration a(t) = 18 cos(3t), and initial
position x(0) = −7, and an initial velocity v(0) = 4.

Find x(π) (the position of the particle at t = π).

(a) 4π + 3

(b) 2π + 3

(c) 2π − 3

(d) 4π − 3

(e) 4π − 7

18. Find the sum of all values of r such that y = erx is a solution of the differential
equation 5y′′ − 6y′ − y = 0.

(a)
3

5

(b) −4

5

(c)
4

5

(d) −6

5

(e)
6

5



231, Math 208, Major Exam I Page 10 of 10 CODE01

19. Find a general solution of the linear differential equation x
dy

dx
= 2y + x3 cosx.

(a) y(x) = x2(sinx+ c)

(b) y(x) = x(cosx+ c)

(c) y(x) = x3(cosx+ c)

(d) y(x) = x2(cosx+ c)

(e) y(x) = x3(sinx+ c)

20. Which one of the following statements is true about the subset V of R3 defined by

V = {(x1, x2, x3) : x1 = 0}

(a) V is a subspace of R3

(b) V is not closed under addition

(c) V is not closed under addition but closed under multiplication by scalars

(d) V is closed under addition but not closed under multiplication by scalars

(e) V is not closed under multiplication by scalars
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1. Find the value of k for which the vectors of R3

u = (1, 1, 0), v = (k, 3, 1), w = (3,−2,−4)

are linearly dependent.

(a) k =
7

4
(b) k = 2

(c) k =
3

4
(d) k = 0

(e) k = −3

4

2. Find a general solution of the exact differential equation

(1 + yexy) dx+ (2y + xexy) dy = 0.

(a) x2 − exy + y2 = c

(b) x− exy + y2 = c

(c) x+ exy − y2 = c

(d) x+ exy + y2 = c

(e) x2 + exy + y2 = c



231, Math 208, Major Exam I Page 2 of 10 CODE02

3. By making a suitable substitution, the differential equation x2y′+ 2xy = 5y3 can be
transformed into a linear differential equation

(a) v′ − 4

x
v =

5

x2

(b) v′ − 4

x
v = −10

x2

(c) v′ − 3

x
v = − 5

x2

(d) v′ +
3

x
v =

5

x2

(e) v′ − 5

x
v =

10

x2

4. Find a general solution of the differential equation y′ =
√
x+ y + 1.

(a) 2
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = −x+ c

(b) 3
√
x+ y + 1− 2 ln(1 +

√
x+ y + 1) = x+ c

(c) 3
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = −x+ c

(d) 3
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = x+ c

(e) 2
√
x+ y + 1− 2 ln(1 +

√
x+ y + 1) = x+ c
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5. A particle is moving in a straight line with acceleration a(t) = 18 cos(3t), and initial
position x(0) = −7, and an initial velocity v(0) = 4.

Find x(π) (the position of the particle at t = π).

(a) 2π − 3

(b) 2π + 3

(c) 4π − 3

(d) 4π + 3

(e) 4π − 7

6. Find a general solution of the linear differential equation x
dy

dx
= 2y + x3 cosx.

(a) y(x) = x2(sinx+ c)

(b) y(x) = x3(sinx+ c)

(c) y(x) = x3(cosx+ c)

(d) y(x) = x2(cosx+ c)

(e) y(x) = x(cosx+ c)
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7. Find a general solution of the differential equation xy
dy

dx
= x2 + 3y2.

(a) 2y2 = cx5 − x2

(b) 2y2 = cx6 + x2

(c) 2y2 = cx4 + x3

(d) 2y2 = cx5 + x2

(e) 2y2 = cx6 − x2

8. Find the general solution of the differential equation
dy

dx
= xe−x.

(a) y(x) = −(x+ 1)e−x + c

(b) y(x) = −xe−x + x+ c

(c) y(x) = (x+ 2)e−x + c

(d) y(x) = xe−x + c

(e) y(x) = 2(x+ 1)e−x + c
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9. In a certain culture of bacteria, the number of bacteria doubled after 3 hours. How
long did it take for the population to triple?

