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1. A value of k for which the following vectors

v1 = (k, 0, k), v2 = (2k,−3, 4) and v3 = (3, 5, 2)

are linearly dependent is

(a)
17

10
(correct)

(b)
7

5

(c)
−8

5

(d)
−16

5

(e)
10

5

2. Consider the vectors

v1 = (−1, 2, 3), v2 = (3, 1,−2), v3 = (2, 3, 0) and w = (1, 5, 8).

If w = av1 + bv2 + cv3, then a+ b− c =

(a) 15 (correct)

(b) 17

(c) 19

(d) 21

(e) 13
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3. Consider the subspace S of R4 defined by S = {(a, b, c, d)|a = b+ c+ d}. A basis of
S is consisting of the vectors

(a) v1 = (1, 1, 0, 0), v2 = (1, 0, 1, 0), v3 = (1, 0, 0, 1) (correct)

(b) v1 = (1, 1, 1, 0), v2 = (0, 1, 1, 1), v3 = (0, 1, 1, 0)

(c) v1 = (0, 1, 0, 0), v2 = (0, 0, 1, 0), v3 = (0, 0, 0, 1)

(d) v1 = (1, 1, 1, 1), v2 = (0, 0, 1, 0), v3 = (1, 0, 0, 1)

(e) v1 = (1, 1, 0, 0), v2 = (0, 0, 1, 1), v3 = (0, 1, 0, 1)

4. Let the solution space of the system

x1 − 2x2 − 9x3 + 7x4 = 0
x1 + x2 + 3x3 + 4x4 = 0
x1 + 4x2 + 15x3 + x4 = 0

has all linear combinations of the two vectors

u = (1,−4, 1, 0) and v = (α, 1, β, 1).

Then α + β =

(a) −5 (correct)

(b) 5

(c) −3

(d) 3

(e) 0
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5. The rank of the matrix

A =


1 2 3 −9 9
3 6 2 1 6
2 4 1 2 3
4 8 3 0 9


is

(a) 2 (correct)

(b) 3

(c) 1

(d) 5

(e) 4

6. The solution of the initial-value problem

y′′ − y = 0, y(0) = 0 and y′(0) = 5

is

(a) y =
5

2
ex − 5

2
e−x (correct)

(b) y =
−5

2
ex +

5

2
e−x

(c) y = ex − e−x

(d) y = e−x − ex

(e) y =
3

2
ex − 3

2
e−x
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7. The Wronskian of the functions

f(x) = 1, g(x) = x, h(x) = x2

is

(a) 2 (correct)

(b) 3

(c) 0

(d) 4

(e) −4

8. The general solution of the differential equation

4y′′ − 12y′ + 9y = 0

is

(a) y = c1e
3
2x + c2xe

3
2x (correct)

(b) y = c1e
x + c2xe

x

(c) y = c1e
3
2x + c2xe

− 3
2x

(d) y = c1e
3x + c2xe

3x

(e) y = c1e
3x + c2e

−3x
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9. The general solution of the differential equation

y(3) + 3y′′ − 4y = 0

is

(a) y = c1e
x + c2e

−2x + c3xe
−2x (correct)

(b) y = c1e
−x + c2e

−2x + c3xe
−2x

(c) y = c1e
x + c2e

2x + c3xe
2x

(d) y = c1e
−x + c2e

2x + c3xe
2x

(e) y = c1e
x + c2e

3x + c3xe
3x

10. The general solution of the differential equation

y(4) + 18y′′ + 81y = 0

is

(a) y = (c1 + c2x) cos(3x) + (c3 + c4x) sin(3x) (correct)

(b) y = (c1 + c2x) cos(2x) + (c3 + c4x) sin(2x)

(c) y = (c1 + c2x)ex cos(3x) + (c3 + c4x)ex sin(3x)

(d) y = (c1 + c2x)ex cos(2x) + (c3 + c4x)ex sin(2x)

(e) y = c1 cos(3x) + c2 sin(3x) + c3 cos(2x) + c4 sin(2x)
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11. A linear homogeneous constant-coefficient differential equation which has the general
solution

y(x) = e−4x(c1 cos(3x) + c2 sin(3x))

is

(a) y′′ + 8y′ + 25y = 0 (correct)

(b) y′′ − 8y′ + 25y = 0

(c) y′′ + 6y′ + 25y = 0

(d) y′′ − 8y′ − 25y = 0

(e) y′′ − 6y′ + 25y = 0

12. If yp = A+Bx is a particular solution of the differential equation

y′′ − y′ − 2y = 3x+ 4, then 4A+ 4B =

(a) −11 (correct)

(b) −10

(c) 12

(d) 9

(e) 0
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13. An appropriate form of a particular solution yp for the non-homogeneous differential
equation y′′ + 4y = 3x cos(2x) is given by yp(x) =

(a) (Ax+Bx2) cos(2x) + (Cx+Dx2) sin(2x) (correct)

