King Fahd University of Petroleum and Minerals Department of Mathematics

> Math 208 Exam II 231 November 07, 2023

EXAM COVER

Number of versions: 4 Number of questions: 20

King Fahd University of Petroleum and Minerals Department of Mathematics Math 208 Exam II 231 November 07, 2023 Net Time Allowed: 120 Minutes

MASTER VERSION

1. A value of k for which the following vectors

$$v_1 = (k, 0, k), v_2 = (2k, -3, 4) \text{ and } v_3 = (3, 5, 2)$$

are linearly dependent is

2. Consider the vectors

$$v_1 = (-1, 2, 3), v_2 = (3, 1, -2), v_3 = (2, 3, 0) \text{ and } w = (1, 5, 8).$$

If $w = av_1 + bv_2 + cv_3$, then a + b - c =

- (d) 21
- (e) 13

MASTER

3. Consider the subspace S of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis of S is consisting of the vectors

(a) $v_1 = (1, 1, 0, 0), v_2 = (1, 0, 1, 0), v_3 = (1, 0, 0, 1)$ ______(correct) (b) $v_1 = (1, 1, 1, 0), v_2 = (0, 1, 1, 1), v_3 = (0, 1, 1, 0)$ (c) $v_1 = (0, 1, 0, 0), v_2 = (0, 0, 1, 0), v_3 = (0, 0, 0, 1)$ (d) $v_1 = (1, 1, 1, 1), v_2 = (0, 0, 1, 0), v_3 = (1, 0, 0, 1)$ (e) $v_1 = (1, 1, 0, 0), v_2 = (0, 0, 1, 1), v_3 = (0, 1, 0, 1)$

4. Let the solution space of the system

 $x_1 - 2x_2 - 9x_3 + 7x_4 = 0$ $x_1 + x_2 + 3x_3 + 4x_4 = 0$ $x_1 + 4x_2 + 15x_3 + x_4 = 0$

has all linear combinations of the two vectors

u = (1, -4, 1, 0) and $v = (\alpha, 1, \beta, 1)$.

Then $\alpha + \beta =$

(a) -5	(correct)
(b) 5	
(c) -3	
(d) 3	
(e) 0	

5. The rank of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & -9 & 9 \\ 3 & 6 & 2 & 1 & 6 \\ 2 & 4 & 1 & 2 & 3 \\ 4 & 8 & 3 & 0 & 9 \end{bmatrix}$$

is

(e) 4

6. The solution of the initial-value problem

$$y'' - y = 0$$
, $y(0) = 0$ and $y'(0) = 5$

(a)
$$y = \frac{5}{2}e^x - \frac{5}{2}e^{-x}$$
 (correct)
(b) $y = \frac{-5}{2}e^x + \frac{5}{2}e^{-x}$
(c) $y = e^x - e^{-x}$
(d) $y = e^{-x} - e^x$
(e) $y = \frac{3}{2}e^x - \frac{3}{2}e^{-x}$

7. The Wronskian of the functions

$$f(x) = 1, g(x) = x, h(x) = x^2$$

is

8. The general solution of the differential equation

$$4y'' - 12y' + 9y = 0$$

(a)
$$y = c_1 e^{\frac{3}{2}x} + c_2 x e^{\frac{3}{2}x}$$
 (correct)
(b) $y = c_1 e^x + c_2 x e^x$
(c) $y = c_1 e^{\frac{3}{2}x} + c_2 x e^{-\frac{3}{2}x}$
(d) $y = c_1 e^{3x} + c_2 x e^{3x}$
(e) $y = c_1 e^{3x} + c_2 e^{-3x}$

9. The general solution of the differential equation

$$y^{(3)} + 3y'' - 4y = 0$$

is

(a)
$$y = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$$
 (correct)
(b) $y = c_1 e^{-x} + c_2 e^{-2x} + c_3 x e^{-2x}$
(c) $y = c_1 e^x + c_2 e^{2x} + c_3 x e^{2x}$
(d) $y = c_1 e^{-x} + c_2 e^{2x} + c_3 x e^{2x}$
(e) $y = c_1 e^x + c_2 e^{3x} + c_3 x e^{3x}$

10. The general solution of the differential equation

$$y^{(4)} + 18y'' + 81y = 0$$

(a)
$$y = (c_1 + c_2 x) \cos(3x) + (c_3 + c_4 x) \sin(3x)$$
 _____(correct)
(b) $y = (c_1 + c_2 x) \cos(2x) + (c_3 + c_4 x) \sin(2x)$
(c) $y = (c_1 + c_2 x)e^x \cos(3x) + (c_3 + c_4 x)e^x \sin(3x)$
(d) $y = (c_1 + c_2 x)e^x \cos(2x) + (c_3 + c_4 x)e^x \sin(2x)$
(e) $y = c_1 \cos(3x) + c_2 \sin(3x) + c_3 \cos(2x) + c_4 \sin(2x)$

11. A linear homogeneous constant-coefficient differential equation which has the general solution

$$y(x) = e^{-4x}(c_1\cos(3x) + c_2\sin(3x))$$

is

(a) y'' + 8y' + 25y = 0 (correct) (b) y'' - 8y' + 25y = 0(c) y'' + 6y' + 25y = 0(d) y'' - 8y' - 25y = 0(e) y'' - 6y' + 25y = 0

12. If $y_p = A + Bx$ is a particular solution of the differential equation

$$y'' - y' - 2y = 3x + 4$$
, then $4A + 4B =$

13. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y'' + 4y = 3x \cos(2x)$ is given by $y_p(x) =$

(a)
$$(Ax + Bx^2) \cos(2x) + (Cx + Dx^2) \sin(2x)$$
 _____(correct)

- (b) $(Ax + Bx) \cos(2x) + (C + Dx) \sin(2x)$
- (c) $(Ax + Bx^2) \cos(2x) + (C + Dx) \sin(2x)$
- (d) $(A + Bx) \cos(2x) + (Cx + Dx^2) \sin(2x)$
- (e) $(Ax^2 + Bx^3) \cos(2x) + (C + Dx) \sin(2x)$

