1. All values of k for which the following vectors

$$v_1 = (7, 1, -8), v_2 = (-4, 2, -7) \text{ and } v_3 = (3, k, 3)$$

form a basis for \mathbb{R}^3 are

- (a) $k \neq -1$ _____(correct)
- (b) $k \neq -2$
- (c) $k \neq 2$
- (d) $k \neq 3$
- (e) $k \neq -4$

2. Consider the subspace S of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a + 8c = b + 7d = 0\}$. A basis of S consists of the vectors

(a)
$$v_1 = (-8, 0, 1, 0), v_2 = (0, -7, 0, 1)$$
 _____(correct)

- (b) $v_1 = (-8, 1, 0, 1), v_2 = (-7, 0, 1, 0)$
- (c) $v_1 = (-8, 0, 1, 0), v_2 = (0, 7, 0, 0)$
- (d) $v_1 = (8, 0, 1, 0), v_2 = (0, -7, 0, 1)$
- (e) $v_1 = (-8, 0, 2, 0), v_2 = (0, 1, 0, -7)$

3. Consider the vectors

$$v_1 = (-4, 2, -7), v_2 = (3, -1, 3) \text{ and } w = (7, 1, -8).$$

If $w = av_1 + bv_2$, then a + b =

- (a) 14 _____(correct)
- (b) 12
- (c) 10
- (d) 8
- (e) 6

4. If the solution space of the system

$$x_1 - 4x_2 - 3x_3 - 7x_4 = 0$$
$$2x_1 - x_2 + x_3 + 7x_4 = 0$$
$$x_1 + 2x_2 + 3x_3 + 11x_4 = 0$$

has all linear combination of the two vectors $u=(-1,-1,\alpha,0)$ and $v=(\beta,-3,0,1)$ then $\alpha-\beta=$

- (a) 6 _____(correct)
- (b) 4
- (c) 0
- (d) -4
- (e) 5

- 5. The rank of the matrix $A = \begin{bmatrix} 1 & 3 & 3 & 9 \\ 2 & 7 & 4 & 8 \\ 2 & 7 & 5 & 12 \\ 2 & 8 & 3 & 2 \end{bmatrix}$ is
 - (a) 3 _____(correct)
 - (b) 4
 - (c) 2
 - (d) 1
 - (e) 0

6. The wronskian of the functions

$$f(x) = e^{2x}$$
, $g(x) = \cosh x$, $h(x) = \sinh x$ on $(-\infty, \infty)$

is

- (a) $3e^{2x}$ _____(correct)
- (b) e^{2x}
- (c) $4e^{2x}$
- (d) $5e^{2x}$
- (e) 0

7. The general solution of the differential equation 4y'' + 4y' + y = 0 is

(a)
$$y(x) = (c_1 + c_2 x)e^{-\frac{x}{2}}$$
 _____(correct

(b)
$$y(x) = c_1 e^{-x} + c_2 e^{-\frac{x}{2}}$$

(c)
$$y(x) = (c_1 + c_2 x) e^{2x}$$

(d)
$$y(x) = (c_1 + c_2 x) e^{-x}$$

(e)
$$y(x) = c_1 + c_2 x e^{-\frac{x}{2}}$$

8. The solution of the initial-value problem

$$y'' + 4y = 0$$
; $y(0) = 3$ and $y'(0) = 8$

is

(a)
$$y = 3\cos(2x) + 4\sin(2x)$$
 _____(correct)

(b)
$$y = 3\cos(x) + 4\sin(x)$$

(c)
$$y = 3\cos(4x) + 4\sin(4x)$$

(d)
$$y = 3\cos(2x) - 4\sin(2x)$$

(e)
$$y = 3\cos(2x) + 2\sin(2x)$$

9. The general solution of the differential equation $y^{(4)} = 16y$ is

(a)
$$y(x) = c_1 e^{2x} + c_2 e^{-2x} + c_3 \cos(2x) + c_4 \sin(2x)$$
 _____(correct

(b)
$$y(x) = c_1 e^{2x} + c_2 e^x + c_3 \cos(2x) + c_4 \sin(2x)$$

(c)
$$y(x) = (c_1 + c_2 x)e^{-2x} + c_3 \cos(2x) + c_4 \sin(2x)$$

(d)
$$y(x) = (c_1 + c_2 x)e^{2x} + c_3 \cos(2x) + c_4 \sin(2x)$$

(e)
$$y(x) = c_1 e^{2x} + c_2 e^{-2x} + c_3 x \cos(2x) + c_4 x \sin(2x)$$

10. A linear homogeneous constant-coefficient differential equation which has the general solution

$$y(x) = Ae^{3x} + Bxe^{3x} + C\cos(4x) + D\sin(4x)$$

is

(a)
$$y^{(4)} - 6y''' + 25y'' - 96y' + 144y = 0$$
 _____(correct)