(b) (Ax+Bx) cos(2x) + (C +Dx) sin(2x)

(c) (Ax+Bx2) cos(2x) + (C +Dx) sin(2x)

(d) (A+Bx) cos(2x) + (Cx+Dx2) sin(2x)

(e) (Ax2 +Bx3) cos(2x) + (C +Dx) sin(2x)

14. Given that yp = u1(x) (cos(3x)) + u2(x) (sin(3x)) is a particular solution of the
differential equation

y′′ + 9y = 2 sec(3x), then u1(x) =

(a)
2

9
ln | cos(3x)| (correct)

(b)
1

9
ln | cos(3x)|

(c)
2

7
ln | cos(3x)|

(d)
1

3
ln | cos(3x)|

(e)
1

7
ln | cos(3x)|
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15. The characteristic polynomial of the matrix

 3 5 −2
0 2 0
0 2 1

 is p(λ) =

(a) −λ3 + 6λ2 − 11λ+ 6 (correct)

(b) λ3 − 5λ2 + 11λ+ 6

(c) λ3 − 6λ2 + 9λ+ 6

(d) λ3 + 4λ2 − 2λ+ 6

(e) λ3 + 6λ2 − 11λ+ 4

16. The eigenvector associated with the eigenvalue λ = −1 of the matrix A =

[
7 −8
6 −7

]
is

[
a
1

]
, where a =

(a) 1 (correct)

(b) −1

(c) 2

(d) −2

(e) 0
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17. If the characteristic polynomial of the matrix A =

 5 −6 3
6 −7 3
6 −6 2

 is

p(λ) = −(λ + 1)2(λ − 2), then a basis for the eigenspace of λ = −1 is v1 =

 m
1
0


and v2 =

 −1
0
n

, where m+ n =

(a) 3 (correct)

(b) 4

(c) 5

(d) 0

(e) 1

18. If the rank of the matrix

 1 2 3
1 5 −9
2 5 m

 is equal to 2, then m =

(a) 2 (correct)

(b) 5

(c) −5

(d) 4

(e) 3
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19. Which one of the following set of functions are linearly dependent

(a) y1(x) = 1, y2(x) = x, y3(x) = 2x+ 3 (correct)

(b) y1(x) = 1, y2(x) = x, y3(x) = x2

(c) y1(x) = 2, y2(x) = 3x, y3(x) = x3

(d) y1(x) = x, y2(x) = x2, y3(x) = x3

(e) y1(x) = x, y2(x) = x2 + x, y3(x) = x3 − 1

20. If the matrix A =

[
5 −3
2 0

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P =

[
1 3
1 2

]
, D =

[
2 0
0 3

]
(correct)

(b) P =

[
3 1
2 1

]
, D =

[
2 0
0 3

]
(c) P =

[
3 1
2 1

]
, D =

[
0 2
3 0

]
(d) P =

[
1 3
2 2

]
, D =

[
2 0
0 3

]
(e) P =

[
1 2
1 4

]
, D =

[
2 0
0 3

]
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1. If the rank of the matrix

 1 2 3
1 5 −9
2 5 m

 is equal to 2, then m =

(a) −5

(b) 5

(c) 2

(d) 3

(e) 4

2. Consider the subspace S of R4 defined by S = {(a, b, c, d)|a = b+ c+ d}. A basis of
S is consisting of the vectors

(a) v1 = (1, 1, 0, 0), v2 = (0, 0, 1, 1), v3 = (0, 1, 0, 1)

(b) v1 = (0, 1, 0, 0), v2 = (0, 0, 1, 0), v3 = (0, 0, 0, 1)

(c) v1 = (1, 1, 1, 1), v2 = (0, 0, 1, 0), v3 = (1, 0, 0, 1)

(d) v1 = (1, 1, 0, 0), v2 = (1, 0, 1, 0), v3 = (1, 0, 0, 1)

(e) v1 = (1, 1, 1, 0), v2 = (0, 1, 1, 1), v3 = (0, 1, 1, 0)
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3. The rank of the matrix

A =


1 2 3 −9 9
3 6 2 1 6
2 4 1 2 3
4 8 3 0 9


is

(a) 4

(b) 3

(c) 2

(d) 1

(e) 5

4. The solution of the initial-value problem

y′′ − y = 0, y(0) = 0 and y′(0) = 5

is

(a) y = e−x − ex

(b) y = ex − e−x

(c) y =
−5

2
ex +

5

2
e−x

(d) y =
3

2
ex − 3

2
e−x

(e) y =
5

2
ex − 5

2
e−x
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5. The Wronskian of the functions

f(x) = 1, g(x) = x, h(x) = x2

is

(a) 3

(b) 2

(c) −4

(d) 0

(e) 4

6. A linear homogeneous constant-coefficient differential equation which has the general
solution

y(x) = e−4x(c1 cos(3x) + c2 sin(3x))