14. Given that $y_p = u_1(x) (\cos(3x)) + u_2(x) (\sin(3x))$ is a particular solution of the differential equation

$$y'' + 9y = 2 \sec(3x)$$
, then $u_1(x) =$

(a)
$$\frac{2}{9} \ln |\cos(3x)|$$
 (correct)
(b) $\frac{1}{9} \ln |\cos(3x)|$
(c) $\frac{2}{7} \ln |\cos(3x)|$
(d) $\frac{1}{3} \ln |\cos(3x)|$
(e) $\frac{1}{7} \ln |\cos(3x)|$

MASTER

15. The characteristic polynomial of the matrix $\begin{bmatrix} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$ is $p(\lambda) =$

(a)
$$-\lambda^3 + 6\lambda^2 - 11\lambda + 6$$
 (correct)
(b) $\lambda^3 - 5\lambda^2 + 11\lambda + 6$
(c) $\lambda^3 - 6\lambda^2 + 9\lambda + 6$
(d) $\lambda^3 + 4\lambda^2 - 2\lambda + 6$

(e) $\lambda^3 + 6\lambda^2 - 11\lambda + 4$

16. The eigenvector associated with the eigenvalue $\lambda = -1$ of the matrix $A = \begin{bmatrix} 7 & -8 \\ 6 & -7 \end{bmatrix}$

is
$$\begin{bmatrix} a \\ 1 \end{bmatrix}$$
, where $a =$

17. If the characteristic polynomial of the matrix $A = \begin{bmatrix} 5 & -6 & 3 \\ 6 & -7 & 3 \\ 6 & -6 & 2 \end{bmatrix}$ is $p(\lambda) = -(\lambda + 1)^2(\lambda - 2), \text{ then a basis for the eigenspace of } \lambda = -1 \text{ is } v_1 = \begin{bmatrix} m \\ 1 \\ 0 \end{bmatrix}$

and
$$v_2 = \begin{bmatrix} -1 \\ 0 \\ n \end{bmatrix}$$
, where $m + n =$

- (d) 0
- (e) 1

18. If the rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 5 & -9 \\ 2 & 5 & m \end{bmatrix}$$
 is equal to 2, then $m =$

MASTER

19. Which one of the following set of functions are linearly dependent

(a)
$$y_1(x) = 1$$
, $y_2(x) = x$, $y_3(x) = 2x + 3$ ______(correct)
(b) $y_1(x) = 1$, $y_2(x) = x$, $y_3(x) = x^2$
(c) $y_1(x) = 2$, $y_2(x) = 3x$, $y_3(x) = x^3$
(d) $y_1(x) = x$, $y_2(x) = x^2$, $y_3(x) = x^3$
(e) $y_1(x) = x$, $y_2(x) = x^2 + x$, $y_3(x) = x^3 - 1$

20. If the matrix $A = \begin{bmatrix} 5 & -3 \\ 2 & 0 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$$
, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ (correct)
(b) $P = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(c) $P = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$
(d) $P = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(e) $P = \begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01

CODE01

Math 208 Exam II 231 November 07, 2023 Net Time Allowed: 120 Minutes

Name		
ID	Sec	

Check that this exam has <u>20</u> questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

231, Math 208, Exam II

1. If the rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 5 & -9 \\ 2 & 5 & m \end{bmatrix}$$
 is equal to 2, then $m =$

- (a) -5
- (b) 5
- (c) 2
- (d) 3
- (e) 4

- 2. Consider the subspace S of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis of S is consisting of the vectors
 - (a) $v_1 = (1, 1, 0, 0), v_2 = (0, 0, 1, 1), v_3 = (0, 1, 0, 1)$ (b) $v_1 = (0, 1, 0, 0), v_2 = (0, 0, 1, 0), v_3 = (0, 0, 0, 1)$ (c) $v_1 = (1, 1, 1, 1), v_2 = (0, 0, 1, 0), v_3 = (1, 0, 0, 1)$ (d) $v_1 = (1, 1, 0, 0), v_2 = (1, 0, 1, 0), v_3 = (1, 0, 0, 1)$ (e) $v_1 = (1, 1, 1, 0), v_2 = (0, 1, 1, 1), v_3 = (0, 1, 1, 0)$

3. The rank of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & -9 & 9 \\ 3 & 6 & 2 & 1 & 6 \\ 2 & 4 & 1 & 2 & 3 \\ 4 & 8 & 3 & 0 & 9 \end{bmatrix}$$

is

- (a) 4
- (b) 3
- (c) 2
- (d) 1
- (e) 5

4. The solution of the initial-value problem

$$y'' - y = 0$$
, $y(0) = 0$ and $y'(0) = 5$

(a)
$$y = e^{-x} - e^{x}$$

(b) $y = e^{x} - e^{-x}$
(c) $y = \frac{-5}{2}e^{x} + \frac{5}{2}e^{-x}$
(d) $y = \frac{3}{2}e^{x} - \frac{3}{2}e^{-x}$
(e) $y = \frac{5}{2}e^{x} - \frac{5}{2}e^{-x}$

5. The Wronskian of the functions

$$f(x) = 1, g(x) = x, h(x) = x^2$$

is

- (a) 3
- (b) 2
- (c) -4
- (d) 0
- (e) 4

6. A linear homogeneous constant-coefficient differential equation which has the general solution

$$y(x) = e^{-4x}(c_1\cos(3x) + c_2\sin(3x))$$

(a)
$$y'' - 8y' - 25y = 0$$

(b) $y'' - 8y' + 25y = 0$
(c) $y'' - 6y' + 25y = 0$
(d) $y'' + 6y' + 25y = 0$
(e) $y'' + 8y' + 25y = 0$

7. Which one of the following set of functions are linearly dependent

(a)
$$y_1(x) = x$$
, $y_2(x) = x^2$, $y_3(x) = x^3$
(b) $y_1(x) = 1$, $y_2(x) = x$, $y_3(x) = 2x + 3$
(c) $y_1(x) = x$, $y_2(x) = x^2 + x$, $y_3(x) = x^3 - 1$
(d) $y_1(x) = 1$, $y_2(x) = x$, $y_3(x) = x^2$
(e) $y_1(x) = 2$, $y_2(x) = 3x$, $y_3(x) = x^3$