(a)
ln 9

ln 2

(b)
ln 27

ln 2

(c)
ln 12

ln 2

(d)
ln 3

ln 2

(e)
ln 16

2

10. Find a general solution of the differential equation y′′ = 2y(y′)3.

(a) y3 + 3x+ Ay +B = 0

(b) y3 + 2x+ Ay +B = 0

(c) y3 − 3x+ Ay +B = 0

(d) y3 − 3x+ Ay +B = 0

(e) y2 + 3x+ Ay +B = 0
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11. The solution of the system

x1 − 3x2 − 7x3 + 5x4 = 0
3x1 + x2 + 9x3 − 5x4 = 0
x1 − 2x2 − 4x3 + 4x4 = 0

is the set of all scalars multiples of a vector u where u =

(a) (−1,−6, 1, 0)

(b) (−2,−3, 1, 0)

(c) (−2, 3, 0, 1)

(d) (−1, 3, 1, 0)

(e) (−2, 3, 1, 2)

12. Solve the initial-value problem y′ + y = 2, y(0) = 0.

(a) y(x) = 3− 2e−x

(b) y(x) = 1− e−x

(c) y(x) = 1 + e−x

(d) y(x) = 2− e−x

(e) y(x) = 2− 2e−x
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13. Find the order of the differential equation

d3y

dx3
+

(
dy

dx

)8

+ sin4 x = 0.

(a) 8

(b) 4

(c) 5

(d) 3

(e) 1

14. Find a constant A that makes the differential equation (2x+Ay) dx+(3x+2y) dy = 0
exact.

(a) 0

(b) 3

(c) −3

(d) −2

(e) 2
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15. If u,v and w are vectors in R3 and r and s are real numbers, then which one of the
following statements is not true?

(a) r(u + v) = ru + rv

(b) u · u = |u|
(c) (r + s)u = ru + su

(d) u + v = v + u

(e) (u + v) + w = u + (v + w)

16. Find the sum of all values of r such that y = erx is a solution of the differential
equation 5y′′ − 6y′ − y = 0.

(a) −6

5

(b)
3

5

(c)
4

5

(d) −4

5

(e)
6

5
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17. Find a general solution of the separable differential equation x2
dy

dx
= 1−x2+y2−x2y2.

(a) y(x) = tan

(
c− 3

x
+ x

)
(b) y(x) = tan

(
c− 1

x
− x

)
(c) y(x) = tan

(
c+

2

x
+ x

)
(d) y(x) = tan

(
c+

1

x
+ x

)
(e) y(x) = tan

(
c− 2

x
+ x

)

18. Let u = (5, 1), v = (−2,−1), w = (5,−2) be vectors in R2. If w = au + bv, then
a2 + b2 =

(a) 34

(b) 8

(c) 25

(d) 36

(e) 16
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19. Find a value of c such that y = tan(x3 + c) is a solution of the initial value problem
y′ = 3x2(y2 + 1), y(0) = 1.

(a)
π

3

(b)
3π

4

(c)
5π

3

(d)
5π

4

(e) −π
4

20. Which one of the following statements is true about the subset V of R3 defined by

V = {(x1, x2, x3) : x1 = 0}

(a) V is not closed under addition

(b) V is a subspace of R3

(c) V is closed under addition but not closed under multiplication by scalars

(d) V is not closed under addition but closed under multiplication by scalars

(e) V is not closed under multiplication by scalars
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1. Find the order of the differential equation

d3y

dx3
+

(
dy

dx

)8

+ sin4 x = 0.

(a) 8

(b) 4

(c) 5

(d) 1

(e) 3

2. The solution of the system

x1 − 3x2 − 7x3 + 5x4 = 0
3x1 + x2 + 9x3 − 5x4 = 0
x1 − 2x2 − 4x3 + 4x4 = 0

is the set of all scalars multiples of a vector u where u =

(a) (−1, 3, 1, 0)

(b) (−2,−3, 1, 0)

(c) (−2, 3, 1, 2)

(d) (−2, 3, 0, 1)

(e) (−1,−6, 1, 0)
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3. Find a general solution of the differential equation y′ =
√
x+ y + 1.