is

(a) y′′ − 8y′ − 25y = 0

(b) y′′ − 8y′ + 25y = 0

(c) y′′ − 6y′ + 25y = 0

(d) y′′ + 6y′ + 25y = 0

(e) y′′ + 8y′ + 25y = 0



231, Math 208, Exam II Page 4 of 10 CODE01

7. Which one of the following set of functions are linearly dependent

(a) y1(x) = x, y2(x) = x2, y3(x) = x3

(b) y1(x) = 1, y2(x) = x, y3(x) = 2x+ 3

(c) y1(x) = x, y2(x) = x2 + x, y3(x) = x3 − 1

(d) y1(x) = 1, y2(x) = x, y3(x) = x2

(e) y1(x) = 2, y2(x) = 3x, y3(x) = x3

8. The general solution of the differential equation

y(4) + 18y′′ + 81y = 0

is

(a) y = c1 cos(3x) + c2 sin(3x) + c3 cos(2x) + c4 sin(2x)

(b) y = (c1 + c2x)ex cos(2x) + (c3 + c4x)ex sin(2x)

(c) y = (c1 + c2x)ex cos(3x) + (c3 + c4x)ex sin(3x)

(d) y = (c1 + c2x) cos(2x) + (c3 + c4x) sin(2x)

(e) y = (c1 + c2x) cos(3x) + (c3 + c4x) sin(3x)
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9. Let the solution space of the system

x1 − 2x2 − 9x3 + 7x4 = 0
x1 + x2 + 3x3 + 4x4 = 0
x1 + 4x2 + 15x3 + x4 = 0

has all linear combinations of the two vectors

u = (1,−4, 1, 0) and v = (α, 1, β, 1).

Then α + β =

(a) 5

(b) −5

(c) 0

(d) −3

(e) 3

10. The general solution of the differential equation

4y′′ − 12y′ + 9y = 0

is

(a) y = c1e
3x + c2e

−3x

(b) y = c1e
3
2x + c2xe

− 3
2x

(c) y = c1e
3
2x + c2xe

3
2x

(d) y = c1e
3x + c2xe

3x

(e) y = c1e
x + c2xe

x
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11. A value of k for which the following vectors

v1 = (k, 0, k), v2 = (2k,−3, 4) and v3 = (3, 5, 2)

are linearly dependent is

(a)
7

5

(b)
−8

5

(c)
−16

5

(d)
17

10

(e)
10

5

12. The eigenvector associated with the eigenvalue λ = −1 of the matrix A =

[
7 −8
6 −7

]
is

[
a
1

]
, where a =

(a) −2

(b) 1

(c) −1

(d) 2

(e) 0
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13. If yp = A+Bx is a particular solution of the differential equation

y′′ − y′ − 2y = 3x+ 4, then 4A+ 4B =

(a) −10

(b) 12

(c) 0

(d) 9

(e) −11

14. Consider the vectors

v1 = (−1, 2, 3), v2 = (3, 1,−2), v3 = (2, 3, 0) and w = (1, 5, 8).

If w = av1 + bv2 + cv3, then a+ b− c =

(a) 21

(b) 19

(c) 13

(d) 17

(e) 15
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15. If the matrix A =

[
5 −3
2 0

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P =

[
1 3
1 2

]
, D =

[
2 0
0 3

]
(b) P =

[
3 1
2 1

]
, D =

[
2 0
0 3

]
(c) P =

[
1 3
2 2

]
, D =

[
2 0
0 3

]
(d) P =

[
1 2
1 4

]
, D =

[
2 0
0 3

]
(e) P =

[
3 1
2 1

]
, D =

[
0 2
3 0

]

16. Given that yp = u1(x) (cos(3x)) + u2(x) (sin(3x)) is a particular solution of the
differential equation

y′′ + 9y = 2 sec(3x), then u1(x) =

(a)
1

7
ln | cos(3x)|

(b)
1

3
ln | cos(3x)|

(c)
2

7
ln | cos(3x)|

(d)
1

9
ln | cos(3x)|

(e)
2

9
ln | cos(3x)|
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17. The characteristic polynomial of the matrix

 3 5 −2
0 2 0
0 2 1

 is p(λ) =

(a) λ3 + 4λ2 − 2λ+ 6

(b) λ3 − 6λ2 + 9λ+ 6

(c) λ3 − 5λ2 + 11λ+ 6

(d) −λ3 + 6λ2 − 11λ+ 6

(e) λ3 + 6λ2 − 11λ+ 4

18. An appropriate form of a particular solution yp for the non-homogeneous differential
equation y′′ + 4y = 3x cos(2x) is given by yp(x) =

(a) (Ax+Bx) cos(2x) + (C +Dx) sin(2x)

(b) (Ax+Bx2) cos(2x) + (C +Dx) sin(2x)

(c) (A+Bx) cos(2x) + (Cx+Dx2) sin(2x)

(d) (Ax2 +Bx3) cos(2x) + (C +Dx) sin(2x)

