King Fahd University of Petroleum and Minerals Department of Mathematics Math 208 Major Exam I 232 February 20, 2024 Net Time Allowed: 120 Minutes

USE THIS AS A TEMPLATE

Write your questions, once you are satisfied upload this file.

- Question 23 / Section 1.1 1. If $y = \frac{1}{4}x^5 + bx^{-3}$ is a solution of the initial-value problem $x\frac{dy}{dx} + 3y = 2x^5$, y(2) = 1, then b =
 - (a) -56
 - (b) -57
 - (c) -55
 - (d) 54
 - (e) 53

2. The order of the differential equation

$$y^{(4)} + x^2 y^{(3)} + x(y')^6 = \sin x$$

is equal to

- (a) 4
- (b) 2
- (c) 6
- (d) 3
- (e) 7

Question 9 / Section 1.2 3. If y = y(x) is the solution of the initial-value problem $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}, \ y(0) = 0, \ \text{then} \ y\left(\frac{1}{2}\right) =$

(a)
$$\frac{\pi}{6}$$

(b) $-\frac{\pi}{6}$
(c) $\frac{\pi}{3}$
(d) $-\frac{\pi}{3}$
(e) $\frac{\pi}{4}$

Question 17 / Section 1.2

4. If a particle is moving in a straight line with acceleration $a(t) = \frac{1}{(t+1)^3}$, initial-position x(0) = 0, and an initial velocity v(0) = 0, then the position of the particle at $t = \frac{1}{2}$ is

(a)
$$\frac{1}{12}$$

(b) $\frac{2}{3}$
(c) $\frac{1}{2}$
(d) $\frac{3}{2}$
(e) $\frac{1}{14}$

Page 3 of 10

Question 16 / Section 1.4

5. The general solution of the differential equation $(x^2 + 1)(\tan y) y' = x$ is given by

(a)
$$y(x) = \sec^{-1} (c\sqrt{1+x^2})$$

(b) $y(x) = \sec^{-1} (c\sqrt{2+x^2})$
(c) $y(x) = \tan^{-1} (c\sqrt{1+x^2})$
(d) $y(x) = \tan^{-1} (c\sqrt{2+x^2})$

(e)
$$y(x) = \sec^{-1} (c \sqrt{x^2 - 1})$$

Similar to Question 43 / Section 1.4

- 6. A pitcher of buttermilk initially at $25^{\circ} C$ is to be cooled by setting it on the front porch, where the temperature is 0° . Suppose that the temperature of the buttermilk has dropped to 15° after 20 min. The temperature of the buttermilk will be 9° when t =
 - (a) 40
 - (b) 30
 - (c) 20
 - (d) 25
 - (e) 28

Page 4 of 10

Similar to Question 18 / Section 1.5

- 7. The general solution of the linear differential equation $xy' = 3y + x^4 \cos x$ is given by
 - (a) $y = x^{3} (\sin x + c)$ (b) $y = x^{2} (\sin x + c)$ (c) $y = x^{4} (\sin x + c)$ (d) $y = x^{3} (\cos x + c)$ (e) $y = x^{2} (\cos x + c)$

Question 43 / Section 1.6

8. The general solution of the differential equation xy'' = y' is given by

(a)
$$y = Ax^{2} + B$$

(b) $y = Ax^{3} + B$
(c) $y = Ax^{4} + B$
(d) $y = Ax^{2} + Bx$
(e) $y = Ax^{3} + Bx$

Similar to Question 35 / Section 1.6

- 9. A constant K that makes the differential equation $\left(x^3 + \frac{y}{x}\right) dx + (y^2 + K \ln x) dy = 0$ exact is
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
 - (e) 5

Question 41 / Section 1.6

10. A general solution of the exact differential equation

$$\left(\frac{2x}{y} - \frac{3y^2}{x^4}\right)dx + \left(\frac{2y}{x^3} - \frac{x^2}{y^2} + \frac{1}{\sqrt{y}}\right)dy = 0$$

is

(a)
$$\frac{x^2}{y} + \frac{y^2}{x^3} + 2\sqrt{y} = c$$

(b) $\frac{x}{y} + \frac{y^2}{x^3} + 4\sqrt{y} = c$
(c) $\frac{y}{x^2} + \frac{y^2}{x^3} + 2\sqrt{y} = c$
(d) $\frac{x^2}{y} - \frac{x^3}{y^2} + 3\sqrt{y} = c$
(e) $\frac{x^2}{y} + \frac{y^2}{x^3} - 3\sqrt{y} = c$

Question 24 / Section 1.6

11. By making a suitable substitution, the differential equation $2xy' + y^3e^{-2x} = 2xy$ can be transformed into a linear differential equation