(a) 3
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = x+ c

(b) 3
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = −x+ c

(c) 2
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = −x+ c

(d) 3
√
x+ y + 1− 2 ln(1 +

√
x+ y + 1) = x+ c

(e) 2
√
x+ y + 1− 2 ln(1 +

√
x+ y + 1) = x+ c

4. Let u = (5, 1), v = (−2,−1), w = (5,−2) be vectors in R2. If w = au + bv, then
a2 + b2 =

(a) 8

(b) 25

(c) 36

(d) 34

(e) 16
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5. Find a constant A that makes the differential equation (2x+Ay) dx+(3x+2y) dy = 0
exact.

(a) −3

(b) −2

(c) 0

(d) 3

(e) 2

6. Find the value of k for which the vectors of R3

u = (1, 1, 0), v = (k, 3, 1), w = (3,−2,−4)

are linearly dependent.

(a) k = −3

4

(b) k =
7

4
(c) k = 0

(d) k =
3

4
(e) k = 2
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7. Find the general solution of the differential equation
dy

dx
= xe−x.

(a) y(x) = xe−x + c

(b) y(x) = −xe−x + x+ c

(c) y(x) = −(x+ 1)e−x + c

(d) y(x) = 2(x+ 1)e−x + c

(e) y(x) = (x+ 2)e−x + c

8. Find a general solution of the exact differential equation

(1 + yexy) dx+ (2y + xexy) dy = 0.

(a) x− exy + y2 = c

(b) x+ exy − y2 = c

(c) x2 − exy + y2 = c

(d) x2 + exy + y2 = c

(e) x+ exy + y2 = c
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9. Find a general solution of the differential equation y′′ = 2y(y′)3.

(a) y3 + 2x+ Ay +B = 0

(b) y3 − 3x+ Ay +B = 0

(c) y2 + 3x+ Ay +B = 0

(d) y3 − 3x+ Ay +B = 0

(e) y3 + 3x+ Ay +B = 0

10. If u,v and w are vectors in R3 and r and s are real numbers, then which one of the
following statements is not true?

(a) u + v = v + u

(b) (r + s)u = ru + su

(c) u · u = |u|
(d) (u + v) + w = u + (v + w)

(e) r(u + v) = ru + rv



231, Math 208, Major Exam I Page 6 of 10 CODE03

11. Which one of the following statements is true about the subset V of R3 defined by

V = {(x1, x2, x3) : x1 = 0}

(a) V is closed under addition but not closed under multiplication by scalars

(b) V is not closed under addition

(c) V is not closed under addition but closed under multiplication by scalars

(d) V is not closed under multiplication by scalars

(e) V is a subspace of R3

12. A particle is moving in a straight line with acceleration a(t) = 18 cos(3t), and initial
position x(0) = −7, and an initial velocity v(0) = 4.

Find x(π) (the position of the particle at t = π).

(a) 4π + 3

(b) 4π − 7

(c) 2π + 3

(d) 4π − 3

(e) 2π − 3
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13. Find a value of c such that y = tan(x3 + c) is a solution of the initial value problem
y′ = 3x2(y2 + 1), y(0) = 1.

(a)
3π

4

(b) −π
4

(c)
5π

4

(d)
π

3

(e)
5π

3

14. In a certain culture of bacteria, the number of bacteria doubled after 3 hours. How
long did it take for the population to triple?

(a)
ln 12

ln 2

(b)
ln 27

ln 2

(c)
ln 9

ln 2

(d)
ln 3

ln 2

(e)
ln 16

2
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15. Solve the initial-value problem y′ + y = 2, y(0) = 0.