(e) (Ax+Bx2) cos(2x) + (Cx+Dx2) sin(2x)
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19. If the characteristic polynomial of the matrix A =

 5 −6 3
6 −7 3
6 −6 2

 is

p(λ) = −(λ + 1)2(λ − 2), then a basis for the eigenspace of λ = −1 is v1 =

 m
1
0


and v2 =

 −1
0
n

, where m+ n =

(a) 5

(b) 0

(c) 1

(d) 4

(e) 3

20. The general solution of the differential equation

y(3) + 3y′′ − 4y = 0

is

(a) y = c1e
−x + c2e

2x + c3xe
2x

(b) y = c1e
x + c2e

−2x + c3xe
−2x

(c) y = c1e
x + c2e

3x + c3xe
3x

(d) y = c1e
x + c2e

2x + c3xe
2x

(e) y = c1e
−x + c2e

−2x + c3xe
−2x
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1. Consider the subspace S of R4 defined by S = {(a, b, c, d)|a = b+ c+ d}. A basis of
S is consisting of the vectors

(a) v1 = (0, 1, 0, 0), v2 = (0, 0, 1, 0), v3 = (0, 0, 0, 1)

(b) v1 = (1, 1, 1, 1), v2 = (0, 0, 1, 0), v3 = (1, 0, 0, 1)

(c) v1 = (1, 1, 0, 0), v2 = (1, 0, 1, 0), v3 = (1, 0, 0, 1)

(d) v1 = (1, 1, 1, 0), v2 = (0, 1, 1, 1), v3 = (0, 1, 1, 0)

(e) v1 = (1, 1, 0, 0), v2 = (0, 0, 1, 1), v3 = (0, 1, 0, 1)

2. Let the solution space of the system

x1 − 2x2 − 9x3 + 7x4 = 0
x1 + x2 + 3x3 + 4x4 = 0
x1 + 4x2 + 15x3 + x4 = 0

has all linear combinations of the two vectors

u = (1,−4, 1, 0) and v = (α, 1, β, 1).

Then α + β =

(a) 5

(b) 3

(c) −5

(d) −3

(e) 0
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3. Given that yp = u1(x) (cos(3x)) + u2(x) (sin(3x)) is a particular solution of the
differential equation

y′′ + 9y = 2 sec(3x), then u1(x) =

(a)
1

7
ln | cos(3x)|

(b)
1

3
ln | cos(3x)|

(c)
2

7
ln | cos(3x)|

(d)
2

9
ln | cos(3x)|

(e)
1

9
ln | cos(3x)|

4. Which one of the following set of functions are linearly dependent

(a) y1(x) = 2, y2(x) = 3x, y3(x) = x3

(b) y1(x) = 1, y2(x) = x, y3(x) = 2x+ 3

(c) y1(x) = x, y2(x) = x2 + x, y3(x) = x3 − 1

(d) y1(x) = x, y2(x) = x2, y3(x) = x3

(e) y1(x) = 1, y2(x) = x, y3(x) = x2
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5. If the matrix A =

[
5 −3
2 0

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P =

[
1 3
1 2

]
, D =

[
2 0
0 3

]
(b) P =

[
1 3
2 2

]
, D =

[
2 0
0 3

]
(c) P =

[
1 2
1 4

]
, D =

[
2 0
0 3

]
(d) P =

[
3 1
2 1

]
, D =

[
2 0
0 3

]
(e) P =

[
3 1
2 1

]
, D =

[
0 2
3 0

]

6. The general solution of the differential equation

4y′′ − 12y′ + 9y = 0

is

(a) y = c1e
x + c2xe

x

(b) y = c1e
3
2x + c2xe

− 3
2x

(c) y = c1e
3x + c2e

−3x

(d) y = c1e
3x + c2xe

3x

(e) y = c1e
3
2x + c2xe

3
2x
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7. If yp = A+Bx is a particular solution of the differential equation

y′′ − y′ − 2y = 3x+ 4, then 4A+ 4B =

(a) 12

(b) −10

(c) 0

(d) 9

(e) −11

8. If the characteristic polynomial of the matrix A =

 5 −6 3
6 −7 3
6 −6 2

 is

p(λ) = −(λ + 1)2(λ − 2), then a basis for the eigenspace of λ = −1 is v1 =

 m
1
0


and v2 =

 −1
0
n

, where m+ n =

(a) 5

(b) 3

(c) 4

(d) 0

(e) 1
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9. The eigenvector associated with the eigenvalue λ = −1 of the matrix A =