8. The general solution of the differential equation

$$y^{(4)} + 18y'' + 81y = 0$$

(a)
$$y = c_1 \cos(3x) + c_2 \sin(3x) + c_3 \cos(2x) + c_4 \sin(2x)$$

(b) $y = (c_1 + c_2 x)e^x \cos(2x) + (c_3 + c_4 x)e^x \sin(2x)$
(c) $y = (c_1 + c_2 x)e^x \cos(3x) + (c_3 + c_4 x)e^x \sin(3x)$
(d) $y = (c_1 + c_2 x) \cos(2x) + (c_3 + c_4 x) \sin(2x)$
(e) $y = (c_1 + c_2 x) \cos(3x) + (c_3 + c_4 x) \sin(3x)$

9. Let the solution space of the system

$$x_1 - 2x_2 - 9x_3 + 7x_4 = 0$$

$$x_1 + x_2 + 3x_3 + 4x_4 = 0$$

$$x_1 + 4x_2 + 15x_3 + x_4 = 0$$

has all linear combinations of the two vectors

$$u = (1, -4, 1, 0)$$
 and $v = (\alpha, 1, \beta, 1)$.

Then $\alpha + \beta =$

(a) 5
(b) -5
(c) 0
(d) -3
(e) 3

10. The general solution of the differential equation

$$4y'' - 12y' + 9y = 0$$

(a)
$$y = c_1 e^{3x} + c_2 e^{-3x}$$

(b) $y = c_1 e^{\frac{3}{2}x} + c_2 x e^{-\frac{3}{2}x}$
(c) $y = c_1 e^{\frac{3}{2}x} + c_2 x e^{\frac{3}{2}x}$
(d) $y = c_1 e^{3x} + c_2 x e^{3x}$
(e) $y = c_1 e^x + c_2 x e^x$

11. A value of k for which the following vectors

$$v_1 = (k, 0, k), v_2 = (2k, -3, 4) \text{ and } v_3 = (3, 5, 2)$$

are linearly dependent is

(a)
$$\frac{7}{5}$$

(b) $\frac{-8}{5}$
(c) $\frac{-16}{5}$
(d) $\frac{17}{10}$
(e) $\frac{10}{5}$

12. The eigenvector associated with the eigenvalue $\lambda = -1$ of the matrix $A = \begin{bmatrix} 7 & -8 \\ 6 & -7 \end{bmatrix}$

is
$$\begin{bmatrix} a \\ 1 \end{bmatrix}$$
, where $a =$

(a)
$$-2$$

(b) 1
(c) -1
(d) 2

(e) 0

13. If $y_p = A + Bx$ is a particular solution of the differential equation

$$y'' - y' - 2y = 3x + 4$$
, then $4A + 4B =$

- (a) -10
- (b) 12(c) 0
- (d) 9
- (e) -11

14. Consider the vectors

 $v_1 = (-1, 2, 3), v_2 = (3, 1, -2), v_3 = (2, 3, 0) \text{ and } w = (1, 5, 8).$

If $w = av_1 + bv_2 + cv_3$, then a + b - c =

- (a) 21
- (b) 19
- (c) 13
- (d) 17
- (e) 15

Page 8 of 10

CODE01

15. If the matrix $A = \begin{bmatrix} 5 & -3 \\ 2 & 0 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$$
, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(b) $P = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(c) $P = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(d) $P = \begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(e) $P = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$

16. Given that $y_p = u_1(x) (\cos(3x)) + u_2(x) (\sin(3x))$ is a particular solution of the differential equation

$$y'' + 9y = 2 \sec(3x)$$
, then $u_1(x) =$

(a)
$$\frac{1}{7} \ln |\cos(3x)|$$

(b) $\frac{1}{3} \ln |\cos(3x)|$
(c) $\frac{2}{7} \ln |\cos(3x)|$
(d) $\frac{1}{9} \ln |\cos(3x)|$
(e) $\frac{2}{9} \ln |\cos(3x)|$

CODE01

17. The characteristic polynomial of the matrix
$$\begin{bmatrix} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
 is $p(\lambda) =$

(a) $\lambda^{3} + 4\lambda^{2} - 2\lambda + 6$ (b) $\lambda^{3} - 6\lambda^{2} + 9\lambda + 6$ (c) $\lambda^{3} - 5\lambda^{2} + 11\lambda + 6$ (d) $-\lambda^{3} + 6\lambda^{2} - 11\lambda + 6$ (e) $\lambda^{3} + 6\lambda^{2} - 11\lambda + 4$

- 18. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y'' + 4y = 3x \cos(2x)$ is given by $y_p(x) =$
 - (a) $(Ax + Bx) \cos(2x) + (C + Dx) \sin(2x)$ (b) $(Ax + Bx^2) \cos(2x) + (C + Dx) \sin(2x)$ (c) $(A + Bx) \cos(2x) + (Cx + Dx^2) \sin(2x)$ (d) $(Ax^2 + Bx^3) \cos(2x) + (C + Dx) \sin(2x)$ (e) $(Ax + Bx^2) \cos(2x) + (Cx + Dx^2) \sin(2x)$

CODE01

19. If the characteristic polynomial of the matrix $A = \begin{bmatrix} 5 & -6 & 3 \\ 6 & -7 & 3 \\ 6 & -6 & 2 \end{bmatrix}$ is