(a) y(x) = 2− e−x

(b) y(x) = 1− e−x

(c) y(x) = 1 + e−x

(d) y(x) = 2− 2e−x

(e) y(x) = 3− 2e−x

16. Find the sum of all values of r such that y = erx is a solution of the differential
equation 5y′′ − 6y′ − y = 0.

(a) −4

5

(b) −6

5

(c)
4

5

(d)
3

5

(e)
6

5
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17. Find a general solution of the differential equation xy
dy

dx
= x2 + 3y2.

(a) 2y2 = cx6 − x2

(b) 2y2 = cx5 − x2

(c) 2y2 = cx5 + x2

(d) 2y2 = cx4 + x3

(e) 2y2 = cx6 + x2

18. By making a suitable substitution, the differential equation x2y′+ 2xy = 5y3 can be
transformed into a linear differential equation

(a) v′ − 4

x
v =

5

x2

(b) v′ − 5

x
v =

10

x2

(c) v′ − 3

x
v = − 5

x2

(d) v′ +
3

x
v =

5

x2

(e) v′ − 4

x
v = −10

x2
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19. Find a general solution of the separable differential equation x2
dy

dx
= 1−x2+y2−x2y2.

(a) y(x) = tan

(
c+

1

x
+ x

)
(b) y(x) = tan

(
c− 1

x
− x

)
(c) y(x) = tan

(
c− 3

x
+ x

)
(d) y(x) = tan

(
c+

2

x
+ x

)
(e) y(x) = tan

(
c− 2

x
+ x

)

20. Find a general solution of the linear differential equation x
dy

dx
= 2y + x3 cosx.

(a) y(x) = x(cosx+ c)

(b) y(x) = x3(sinx+ c)

(c) y(x) = x2(cosx+ c)

(d) y(x) = x2(sinx+ c)

(e) y(x) = x3(cosx+ c)
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1. The solution of the system

x1 − 3x2 − 7x3 + 5x4 = 0
3x1 + x2 + 9x3 − 5x4 = 0
x1 − 2x2 − 4x3 + 4x4 = 0

is the set of all scalars multiples of a vector u where u =

(a) (−2,−3, 1, 0)

(b) (−1, 3, 1, 0)

(c) (−2, 3, 1, 2)

(d) (−2, 3, 0, 1)

(e) (−1,−6, 1, 0)

2. By making a suitable substitution, the differential equation x2y′+ 2xy = 5y3 can be
transformed into a linear differential equation

(a) v′ − 3

x
v = − 5

x2

(b) v′ − 5

x
v =

10

x2

(c) v′ − 4

x
v =

5

x2

(d) v′ +
3

x
v =

5

x2

(e) v′ − 4

x
v = −10

x2
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3. Find a general solution of the linear differential equation x
dy

dx
= 2y + x3 cosx.

(a) y(x) = x3(cosx+ c)

(b) y(x) = x2(cosx+ c)

(c) y(x) = x(cosx+ c)

(d) y(x) = x3(sinx+ c)

(e) y(x) = x2(sinx+ c)

4. Find the sum of all values of r such that y = erx is a solution of the differential
equation 5y′′ − 6y′ − y = 0.

(a)
3

5

(b) −4

5

(c)
4

5

(d) −6

5

(e)
6

5
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5. Find a general solution of the differential equation y′′ = 2y(y′)3.

(a) y3 + 2x+ Ay +B = 0

(b) y3 + 3x+ Ay +B = 0

(c) y2 + 3x+ Ay +B = 0

(d) y3 − 3x+ Ay +B = 0

(e) y3 − 3x+ Ay +B = 0

6. Find the order of the differential equation

d3y

dx3
+

(
dy

dx

)8

+ sin4 x = 0.

(a) 5

(b) 8

(c) 3

(d) 1

(e) 4
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7. Find the general solution of the differential equation
dy

dx
= xe−x.

(a) y(x) = xe−x + c

(b) y(x) = 2(x+ 1)e−x + c

(c) y(x) = −xe−x + x+ c

(d) y(x) = −(x+ 1)e−x + c

(e) y(x) = (x+ 2)e−x + c

8. Find a general solution of the exact differential equation

(1 + yexy) dx+ (2y + xexy) dy = 0.