[
7 −8
6 −7

]
is

[
a
1

]
, where a =

(a) −2

(b) 2

(c) 0

(d) 1

(e) −1

10. The general solution of the differential equation

y(3) + 3y′′ − 4y = 0

is

(a) y = c1e
−x + c2e

2x + c3xe
2x

(b) y = c1e
x + c2e

3x + c3xe
3x

(c) y = c1e
x + c2e

−2x + c3xe
−2x

(d) y = c1e
−x + c2e

−2x + c3xe
−2x

(e) y = c1e
x + c2e

2x + c3xe
2x
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11. A linear homogeneous constant-coefficient differential equation which has the general
solution

y(x) = e−4x(c1 cos(3x) + c2 sin(3x))

is

(a) y′′ − 8y′ + 25y = 0

(b) y′′ + 8y′ + 25y = 0

(c) y′′ − 6y′ + 25y = 0

(d) y′′ − 8y′ − 25y = 0

(e) y′′ + 6y′ + 25y = 0

12. The rank of the matrix

A =


1 2 3 −9 9
3 6 2 1 6
2 4 1 2 3
4 8 3 0 9


is

(a) 3

(b) 2

(c) 5

(d) 1

(e) 4
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13. An appropriate form of a particular solution yp for the non-homogeneous differential
equation y′′ + 4y = 3x cos(2x) is given by yp(x) =

(a) (Ax2 +Bx3) cos(2x) + (C +Dx) sin(2x)

(b) (Ax+Bx2) cos(2x) + (C +Dx) sin(2x)

(c) (Ax+Bx2) cos(2x) + (Cx+Dx2) sin(2x)

(d) (Ax+Bx) cos(2x) + (C +Dx) sin(2x)

(e) (A+Bx) cos(2x) + (Cx+Dx2) sin(2x)

14. If the rank of the matrix

 1 2 3
1 5 −9
2 5 m

 is equal to 2, then m =

(a) −5

(b) 4

(c) 3

(d) 2

(e) 5
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15. The solution of the initial-value problem

y′′ − y = 0, y(0) = 0 and y′(0) = 5

is

(a) y =
5

2
ex − 5

2
e−x

(b) y =
3

2
ex − 3

2
e−x

(c) y = e−x − ex

(d) y =
−5

2
ex +

5

2
e−x

(e) y = ex − e−x

16. Consider the vectors

v1 = (−1, 2, 3), v2 = (3, 1,−2), v3 = (2, 3, 0) and w = (1, 5, 8).

If w = av1 + bv2 + cv3, then a+ b− c =

(a) 15

(b) 17

(c) 13

(d) 19

(e) 21
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17. A value of k for which the following vectors

v1 = (k, 0, k), v2 = (2k,−3, 4) and v3 = (3, 5, 2)

are linearly dependent is

(a)
−16

5

(b)
7

5

(c)
17

10

(d)
−8

5

(e)
10

5

18. The Wronskian of the functions

f(x) = 1, g(x) = x, h(x) = x2

is

(a) 0

(b) 4

(c) 3

(d) −4

(e) 2
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19. The general solution of the differential equation

y(4) + 18y′′ + 81y = 0

is

(a) y = c1 cos(3x) + c2 sin(3x) + c3 cos(2x) + c4 sin(2x)

(b) y = (c1 + c2x)ex cos(2x) + (c3 + c4x)ex sin(2x)

(c) y = (c1 + c2x) cos(3x) + (c3 + c4x) sin(3x)

(d) y = (c1 + c2x) cos(2x) + (c3 + c4x) sin(2x)

(e) y = (c1 + c2x)ex cos(3x) + (c3 + c4x)ex sin(3x)

20. The characteristic polynomial of the matrix

 3 5 −2
0 2 0
0 2 1

 is p(λ) =

(a) −λ3 + 6λ2 − 11λ+ 6

(b) λ3 + 4λ2 − 2λ+ 6

(c) λ3 + 6λ2 − 11λ+ 4

(d) λ3 − 5λ2 + 11λ+ 6

(e) λ3 − 6λ2 + 9λ+ 6
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1. The general solution of the differential equation

y(4) + 18y′′ + 81y = 0

is

(a) y = (c1 + c2x) cos(3x) + (c3 + c4x) sin(3x)

(b) y = (c1 + c2x)ex cos(2x) + (c3 + c4x)ex sin(2x)

(c) y = (c1 + c2x) cos(2x) + (c3 + c4x) sin(2x)

(d) y = c1 cos(3x) + c2 sin(3x) + c3 cos(2x) + c4 sin(2x)

(e) y = (c1 + c2x)ex cos(3x) + (c3 + c4x)ex sin(3x)

2. The eigenvector associated with the eigenvalue λ = −1 of the matrix A =

[
7 −8
6 −7

]
is

[
a

1

]
, where a =

(a) −1

(b) −2

(c) 1

(d) 0

(e) 2
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3. A value of k for which the following vectors

v1 = (k, 0, k), v2 = (2k,−3, 4) and v3 = (3, 5, 2)

are linearly dependent is

(a)
7

5

(b)
−16

5

(c)
10

5

(d)
−8

5

(e)
17

10

4. If the characteristic polynomial of the matrix A =

 5 −6 3
6 −7 3
6 −6 2

 is

p(λ) = −(λ + 1)2(λ − 2), then a basis for the eigenspace of λ = −1 is v1 =

 m
1
0


and v2 =

 −1
0
n

, where m+ n =

(a) 3

(b) 5

(c) 4

(d) 0

(e) 1
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5. The general solution of the differential equation