(a)
$$u' + 2u = \frac{e^{-2x}}{x}$$

(b) $u' - 2u = \frac{e^{-2x}}{x}$
(c) $u' + 3u = \frac{e^{-2x}}{x}$
(d) $u' - 3u = \frac{e^{-2x}}{x}$
(e) $u' + 2u = \frac{e^{-2x}}{3x}$

Question 11 / Section 1.6

12. By making a suitable substitution, the differential equation $(x^2 - y^2)y' = 2xy$ can be transformed into a seperable differential equation

(a)
$$\frac{dy}{y} + \frac{2v}{v^2 + 1} dv = 0$$

(b)
$$\frac{dy}{y} + \frac{v}{v^2 + 1} dv = 0$$

(c)
$$\frac{dy}{y} + \frac{3v}{v^2 + 1} dv = 0$$

(d)
$$\frac{dy}{y} - \frac{v}{v^2 + 1} dv = 0$$

(e)
$$\frac{dy}{y} - \frac{2v}{v^2 + 1} dv = 0$$

MASTER

Question 8 / Section 1.5

13. A general solution of the differential equation $y' + \frac{1}{3x}y = 4$ is

(a)
$$y = 3x + \frac{c}{\sqrt[3]{x}}$$

(b) $y = x + \frac{c}{\sqrt[3]{x}}$
(c) $y = 3x + \frac{c}{\sqrt{x}}$
(d) $y = x + \frac{c}{\sqrt{x}}$
(e) $y = 2x + \frac{c}{\sqrt{x}}$

Question 4 / Section 4.1 14. Let $\mathbf{a} = 2i - j$, $\mathbf{b} = j - 3k$, then $|3\mathbf{a} - 4\mathbf{b}| =$

- (a) $\sqrt{229}$
- (b) $\sqrt{227}$
- (c) $\sqrt{231}$
- (d) $\sqrt{226}$
- (e) $\sqrt{224}$

232, Math 208, Major Exam I Page 8 of 10 Similar to Question 16 / Section 4.1

15. The value of k for which that vectors of \mathbb{R}^3

$$\mathbf{u} = (1, -1, 2), \ \mathbf{v} = (3k, 0, k+1),$$

 $\mathbf{w} = (1, -2, 2)$ are linearly independent are

(a)
$$k \neq \frac{1}{5}$$

(b) $k \neq \frac{1}{4}$
(c) $k \neq 0$
(d) $k \neq \frac{1}{6}$
(e) $k \neq 1$

Question 12 / section 4.1

- 16. Let $\mathbf{u} = (4, 1)$, $\mathbf{v} = (-2, -1)$, $\mathbf{w} = (2, -2)$ be vectors in \mathbb{R}^2 . If $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then a + b =
 - (a) 8
 - (b) 7
 - (c) 6
 - (d) 5
 - (e) 4

Question 30 / Section 4.1

17. Which one of the following statements is true about the subset V of \mathbb{R}^3 defined by

$$V = \{(x, y, z) : x + y + z = 0\}$$

- (a) V is a subspace of \mathbb{R}^3
- (b) V is not closed under addition
- (c) V is not closed under multiplication by scalars
- (d) V is closed under addition but not closed under multiplication by scalars
- (e) V is not closed under addition but closed under multiplication by scalars

Question 22 / Section 4.2 18. The solution of the system

 $x_1 + 3x_2 + 3x_3 + 3x_4 = 0$ $2x_1 + 7x_2 + 5x_3 - x_4 = 0$ $2x_1 + 7x_2 + 4x_3 - 4x_4 = 0$

is the set of all scalars multiples of a vector ${\bf u}$ where ${\bf u}=$

(a) (-6, 4, -3, 1)(b) (-6, -4, -3, 1)(c) (6, 4, -3, 1)(d) (-6, 4, 3, 1)(e) (-6, 4, -3, -1) 232, Math 208, Major Exam I Page **10 of 10** Similar to Question 18 / Section 1.6 19. A general solution of the differential equation (x + y) y' = 1 is

MASTER

(a) $y = \ln(x + y + 1) + c$ (b) $y = \ln(x + y + 2) + c$ (c) $y = \ln(x + y + 1) + cx$ (d) $y = \ln(x + y + 2) + cx$ (e) $y = \ln(x + y - 1) + cx$

20. Which one of the following differential equations is linear

- (a) $e^{x}y' + (\ln x) y = \tan x$ (b) $yy' + (\ln x) y = e^{x}$ (c) $(y')^{2} + xy = x^{2}$ (d) $y' + xy^{2} = x^{3}$
- (e) $y' + x \sin y = e^x$