 $p(\lambda) = -(\lambda + 1)^2(\lambda - 2)$, then a basis for the eigenspace of $\lambda = -1$ is $v_1 = \begin{bmatrix} m \\ 1 \\ 0 \end{bmatrix}$

and
$$v_2 = \begin{bmatrix} -1 \\ 0 \\ n \end{bmatrix}$$
, where $m + n =$

- (a) 5
- (b) 0
- (c) 1
- (d) 4
- (e) 3

20. The general solution of the differential equation

$$y^{(3)} + 3y'' - 4y = 0$$

(a)
$$y = c_1 e^{-x} + c_2 e^{2x} + c_3 x e^{2x}$$

(b) $y = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$
(c) $y = c_1 e^x + c_2 e^{3x} + c_3 x e^{3x}$
(d) $y = c_1 e^x + c_2 e^{2x} + c_3 x e^{2x}$
(e) $y = c_1 e^{-x} + c_2 e^{-2x} + c_3 x e^{-2x}$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02

CODE02

Math 208 Exam II 231 November 07, 2023 Net Time Allowed: 120 Minutes

Name		
ID	Sec	

Check that this exam has <u>20</u> questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Consider the subspace S of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis of S is consisting of the vectors

(a)
$$v_1 = (0, 1, 0, 0), v_2 = (0, 0, 1, 0), v_3 = (0, 0, 0, 1)$$

(b) $v_1 = (1, 1, 1, 1), v_2 = (0, 0, 1, 0), v_3 = (1, 0, 0, 1)$
(c) $v_1 = (1, 1, 0, 0), v_2 = (1, 0, 1, 0), v_3 = (1, 0, 0, 1)$
(d) $v_1 = (1, 1, 1, 0), v_2 = (0, 1, 1, 1), v_3 = (0, 1, 1, 0)$
(e) $v_1 = (1, 1, 0, 0), v_2 = (0, 0, 1, 1), v_3 = (0, 1, 0, 1)$

2. Let the solution space of the system

$$x_1 - 2x_2 - 9x_3 + 7x_4 = 0$$

$$x_1 + x_2 + 3x_3 + 4x_4 = 0$$

$$x_1 + 4x_2 + 15x_3 + x_4 = 0$$

has all linear combinations of the two vectors

u = (1, -4, 1, 0) and $v = (\alpha, 1, \beta, 1)$.

Then $\alpha + \beta =$

(a) 5
(b) 3
(c) -5
(d) -3
(e) 0

3. Given that $y_p = u_1(x) (\cos(3x)) + u_2(x) (\sin(3x))$ is a particular solution of the differential equation

$$y'' + 9y = 2 \sec(3x)$$
, then $u_1(x) =$

(a)
$$\frac{1}{7} \ln |\cos(3x)|$$

(b) $\frac{1}{3} \ln |\cos(3x)|$
(c) $\frac{2}{7} \ln |\cos(3x)|$
(d) $\frac{2}{9} \ln |\cos(3x)|$
(e) $\frac{1}{9} \ln |\cos(3x)|$

4. Which one of the following set of functions are linearly dependent

(a)
$$y_1(x) = 2$$
, $y_2(x) = 3x$, $y_3(x) = x^3$
(b) $y_1(x) = 1$, $y_2(x) = x$, $y_3(x) = 2x + 3$
(c) $y_1(x) = x$, $y_2(x) = x^2 + x$, $y_3(x) = x^3 - 1$
(d) $y_1(x) = x$, $y_2(x) = x^2$, $y_3(x) = x^3$
(e) $y_1(x) = 1$, $y_2(x) = x$, $y_3(x) = x^2$

Page 3 of 10

CODE02

5. If the matrix $A = \begin{bmatrix} 5 & -3 \\ 2 & 0 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$$
, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(b) $P = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(c) $P = \begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(d) $P = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(e) $P = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$

6. The general solution of the differential equation

$$4y'' - 12y' + 9y = 0$$

(a)
$$y = c_1 e^x + c_2 x e^x$$

(b) $y = c_1 e^{\frac{3}{2}x} + c_2 x e^{-\frac{3}{2}x}$
(c) $y = c_1 e^{3x} + c_2 e^{-3x}$
(d) $y = c_1 e^{3x} + c_2 x e^{3x}$
(e) $y = c_1 e^{\frac{3}{2}x} + c_2 x e^{\frac{3}{2}x}$

7. If $y_p = A + Bx$ is a particular solution of the differential equation

y'' - y' - 2y = 3x + 4, then 4A + 4B =

- (a) 12
- (b) -10
- (c) 0
- (d) 9
- (e) -11

8. If the characteristic polynomial of the matrix $A = \begin{bmatrix} 5 & -6 & 3 \\ 6 & -7 & 3 \\ 6 & -6 & 2 \end{bmatrix}$ is $\begin{bmatrix} m \\ m \end{bmatrix}$

 $p(\lambda) = -(\lambda + 1)^2(\lambda - 2)$, then a basis for the eigenspace of $\lambda = -1$ is $v_1 = \begin{bmatrix} m \\ 1 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -1 \\ 0 \\ n \end{bmatrix}$, where m + n =

- (a) 5
- (b) 3
- (c) 4
- (d) 0
- (e) 1

Page 5 of 10

9. The eigenvector associated with the eigenvalue $\lambda = -1$ of the matrix $A = \begin{bmatrix} 7 & -8 \\ 6 & -7 \end{bmatrix}$

is
$$\begin{bmatrix} a \\ 1 \end{bmatrix}$$
, where $a =$

- (a) -2
- (b) 2
- (c) 0
- (d) 1
- (e) -1

10. The general solution of the differential equation

$$y^{(3)} + 3y'' - 4y = 0$$

(a)
$$y = c_1 e^{-x} + c_2 e^{2x} + c_3 x e^{2x}$$

(b) $y = c_1 e^x + c_2 e^{3x} + c_3 x e^{3x}$
(c) $y = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$
(d) $y = c_1 e^{-x} + c_2 e^{-2x} + c_3 x e^{-2x}$
(e) $y = c_1 e^x + c_2 e^{2x} + c_3 x e^{2x}$

11. A linear homogeneous constant-coefficient differential equation which has the general solution

$$y(x) = e^{-4x}(c_1\cos(3x) + c_2\sin(3x))$$

is

(a) y'' - 8y' + 25y = 0(b) y'' + 8y' + 25y = 0(c) y'' - 6y' + 25y = 0(d) y'' - 8y' - 25y = 0(e) y'' + 6y' + 25y = 0