4y′′ − 12y′ + 9y = 0

is

(a) y = c1e
x + c2xe

x

(b) y = c1e
3
2x + c2xe

3
2x

(c) y = c1e
3x + c2xe

3x

(d) y = c1e
3x + c2e

−3x

(e) y = c1e
3
2x + c2xe

− 3
2x

6. If the matrix A =

[
5 −3
2 0

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P =

[
1 2
1 4

]
, D =

[
2 0
0 3

]
(b) P =

[
1 3
2 2

]
, D =

[
2 0
0 3

]
(c) P =

[
1 3
1 2

]
, D =

[
2 0
0 3

]
(d) P =

[
3 1
2 1

]
, D =

[
0 2
3 0

]
(e) P =

[
3 1
2 1

]
, D =

[
2 0
0 3

]
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7. The characteristic polynomial of the matrix

 3 5 −2
0 2 0
0 2 1

 is p(λ) =

(a) −λ3 + 6λ2 − 11λ+ 6

(b) λ3 + 6λ2 − 11λ+ 4

(c) λ3 − 6λ2 + 9λ+ 6

(d) λ3 + 4λ2 − 2λ+ 6

(e) λ3 − 5λ2 + 11λ+ 6

8. Consider the subspace S of R4 defined by S = {(a, b, c, d)|a = b+ c+ d}. A basis of
S is consisting of the vectors

(a) v1 = (1, 1, 1, 0), v2 = (0, 1, 1, 1), v3 = (0, 1, 1, 0)

(b) v1 = (1, 1, 0, 0), v2 = (0, 0, 1, 1), v3 = (0, 1, 0, 1)

(c) v1 = (1, 1, 0, 0), v2 = (1, 0, 1, 0), v3 = (1, 0, 0, 1)

(d) v1 = (1, 1, 1, 1), v2 = (0, 0, 1, 0), v3 = (1, 0, 0, 1)

(e) v1 = (0, 1, 0, 0), v2 = (0, 0, 1, 0), v3 = (0, 0, 0, 1)



231, Math 208, Exam II Page 5 of 10 CODE03

9. Let the solution space of the system

x1 − 2x2 − 9x3 + 7x4 = 0
x1 + x2 + 3x3 + 4x4 = 0
x1 + 4x2 + 15x3 + x4 = 0

has all linear combinations of the two vectors

u = (1,−4, 1, 0) and v = (α, 1, β, 1).

Then α + β =

(a) −5

(b) 5

(c) 0

(d) −3

(e) 3

10. The Wronskian of the functions

f(x) = 1, g(x) = x, h(x) = x2

is

(a) −4

(b) 4

(c) 3

(d) 0

(e) 2
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11. If yp = A+Bx is a particular solution of the differential equation

y′′ − y′ − 2y = 3x+ 4, then 4A+ 4B =

(a) 9

(b) 0

(c) −10

(d) 12

(e) −11

12. An appropriate form of a particular solution yp for the non-homogeneous differential
equation y′′ + 4y = 3x cos(2x) is given by yp(x) =

(a) (Ax2 +Bx3) cos(2x) + (C +Dx) sin(2x)

(b) (Ax+Bx2) cos(2x) + (Cx+Dx2) sin(2x)

(c) (Ax+Bx2) cos(2x) + (C +Dx) sin(2x)

(d) (A+Bx) cos(2x) + (Cx+Dx2) sin(2x)

(e) (Ax+Bx) cos(2x) + (C +Dx) sin(2x)
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13. Given that yp = u1(x) (cos(3x)) + u2(x) (sin(3x)) is a particular solution of the
differential equation

y′′ + 9y = 2 sec(3x), then u1(x) =

(a)
1

9
ln | cos(3x)|

(b)
1

7
ln | cos(3x)|

(c)
1

3
ln | cos(3x)|

(d)
2

9
ln | cos(3x)|

(e)
2

7
ln | cos(3x)|

14. The rank of the matrix

A =


1 2 3 −9 9
3 6 2 1 6
2 4 1 2 3
4 8 3 0 9


is

(a) 2

(b) 5

(c) 3

(d) 4

(e) 1
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15. If the rank of the matrix