(b)
$$y^{(4)} + 6y''' - 25y'' - 96y' + 144y = 0$$

(c)
$$y^{(4)} - 6y''' - 25y'' + 96y' + 144y = 0$$

(d)
$$y^{(4)} - 6y''' + 25y'' + 96y' - 144y = 0$$

(e)
$$y^{(4)} + 4y''' - 25y'' + 96y' - 144y = 0$$

11. If $y = c_1 e^{Ax} + (c_2 + c_3 x + c_4 x^2) e^{Bx}$ is the general solution of the differential equation

$$y^{(4)} + y^{(3)} - 3y'' - 5y' - 2y = 0,$$

then A - B =

- (a) 3 _____(correct)
- (b) 0
- (c) 2
- (d) 4
- (e) -2

12. If $y_p = Ae^x + Bxe^x$ is a particular solution of the differential equation

$$4y'' + 4y' + y = 3xe^x,$$

then B =

- (a) $\frac{1}{3}$ _____(correct)
- (b) 3
- (c) 2
- (d) $\frac{1}{2}$
- (e) 4

13. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y^{(3)} - 8y = e^{2x} + 3x$ is given by $y_p(x) =$

(a)
$$Axe^{2x} + Bx + C$$
 _____(correct)

- (b) $Ae^{2x} + Bx + C$
- (c) $Ax^2e^{2x} + Bx + C$
- (d) $Ae^{2x} + Bx^2 + Cx$
- (e) $Ae^{2x} + Bx^2 + C$

14. Using the method of variation of parameters, a particular solution of the differential equation $y'' + 9y = \sin(3x)$ is $y_p(x) =$

(a)
$$-\frac{1}{6}x\cos(3x)$$
 _____(correct)

- (b) $\frac{1}{36}x \cos(3x)$
- (c) $\frac{1}{36}x \sin(3x)$
- $(d) -\frac{1}{6}x \sin(3x)$
- (e) $\frac{1}{8}x \sin(3x)$

- 15. The characteristic polynomial of the matrix $\begin{bmatrix} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end{bmatrix}$ is $p(\lambda) =$
 - (a) $-\lambda^3 + 7\lambda^2 10\lambda$ _____(correct)
 - (b) $\lambda^3 6\lambda^2 + 10\lambda$
 - (c) $-\lambda^3 + 7\lambda^2 8\lambda$
 - (d) $\lambda^3 7\lambda^2 + 6\lambda$
 - (e) $-\lambda^3 7\lambda^2 + 9\lambda$

- 16. The eigenvector associated with the eigenvalue $\lambda=4$ of the matrix $A=\begin{bmatrix}8&-5\\4&-1\end{bmatrix}$ is $\begin{bmatrix}a\\4\end{bmatrix}$, where a=
 - (a) 5 _____(correct)
 - (b) 6
 - (c) -5
 - (d) -4
 - (e) 7

17. If the characteristic polynomial of the matrix $A = \begin{bmatrix} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is

 $P(\lambda) = -(\lambda - 1)^2(\lambda - 3)$, then a basis for the eigenspace of $\lambda = 1$ is

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ \alpha \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} \beta \\ 1 \\ 0 \end{bmatrix}$, then $\alpha + \beta =$

- (a) -2 _____(correct)
- (b) 2
- (c) -4
- (d) 4
- (e) 0

18. Which one of the following set of functions are linearly dependent

(a)
$$y_1(x) = e^x$$
, $y_2 = e^{-x}$, $y_3 = \sinh x$ _____(correct)

(b)
$$y_1(x) = x$$
, $y_2(x) = x^2$, $y_3(x) = x^3$

(c)
$$y_1(x) = e^x$$
, $y_2(x) = e^{-x}$, $y_3(x) = e^{2x}$

(d)
$$y_1(x) = 1$$
, $y_2(x) = x$, $y_3(x) = 1 + x^2$

(e)
$$y_1(x) = \sin x$$
, $y_2(x) = \cos x$, $y_3(x) = e^x$

- 19. The eigenvector associated with the eigenvalue $\lambda = -i$ of the matrix $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ is $v_1 = \begin{bmatrix} i \\ \alpha \end{bmatrix}$, where $\alpha =$
 - (a) 1 _____(correct)
 - (b) -1
 - (c) 2
 - (d) -3
 - (e) 4

- 20. If the matrix $A=\begin{bmatrix}5&-4\\3&-2\end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP=D$, then
 - (a) $P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ _____(correct)
 - (b) $P = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
 - (c) $P = \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
 - (d) $P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
 - (e) $P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$, $D = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$