12. The rank of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & -9 & 9 \\ 3 & 6 & 2 & 1 & 6 \\ 2 & 4 & 1 & 2 & 3 \\ 4 & 8 & 3 & 0 & 9 \end{bmatrix}$$

- (a) 3
- (b) 2
- (c) 5
- (d) 1
- (e) 4

CODE02

13. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y'' + 4y = 3x \cos(2x)$ is given by $y_p(x) =$

(a)
$$(Ax^2 + Bx^3) \cos(2x) + (C + Dx) \sin(2x)$$

- (b) $(Ax + Bx^2) \cos(2x) + (C + Dx) \sin(2x)$
- (c) $(Ax + Bx^2) \cos(2x) + (Cx + Dx^2) \sin(2x)$
- (d) $(Ax + Bx) \cos(2x) + (C + Dx) \sin(2x)$
- (e) $(A + Bx) \cos(2x) + (Cx + Dx^2) \sin(2x)$

14. If the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 5 & -9 \\ 2 & 5 & m \end{bmatrix}$ is equal to 2, then m =

- (a) -5
- (b) 4
- (c) 3
- (d) 2
- (e) 5

15. The solution of the initial-value problem

$$y'' - y = 0$$
, $y(0) = 0$ and $y'(0) = 5$

(a)
$$y = \frac{5}{2}e^{x} - \frac{5}{2}e^{-x}$$

(b) $y = \frac{3}{2}e^{x} - \frac{3}{2}e^{-x}$
(c) $y = e^{-x} - e^{x}$
(d) $y = \frac{-5}{2}e^{x} + \frac{5}{2}e^{-x}$
(e) $y = e^{x} - e^{-x}$

16. Consider the vectors

$$v_1 = (-1, 2, 3), v_2 = (3, 1, -2), v_3 = (2, 3, 0) \text{ and } w = (1, 5, 8).$$

If $w = av_1 + bv_2 + cv_3$, then $a + b - c =$

- (a) 15
- (b) 17
- (c) 13
- (d) 19
- (e) 21

17. A value of k for which the following vectors

$$v_1 = (k, 0, k), v_2 = (2k, -3, 4) \text{ and } v_3 = (3, 5, 2)$$

are linearly dependent is

(a)
$$\frac{-16}{5}$$

(b) $\frac{7}{5}$
(c) $\frac{17}{10}$
(d) $\frac{-8}{5}$
(e) $\frac{10}{5}$

18. The Wronskian of the functions

$$f(x) = 1, g(x) = x, h(x) = x^{2}$$

- (a) 0
- (b) 4
- (c) 3
- (d) -4
- (e) 2

19. The general solution of the differential equation

$$y^{(4)} + 18y'' + 81y = 0$$

is

(a)
$$y = c_1 \cos(3x) + c_2 \sin(3x) + c_3 \cos(2x) + c_4 \sin(2x)$$

(b) $y = (c_1 + c_2 x)e^x \cos(2x) + (c_3 + c_4 x)e^x \sin(2x)$
(c) $y = (c_1 + c_2 x) \cos(3x) + (c_3 + c_4 x) \sin(3x)$
(d) $y = (c_1 + c_2 x) \cos(2x) + (c_3 + c_4 x) \sin(2x)$
(e) $y = (c_1 + c_2 x)e^x \cos(3x) + (c_3 + c_4 x)e^x \sin(3x)$

20. The characteristic polynomial of the matrix $\begin{bmatrix} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$ is $p(\lambda) =$

(a)
$$-\lambda^{3} + 6\lambda^{2} - 11\lambda + 6$$

(b) $\lambda^{3} + 4\lambda^{2} - 2\lambda + 6$
(c) $\lambda^{3} + 6\lambda^{2} - 11\lambda + 4$
(d) $\lambda^{3} - 5\lambda^{2} + 11\lambda + 6$
(e) $\lambda^{3} - 6\lambda^{2} + 9\lambda + 6$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE03

CODE03

Math 208 Exam II 231 November 07, 2023 Net Time Allowed: 120 Minutes

Name		
ID	Sec	

Check that this exam has <u>20</u> questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The general solution of the differential equation

$$y^{(4)} + 18y'' + 81y = 0$$

is

(a)
$$y = (c_1 + c_2 x) \cos(3x) + (c_3 + c_4 x) \sin(3x)$$

(b) $y = (c_1 + c_2 x)e^x \cos(2x) + (c_3 + c_4 x)e^x \sin(2x)$
(c) $y = (c_1 + c_2 x) \cos(2x) + (c_3 + c_4 x) \sin(2x)$
(d) $y = c_1 \cos(3x) + c_2 \sin(3x) + c_3 \cos(2x) + c_4 \sin(2x)$
(e) $y = (c_1 + c_2 x)e^x \cos(3x) + (c_3 + c_4 x)e^x \sin(3x)$

2. The eigenvector associated with the eigenvalue $\lambda = -1$ of the matrix $A = \begin{bmatrix} 7 & -8 \\ 6 & -7 \end{bmatrix}$

is
$$\begin{bmatrix} a \\ 1 \end{bmatrix}$$
, where $a =$

- (a) -1(b) -2
- (c) 1
- (d) 0
- (e) 2

3. A value of k for which the following vectors

$$v_1 = (k, 0, k), v_2 = (2k, -3, 4) \text{ and } v_3 = (3, 5, 2)$$

are linearly dependent is

(a)
$$\frac{7}{5}$$

(b) $\frac{-16}{5}$
(c) $\frac{10}{5}$
(d) $\frac{-8}{5}$
(e) $\frac{17}{10}$

4. If the characteristic polynomial of the matrix $A = \begin{bmatrix} 5 & -6 & 3 \\ 6 & -7 & 3 \\ 6 & -6 & 2 \end{bmatrix}$ is $p(\lambda) = -(\lambda + 1)^2(\lambda - 2)$, then a basis for the eigenspace of $\lambda = -1$ is $v_1 = \begin{bmatrix} m \\ 1 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -1 \\ 0 \\ n \end{bmatrix}$, where m + n =