 1 2 3
1 5 −9
2 5 m

 is equal to 2, then m =

(a) 3

(b) 2

(c) 4

(d) −5

(e) 5

16. Which one of the following set of functions are linearly dependent

(a) y1(x) = x, y2(x) = x2, y3(x) = x3

(b) y1(x) = 1, y2(x) = x, y3(x) = x2

(c) y1(x) = x, y2(x) = x2 + x, y3(x) = x3 − 1

(d) y1(x) = 1, y2(x) = x, y3(x) = 2x+ 3

(e) y1(x) = 2, y2(x) = 3x, y3(x) = x3
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17. The general solution of the differential equation

y(3) + 3y′′ − 4y = 0

is

(a) y = c1e
−x + c2e

−2x + c3xe
−2x

(b) y = c1e
x + c2e

3x + c3xe
3x

(c) y = c1e
x + c2e

2x + c3xe
2x

(d) y = c1e
−x + c2e

2x + c3xe
2x

(e) y = c1e
x + c2e

−2x + c3xe
−2x

18. The solution of the initial-value problem

y′′ − y = 0, y(0) = 0 and y′(0) = 5

is

(a) y =
−5

2
ex +

5

2
e−x

(b) y =
5

2
ex − 5

2
e−x

(c) y = ex − e−x

(d) y =
3

2
ex − 3

2
e−x

(e) y = e−x − ex
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19. A linear homogeneous constant-coefficient differential equation which has the general
solution

y(x) = e−4x(c1 cos(3x) + c2 sin(3x))

is

(a) y′′ + 8y′ + 25y = 0

(b) y′′ − 8y′ − 25y = 0

(c) y′′ − 6y′ + 25y = 0

(d) y′′ + 6y′ + 25y = 0

(e) y′′ − 8y′ + 25y = 0

20. Consider the vectors

v1 = (−1, 2, 3), v2 = (3, 1,−2), v3 = (2, 3, 0) and w = (1, 5, 8).

If w = av1 + bv2 + cv3, then a+ b− c =

(a) 17

(b) 21

(c) 13

(d) 19

(e) 15
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1. The characteristic polynomial of the matrix

 3 5 −2
0 2 0
0 2 1

 is p(λ) =

(a) λ3 + 4λ2 − 2λ+ 6

(b) λ3 − 6λ2 + 9λ+ 6

(c) −λ3 + 6λ2 − 11λ+ 6

(d) λ3 − 5λ2 + 11λ+ 6

(e) λ3 + 6λ2 − 11λ+ 4

2. If the matrix A =

[
5 −3
2 0

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P =

[
3 1
2 1

]
, D =

[
0 2
3 0

]
(b) P =

[
1 3
1 2

]
, D =

[
2 0
0 3

]
(c) P =

[
1 2
1 4

]
, D =

[
2 0
0 3

]
(d) P =

[
3 1
2 1

]
, D =

[
2 0
0 3

]
(e) P =

[
1 3
2 2

]
, D =

[
2 0
0 3

]
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3. The rank of the matrix

A =


1 2 3 −9 9
3 6 2 1 6
2 4 1 2 3
4 8 3 0 9


is

(a) 1

(b) 4

(c) 3

(d) 5

(e) 2

4. If the characteristic polynomial of the matrix A =

 5 −6 3
6 −7 3
6 −6 2

 is

p(λ) = −(λ + 1)2(λ − 2), then a basis for the eigenspace of λ = −1 is v1 =

 m

1
0


and v2 =

 −1
0
n

, where m+ n =

(a) 4

(b) 1

(c) 0

(d) 5

(e) 3
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5. Which one of the following set of functions are linearly dependent

(a) y1(x) = x, y2(x) = x2, y3(x) = x3

(b) y1(x) = 1, y2(x) = x, y3(x) = x2

(c) y1(x) = 1, y2(x) = x, y3(x) = 2x+ 3

(d) y1(x) = x, y2(x) = x2 + x, y3(x) = x3 − 1

(e) y1(x) = 2, y2(x) = 3x, y3(x) = x3

6. The general solution of the differential equation

y(3) + 3y′′ − 4y = 0

is

(a) y = c1e
x + c2e

2x + c3xe
2x

(b) y = c1e
−x + c2e

−2x + c3xe
−2x

(c) y = c1e
−x + c2e

2x + c3xe
2x

(d) y = c1e
x + c2e

−2x + c3xe
−2x

(e) y = c1e
x + c2e

3x + c3xe
3x
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7. The Wronskian of the functions

f(x) = 1, g(x) = x, h(x) = x2

is

(a) 2

(b) 4

(c) 3

(d) −4

(e) 0

8. The solution of the initial-value problem

y′′ − y = 0, y(0) = 0 and y′(0) = 5

is

(a) y = ex − e−x

(b) y = e−x − ex

(c) y =
−5

2
ex +

5

2
e−x

(d) y =
5

2
ex − 5

2
e−x

(e) y =
3

2
ex − 3

2
e−x
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9. A linear homogeneous constant-coefficient differential equation which has the general
solution

y(x) = e−4x(c1 cos(3x) + c2 sin(3x))

is

(a) y′′ − 8y′ − 25y = 0

(b) y′′ − 6y′ + 25y = 0

(c) y′′ + 8y′ + 25y = 0

(d) y′′ + 6y′ + 25y = 0

(e) y′′ − 8y′ + 25y = 0

10. An appropriate form of a particular solution yp for the non-homogeneous differential
equation y′′ + 4y = 3x cos(2x) is given by yp(x) =