(a) x2 − exy + y2 = c

(b) x+ exy − y2 = c

(c) x− exy + y2 = c

(d) x2 + exy + y2 = c

(e) x+ exy + y2 = c
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9. Find a constant A that makes the differential equation (2x+Ay) dx+(3x+2y) dy = 0
exact.

(a) −3

(b) −2

(c) 3

(d) 0

(e) 2

10. In a certain culture of bacteria, the number of bacteria doubled after 3 hours. How
long did it take for the population to triple?

(a)
ln 9

ln 2

(b)
ln 12

ln 2

(c)
ln 27

ln 2

(d)
ln 16

2

(e)
ln 3

ln 2
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11. Which one of the following statements is true about the subset V of R3 defined by

V = {(x1, x2, x3) : x1 = 0}

(a) V is not closed under addition

(b) V is a subspace of R3

(c) V is not closed under addition but closed under multiplication by scalars

(d) V is closed under addition but not closed under multiplication by scalars

(e) V is not closed under multiplication by scalars

12. A particle is moving in a straight line with acceleration a(t) = 18 cos(3t), and initial
position x(0) = −7, and an initial velocity v(0) = 4.

Find x(π) (the position of the particle at t = π).

(a) 4π − 7

(b) 4π + 3

(c) 2π − 3

(d) 4π − 3

(e) 2π + 3
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13. Find a general solution of the differential equation xy
dy

dx
= x2 + 3y2.

(a) 2y2 = cx4 + x3

(b) 2y2 = cx6 + x2

(c) 2y2 = cx5 + x2

(d) 2y2 = cx5 − x2

(e) 2y2 = cx6 − x2

14. Find a general solution of the separable differential equation x2
dy

dx
= 1−x2+y2−x2y2.

(a) y(x) = tan

(
c− 3

x
+ x

)
(b) y(x) = tan

(
c− 1

x
− x

)
(c) y(x) = tan

(
c+

2

x
+ x

)
(d) y(x) = tan

(
c+

1

x
+ x

)
(e) y(x) = tan

(
c− 2

x
+ x

)
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15. Solve the initial-value problem y′ + y = 2, y(0) = 0.

(a) y(x) = 1 + e−x

(b) y(x) = 2− 2e−x

(c) y(x) = 2− e−x

(d) y(x) = 1− e−x

(e) y(x) = 3− 2e−x

16. Find a value of c such that y = tan(x3 + c) is a solution of the initial value problem
y′ = 3x2(y2 + 1), y(0) = 1.

(a)
3π

4

(b)
π

3

(c)
5π

3

(d)
5π

4

(e) −π
4
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17. Find the value of k for which the vectors of R3

u = (1, 1, 0), v = (k, 3, 1), w = (3,−2,−4)

are linearly dependent.

(a) k = −3

4
(b) k = 0

(c) k =
7

4

(d) k =
3

4
(e) k = 2

18. Find a general solution of the differential equation y′ =
√
x+ y + 1.

(a) 2
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = −x+ c

(b) 3
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = x+ c

(c) 2
√
x+ y + 1− 2 ln(1 +

√
x+ y + 1) = x+ c

(d) 3
√
x+ y + 1 + 2 ln(1 +

√
x+ y + 1) = −x+ c

(e) 3
√
x+ y + 1− 2 ln(1 +

√
x+ y + 1) = x+ c
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19. If u,v and w are vectors in R3 and r and s are real numbers, then which one of the
following statements is not true?

(a) u · u = |u|
(b) (r + s)u = ru + su

(c) (u + v) + w = u + (v + w)

(d) u + v = v + u

(e) r(u + v) = ru + rv

20. Let u = (5, 1), v = (−2,−1), w = (5,−2) be vectors in R2. If w = au + bv, then
a2 + b2 =

(a) 36

(b) 34

(c) 16

(d) 25

(e) 8
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