(a) 3

- (b) 5
- (c) 4
- (d) 0
- (e) 1

5. The general solution of the differential equation

$$4y'' - 12y' + 9y = 0$$

is

(a)
$$y = c_1 e^x + c_2 x e^x$$

(b) $y = c_1 e^{\frac{3}{2}x} + c_2 x e^{\frac{3}{2}x}$
(c) $y = c_1 e^{3x} + c_2 x e^{3x}$
(d) $y = c_1 e^{3x} + c_2 e^{-3x}$
(e) $y = c_1 e^{\frac{3}{2}x} + c_2 x e^{-\frac{3}{2}x}$

6. If the matrix $A = \begin{bmatrix} 5 & -3 \\ 2 & 0 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix}$$
, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(b) $P = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(c) $P = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(d) $P = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$
(e) $P = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$

CODE03

7. The characteristic polynomial of the matrix
$$\begin{bmatrix} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
 is $p(\lambda) =$

(a) $-\lambda^{3} + 6\lambda^{2} - 11\lambda + 6$ (b) $\lambda^{3} + 6\lambda^{2} - 11\lambda + 4$ (c) $\lambda^{3} - 6\lambda^{2} + 9\lambda + 6$ (d) $\lambda^{3} + 4\lambda^{2} - 2\lambda + 6$ (e) $\lambda^{3} - 5\lambda^{2} + 11\lambda + 6$

- 8. Consider the subspace S of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis of S is consisting of the vectors
 - (a) $v_1 = (1, 1, 1, 0), v_2 = (0, 1, 1, 1), v_3 = (0, 1, 1, 0)$ (b) $v_1 = (1, 1, 0, 0), v_2 = (0, 0, 1, 1), v_3 = (0, 1, 0, 1)$ (c) $v_1 = (1, 1, 0, 0), v_2 = (1, 0, 1, 0), v_3 = (1, 0, 0, 1)$ (d) $v_1 = (1, 1, 1, 1), v_2 = (0, 0, 1, 0), v_3 = (1, 0, 0, 1)$ (e) $v_1 = (0, 1, 0, 0), v_2 = (0, 0, 1, 0), v_3 = (0, 0, 0, 1)$

9. Let the solution space of the system

$$x_1 - 2x_2 - 9x_3 + 7x_4 = 0$$

$$x_1 + x_2 + 3x_3 + 4x_4 = 0$$

$$x_1 + 4x_2 + 15x_3 + x_4 = 0$$

has all linear combinations of the two vectors

$$u = (1, -4, 1, 0)$$
 and $v = (\alpha, 1, \beta, 1)$.

Then $\alpha + \beta =$

(a) -5
(b) 5
(c) 0
(d) -3
(e) 3

10. The Wronskian of the functions

$$f(x) = 1, g(x) = x, h(x) = x^2$$

is

(a) -4

- (b) 4
- (c) 3
- (d) 0
- (e) 2

11. If $y_p = A + Bx$ is a particular solution of the differential equation

y'' - y' - 2y = 3x + 4, then 4A + 4B =

- (a) 9
- (b) 0
- (c) -10
- (d) 12
- (e) -11

- 12. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y'' + 4y = 3x \cos(2x)$ is given by $y_p(x) =$
 - (a) $(Ax^2 + Bx^3) \cos(2x) + (C + Dx) \sin(2x)$
 - (b) $(Ax + Bx^2) \cos(2x) + (Cx + Dx^2) \sin(2x)$
 - (c) $(Ax + Bx^2) \cos(2x) + (C + Dx) \sin(2x)$
 - (d) $(A + Bx) \cos(2x) + (Cx + Dx^2) \sin(2x)$
 - (e) $(Ax + Bx) \cos(2x) + (C + Dx) \sin(2x)$

13. Given that $y_p = u_1(x) (\cos(3x)) + u_2(x) (\sin(3x))$ is a particular solution of the differential equation

$$y'' + 9y = 2 \sec(3x)$$
, then $u_1(x) =$

(a)
$$\frac{1}{9} \ln |\cos(3x)|$$

(b) $\frac{1}{7} \ln |\cos(3x)|$
(c) $\frac{1}{3} \ln |\cos(3x)|$
(d) $\frac{2}{9} \ln |\cos(3x)|$
(e) $\frac{2}{7} \ln |\cos(3x)|$

14. The rank of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & -9 & 9 \\ 3 & 6 & 2 & 1 & 6 \\ 2 & 4 & 1 & 2 & 3 \\ 4 & 8 & 3 & 0 & 9 \end{bmatrix}$$

is

(a) 2

- (b) 5
- (c) 3
- (d) 4
- (e) 1

231, Math 208, Exam II

15. If the rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 5 & -9 \\ 2 & 5 & m \end{bmatrix}$$
 is equal to 2, then $m =$

- (a) 3
- (b) 2
- (c) 4
- (d) -5
- (e) 5

16. Which one of the following set of functions are linearly dependent

(a)
$$y_1(x) = x$$
, $y_2(x) = x^2$, $y_3(x) = x^3$
(b) $y_1(x) = 1$, $y_2(x) = x$, $y_3(x) = x^2$
(c) $y_1(x) = x$, $y_2(x) = x^2 + x$, $y_3(x) = x^3 - 1$
(d) $y_1(x) = 1$, $y_2(x) = x$, $y_3(x) = 2x + 3$
(e) $y_1(x) = 2$, $y_2(x) = 3x$, $y_3(x) = x^3$

17. The general solution of the differential equation

$$y^{(3)} + 3y'' - 4y = 0$$

is

(a)
$$y = c_1 e^{-x} + c_2 e^{-2x} + c_3 x e^{-2x}$$

(b) $y = c_1 e^x + c_2 e^{3x} + c_3 x e^{3x}$
(c) $y = c_1 e^x + c_2 e^{2x} + c_3 x e^{2x}$
(d) $y = c_1 e^{-x} + c_2 e^{2x} + c_3 x e^{2x}$
(e) $y = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$