(a) (A+Bx) cos(2x) + (Cx+Dx2) sin(2x)

(b) (Ax+Bx2) cos(2x) + (C +Dx) sin(2x)

(c) (Ax+Bx2) cos(2x) + (Cx+Dx2) sin(2x)

(d) (Ax2 +Bx3) cos(2x) + (C +Dx) sin(2x)

(e) (Ax+Bx) cos(2x) + (C +Dx) sin(2x)
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11. Let the solution space of the system

x1 − 2x2 − 9x3 + 7x4 = 0
x1 + x2 + 3x3 + 4x4 = 0
x1 + 4x2 + 15x3 + x4 = 0

has all linear combinations of the two vectors

u = (1,−4, 1, 0) and v = (α, 1, β, 1).

Then α + β =

(a) 0

(b) 3

(c) −5

(d) −3

(e) 5

12. The general solution of the differential equation

y(4) + 18y′′ + 81y = 0

is

(a) y = (c1 + c2x)ex cos(2x) + (c3 + c4x)ex sin(2x)

(b) y = (c1 + c2x) cos(3x) + (c3 + c4x) sin(3x)

(c) y = (c1 + c2x) cos(2x) + (c3 + c4x) sin(2x)

(d) y = (c1 + c2x)ex cos(3x) + (c3 + c4x)ex sin(3x)

(e) y = c1 cos(3x) + c2 sin(3x) + c3 cos(2x) + c4 sin(2x)
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13. If the rank of the matrix

 1 2 3
1 5 −9
2 5 m

 is equal to 2, then m =

(a) 4

(b) 2

(c) 3

(d) −5

(e) 5

14. Consider the vectors

v1 = (−1, 2, 3), v2 = (3, 1,−2), v3 = (2, 3, 0) and w = (1, 5, 8).

If w = av1 + bv2 + cv3, then a+ b− c =

(a) 19

(b) 21

(c) 17

(d) 13

(e) 15
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15. Consider the subspace S of R4 defined by S = {(a, b, c, d)|a = b+ c+ d}. A basis of
S is consisting of the vectors

(a) v1 = (1, 1, 1, 1), v2 = (0, 0, 1, 0), v3 = (1, 0, 0, 1)

(b) v1 = (0, 1, 0, 0), v2 = (0, 0, 1, 0), v3 = (0, 0, 0, 1)

(c) v1 = (1, 1, 0, 0), v2 = (0, 0, 1, 1), v3 = (0, 1, 0, 1)

(d) v1 = (1, 1, 1, 0), v2 = (0, 1, 1, 1), v3 = (0, 1, 1, 0)

(e) v1 = (1, 1, 0, 0), v2 = (1, 0, 1, 0), v3 = (1, 0, 0, 1)

16. A value of k for which the following vectors

v1 = (k, 0, k), v2 = (2k,−3, 4) and v3 = (3, 5, 2)

are linearly dependent is

(a)
7

5

(b)
−16

5

(c)
17

10

(d)
−8

5

(e)
10

5
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17. The eigenvector associated with the eigenvalue λ = −1 of the matrix A =

[
7 −8
6 −7

]
is

[
a
1

]
, where a =

(a) −1

(b) 1

(c) 2

(d) 0

(e) −2

18. Given that yp = u1(x) (cos(3x)) + u2(x) (sin(3x)) is a particular solution of the
differential equation

y′′ + 9y = 2 sec(3x), then u1(x) =

(a)
1

9
ln | cos(3x)|

(b)
1

7
ln | cos(3x)|

(c)
2

7
ln | cos(3x)|

(d)
2

9
ln | cos(3x)|

(e)
1

3
ln | cos(3x)|
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19. The general solution of the differential equation

4y′′ − 12y′ + 9y = 0

is

(a) y = c1e
3x + c2xe

3x

(b) y = c1e
x + c2xe

x

(c) y = c1e
3
2x + c2xe

− 3
2x

(d) y = c1e
3x + c2e

−3x

(e) y = c1e
3
2x + c2xe

3
2x

20. If yp = A+Bx is a particular solution of the differential equation

y′′ − y′ − 2y = 3x+ 4, then 4A+ 4B =

(a) 0

(b) 12

(c) −10

(d) −11

(e) 9
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3 A C 5 D 14 E 1 E 5

4 A E 6 B 19 A 17 E 17

5 A B 7 A 20 B 8 C 19

6 A E 11 E 8 C 20 D 9

7 A B 19 E 12 A 15 A 7

8 A E 10 B 17 C 3 D 6

9 A B 4 D 16 A 4 C 11
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14 A E 2 D 18 A 5 E 2

15 A A 20 A 6 B 18 E 3

16 A E 14 A 2 D 19 C 1

17 A D 15 C 1 E 9 B 16

18 A E 13 E 7 B 6 D 14

19 A E 17 C 10 A 11 E 8

20 A B 9 A 15 E 2 D 12
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