18. The solution of the initial-value problem

$$y'' - y = 0$$
, $y(0) = 0$ and $y'(0) = 5$

is

(a)
$$y = \frac{-5}{2}e^{x} + \frac{5}{2}e^{-x}$$

(b) $y = \frac{5}{2}e^{x} - \frac{5}{2}e^{-x}$
(c) $y = e^{x} - e^{-x}$
(d) $y = \frac{3}{2}e^{x} - \frac{3}{2}e^{-x}$
(e) $y = e^{-x} - e^{x}$

19. A linear homogeneous constant-coefficient differential equation which has the general solution

$$y(x) = e^{-4x}(c_1\cos(3x) + c_2\sin(3x))$$

is

(a) y'' + 8y' + 25y = 0(b) y'' - 8y' - 25y = 0(c) y'' - 6y' + 25y = 0(d) y'' + 6y' + 25y = 0(e) y'' - 8y' + 25y = 0

20. Consider the vectors

$$v_1 = (-1, 2, 3), v_2 = (3, 1, -2), v_3 = (2, 3, 0)$$
 and $w = (1, 5, 8)$.
If $w = av_1 + bv_2 + cv_3$, then $a + b - c =$

(a) 17

- (b) 21
- (c) 13
- (d) 19
- (e) 15

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04

CODE04

Math 208 Exam II 231 November 07, 2023 Net Time Allowed: 120 Minutes

Name		
ID	Sec	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

CODE04

1. The characteristic polynomial of the matrix
$$\begin{bmatrix} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
 is $p(\lambda) =$

(a) $\lambda^{3} + 4\lambda^{2} - 2\lambda + 6$ (b) $\lambda^{3} - 6\lambda^{2} + 9\lambda + 6$ (c) $-\lambda^{3} + 6\lambda^{2} - 11\lambda + 6$ (d) $\lambda^{3} - 5\lambda^{2} + 11\lambda + 6$ (e) $\lambda^{3} + 6\lambda^{2} - 11\lambda + 4$

2. If the matrix $A = \begin{bmatrix} 5 & -3 \\ 2 & 0 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$
(b) $P = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(c) $P = \begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(d) $P = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(e) $P = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$

3. The rank of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & -9 & 9 \\ 3 & 6 & 2 & 1 & 6 \\ 2 & 4 & 1 & 2 & 3 \\ 4 & 8 & 3 & 0 & 9 \end{bmatrix}$$

is

- (a) 1
- (b) 4
- (c) 3
- (d) 5
- (e) 2

4. If the characteristic polynomial of the matrix $A = \begin{bmatrix} 5 & -6 & 3 \\ 6 & -7 & 3 \\ 6 & -6 & 2 \end{bmatrix}$ is

 $p(\lambda) = -(\lambda + 1)^2(\lambda - 2)$, then a basis for the eigenspace of $\lambda = -1$ is $v_1 = \begin{bmatrix} m \\ 1 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, where m + n =

and
$$v_2 = \begin{bmatrix} 0 \\ n \end{bmatrix}$$
, where m -

(a) 4

- (b) 1
- (c) 0
- (d) 5
- (e) 3

Page 3 of 10

5. Which one of the following set of functions are linearly dependent

(a)
$$y_1(x) = x$$
, $y_2(x) = x^2$, $y_3(x) = x^3$
(b) $y_1(x) = 1$, $y_2(x) = x$, $y_3(x) = x^2$
(c) $y_1(x) = 1$, $y_2(x) = x$, $y_3(x) = 2x + 3$
(d) $y_1(x) = x$, $y_2(x) = x^2 + x$, $y_3(x) = x^3 - 1$
(e) $y_1(x) = 2$, $y_2(x) = 3x$, $y_3(x) = x^3$

6. The general solution of the differential equation

$$y^{(3)} + 3y'' - 4y = 0$$

is

(a)
$$y = c_1 e^x + c_2 e^{2x} + c_3 x e^{2x}$$

(b) $y = c_1 e^{-x} + c_2 e^{-2x} + c_3 x e^{-2x}$
(c) $y = c_1 e^{-x} + c_2 e^{2x} + c_3 x e^{2x}$
(d) $y = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x}$
(e) $y = c_1 e^x + c_2 e^{3x} + c_3 x e^{3x}$

7. The Wronskian of the functions

$$f(x) = 1, g(x) = x, h(x) = x^2$$

is

- (a) 2
- (b) 4
- (c) 3
- (d) -4
- (e) 0

8. The solution of the initial-value problem

$$y'' - y = 0$$
, $y(0) = 0$ and $y'(0) = 5$

is

(a)
$$y = e^{x} - e^{-x}$$

(b) $y = e^{-x} - e^{x}$
(c) $y = \frac{-5}{2}e^{x} + \frac{5}{2}e^{-x}$
(d) $y = \frac{5}{2}e^{x} - \frac{5}{2}e^{-x}$
(e) $y = \frac{3}{2}e^{x} - \frac{3}{2}e^{-x}$

9. A linear homogeneous constant-coefficient differential equation which has the general solution

$$y(x) = e^{-4x}(c_1\cos(3x) + c_2\sin(3x))$$

is

(a) y'' - 8y' - 25y = 0(b) y'' - 6y' + 25y = 0(c) y'' + 8y' + 25y = 0(d) y'' + 6y' + 25y = 0(e) y'' - 8y' + 25y = 0

10. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y'' + 4y = 3x \cos(2x)$ is given by $y_p(x) =$

(a)
$$(A + Bx) \cos(2x) + (Cx + Dx^2) \sin(2x)$$

(b) $(Ax + Bx^2) \cos(2x) + (C + Dx) \sin(2x)$
(c) $(Ax + Bx^2) \cos(2x) + (Cx + Dx^2) \sin(2x)$
(d) $(Ax^2 + Bx^3) \cos(2x) + (C + Dx) \sin(2x)$
(e) $(Ax + Bx) \cos(2x) + (C + Dx) \sin(2x)$

11. Let the solution space of the system

$$x_1 - 2x_2 - 9x_3 + 7x_4 = 0$$

$$x_1 + x_2 + 3x_3 + 4x_4 = 0$$

$$x_1 + 4x_2 + 15x_3 + x_4 = 0$$

has all linear combinations of the two vectors

$$u = (1, -4, 1, 0)$$
 and $v = (\alpha, 1, \beta, 1)$.

Then $\alpha + \beta =$

- (a) 0
- (b) 3
- (c) -5
- (d) -3
- (e) 5

12. The general solution of the differential equation

$$y^{(4)} + 18y'' + 81y = 0$$

is

(a)
$$y = (c_1 + c_2 x)e^x \cos(2x) + (c_3 + c_4 x)e^x \sin(2x)$$

(b) $y = (c_1 + c_2 x) \cos(3x) + (c_3 + c_4 x) \sin(3x)$
(c) $y = (c_1 + c_2 x) \cos(2x) + (c_3 + c_4 x) \sin(2x)$
(d) $y = (c_1 + c_2 x)e^x \cos(3x) + (c_3 + c_4 x)e^x \sin(3x)$
(e) $y = c_1 \cos(3x) + c_2 \sin(3x) + c_3 \cos(2x) + c_4 \sin(2x)$

231, Math 208, Exam II

13. If the rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 5 & -9 \\ 2 & 5 & m \end{bmatrix}$$
 is equal to 2, then $m =$

- (a) 4
- (b) 2
- (c) 3
- (d) -5
- (e) 5

14. Consider the vectors

$$v_1 = (-1, 2, 3), v_2 = (3, 1, -2), v_3 = (2, 3, 0) \text{ and } w = (1, 5, 8).$$

If $w = av_1 + bv_2 + cv_3$, then a + b - c =

- (a) 19
- (b) 21
- (c) 17
- (d) 13
- (e) 15

15. Consider the subspace S of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = b + c + d\}$. A basis of S is consisting of the vectors

(a) $v_1 = (1, 1, 1, 1), v_2 = (0, 0, 1, 0), v_3 = (1, 0, 0, 1)$ (b) $v_1 = (0, 1, 0, 0), v_2 = (0, 0, 1, 0), v_3 = (0, 0, 0, 1)$ (c) $v_1 = (1, 1, 0, 0), v_2 = (0, 0, 1, 1), v_3 = (0, 1, 0, 1)$ (d) $v_1 = (1, 1, 1, 0), v_2 = (0, 1, 1, 1), v_3 = (0, 1, 1, 0)$ (e) $v_1 = (1, 1, 0, 0), v_2 = (1, 0, 1, 0), v_3 = (1, 0, 0, 1)$

16. A value of k for which the following vectors

 $v_1 = (k, 0, k), v_2 = (2k, -3, 4) \text{ and } v_3 = (3, 5, 2)$

are linearly dependent is

(a)
$$\frac{7}{5}$$

(b) $\frac{-16}{5}$
(c) $\frac{17}{10}$
(d) $\frac{-8}{5}$
(e) $\frac{10}{5}$

Page 9 of 10

17. The eigenvector associated with the eigenvalue $\lambda = -1$ of the matrix $A = \begin{bmatrix} 7 & -8 \\ 6 & -7 \end{bmatrix}$

is
$$\begin{bmatrix} a \\ 1 \end{bmatrix}$$
, where $a =$

- (a) -1
- (b) 1
- (c) 2
- (d) 0
- (e) -2

18. Given that $y_p = u_1(x) (\cos(3x)) + u_2(x) (\sin(3x))$ is a particular solution of the differential equation

$$y'' + 9y = 2 \sec(3x)$$
, then $u_1(x) =$

(a)
$$\frac{1}{9} \ln |\cos(3x)|$$

(b) $\frac{1}{7} \ln |\cos(3x)|$
(c) $\frac{2}{7} \ln |\cos(3x)|$
(d) $\frac{2}{9} \ln |\cos(3x)|$
(e) $\frac{1}{3} \ln |\cos(3x)|$

19. The general solution of the differential equation

$$4y'' - 12y' + 9y = 0$$

is

(a)
$$y = c_1 e^{3x} + c_2 x e^{3x}$$

(b) $y = c_1 e^x + c_2 x e^x$
(c) $y = c_1 e^{\frac{3}{2}x} + c_2 x e^{-\frac{3}{2}x}$
(d) $y = c_1 e^{3x} + c_2 e^{-3x}$
(e) $y = c_1 e^{\frac{3}{2}x} + c_2 x e^{\frac{3}{2}x}$

20. If $y_p = A + Bx$ is a particular solution of the differential equation y'' - y' - 2y = 3x + 4, then 4A + 4B =

- (a) 0
- (b) 12
- (c) -10
- (d) -11
- (e) 9

Math 208, 231, Exam II

Answer KEY

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	А	С 18	Сз	A 10	С 15
2	А	D 3	С 4	С 16	B 20
3	А	С 5	D 14	E 1	E 5
4	A	Е 6	В 19	A 17	Е 17
5	A	В 7	A 20	В 8	С 19
6	A	Е 11	Е 8	C 20	D 9
7	A	В 19	Е 12	A 15	A 7
8	A	Е 10	В 17	Сз	D 6
9	A	B 4	D 16	A 4	С 11
10	A	С 8	С 9	E ₇	С 13
11	A	D 1	В 11	Е 12	С 4
12	A	В 16	B 5	В 13	В 10
13	A	Е 12	С 13	D 14	В 18
14	A	E 2	D 18	A 5	E 2
15	A	A 20	A 6	В 18	Ез
16	A	Е 14	A $_{2}$	D 19	С 1
17	А	D 15	С	Е 9	В 16
18	А	Е 13	E ₇	В 6	D 14
19	А	Е 17	С 10	A 11	E ₈
20	A	В 9	A 15	E 2	D 12

Answer Counts

V	A	В	С	D	Е
1	1	5	3	3	8
2	4	4	6	3	3
3	6	4	3	2	5
4	1	4	6	4	5