- 1. The rank of the matrix $A = \begin{bmatrix} 1 & 2 & 1 & 3 & 2 \\ 3 & 4 & 9 & 0 & 7 \\ 2 & 3 & 5 & 1 & 8 \\ 2 & 2 & 8 & -3 & 5 \end{bmatrix}$ is
 - (a) 3 _____(correct)
 - (b) 2
 - (c) 4
 - (d) 5
 - (e) 1

2. If the solution space of the system

$$x_1 - 3x_2 - 10x_3 + 5x_4 = 0$$

$$x_1 + 4x_2 + 11x_3 - 2x_4 = 0$$

$$x_1 + 3x_2 + 8x_3 - x_4 = 0$$

has all linear combination of the two vectors $u=(1,\alpha,1,0)$ and $v=(-2,\beta,0,1)$, then $\alpha+\beta=$

- (a) -2 _____(correct)
- (b) 2
- (c) 4
- (d) -4
- (e) 0

3. Consider the subspace S of \mathbb{R}^4 defined by $S = \{(a, b, c, d) | a = 3c, b = 4d\}$. A basis of S consists of the vectors

(a)
$$v_1 = (3, 0, 1, 0), v_2 = (0, 4, 0, 1)$$
 _____(correct)

- (b) $v_1 = (-3, 0, 1, 0), v_2 = (0, 4, 0, 1)$
- (c) $v_1 = (3, 0, -1, 0), v_2 = (0, -4, 0, 1)$
- (d) $v_1 = (3, 0, 1, 0), v_2 = (0, 4, 0, -1)$
- (e) $v_1 = (4, 0, 1, 0), v_2 = (0, 4, 0, 1)$

4. The general solution of the differential equation

$$2y'' - y' - y = 0$$

is

(a)
$$y(x) = c_1 e^{\frac{-x}{2}} + c_2 e^x$$
 _____(correct)

- (b) $y(x) = c_1 e^{\frac{x}{2}} + c_2 e^x$
- (c) $y(x) = c_1 e^{\frac{-x}{2}} + c_2 e^{-x}$
- (d) $y(x) = c_1 e^x + c_2 e^{-x}$
- (e) $y(x) = c_1 e^x + c_2 x e^x$

5. The solution of the initial-value problem

$$y'' - 6y' + 25y = 0; y(0) = 3, y'(0) = 1$$

is

(a)
$$y(x) = e^{3x} [3\cos(4x) - 2\sin(4x)]$$
 _____(correct)

(b)
$$y(x) = e^{-3x} [3\cos(4x) - 2\sin(4x)]$$

(c)
$$y(x) = e^{3x} [3\cos(4x) + 2\sin(4x)]$$

(d)
$$y(x) = e^{2x} [3\cos(4x) - 2\sin(4x)]$$

(e)
$$y(x) = e^{-2x} [3\cos(4x) - 2\sin(4x)]$$

6. The general solution of the differential equation $y^{(4)} - 8y'' + 16y = 0$ is

(a)
$$y(x) = c_1 e^{2x} + c_2 x e^{2x} + c_3 e^{-2x} + c_4 x e^{-2x}$$
 _____(correct)

(b)
$$y(x) = c_1 e^{2x} + c_2 x e^{2x} + c_3 e^{-2x} + c_4 e^x$$

(c)
$$y(x) = c_1 e^{2x} + c_2 x e^{2x} + c_3 e^{-2x} + c_4 e^{-x}$$

(d)
$$y(x) = c_1 e^{2x} + c_2 x e^{-2x} + c_3 x e^{-2x} + c_4 e^x$$

(e)
$$y(x) = (c_1 + c_2 + c_3x^2 + c_4x^3) e^{2x}$$

7. A linear homogeneous constant-coefficient differential equation which has the general solution

$$y(x) = A\cos(2x) + B\sin(2x) + C\cosh(2x) + D\sinh(2x)$$

is

(a)
$$y^{(4)} - 16y = 0$$
 ______(correct)

(b)
$$y^{(4)} - 64y = 0$$

(c)
$$y^{(4)} - 5y^{(3)} + 4y'' - 3y' + y = 0$$

(d)
$$y^{(4)} + 7y'' - 144y = 0$$

(e)
$$y^{(4)} - 7y'' + 144y = 0$$

8. An appropriate form of a particular solution y_p for the non-homogeneous differential equation

$$(D-1)^3(D^2-4)y = xe^x + e^{2x} + e^{-2x}$$

is given by $y_p(x) =$

(a)
$$Ax^3e^x + Bx^4e^x + Cxe^{2x} + Dxe^{-2x}$$
 ______(correct)

(b)
$$Ax^2e^x + Bx^3e^x + Cxe^{2x} + Dxe^{-2x}$$

(c)
$$Ax^3e^x + Bx^4e^x + Ce^{2x} + Dxe^{-2x}$$

(d)
$$Ax^3e^x + Bx^4e^x + Cxe^{2x} + De^{-2x}$$

(e)
$$Axe^x + Bx^2e^x + Cxe^{2x} + Dxe^{-2x}$$

9. If $y_p = A + Bx + Cx^2$, is a particular solution of the differential equation

$$5y'' + 4y' + 3y = 2 + x^2,$$

then 27A + 9B + 3C =

- (a) 13 _____(correct)
- (b) 12
- (c) 0
- (d) -14
- (e) -12

- 10. Given that $y_p = u_1(x) \cos x + u_2(x) \sin x$ is a particular solution of the differential equation $y'' + y = \csc^2 x$, then $u_2(x) =$
 - (a) $-\csc x$ _____(correct)
 - (b) $\sec x$
 - (c) $\cos x$
 - (d) $-\sin x$
 - (e) $-\csc x \cot x$

11. The characteristic polynomial of the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 7 & 2 \\ 10 & -15 & -4 \end{bmatrix}$ is $P(\lambda) = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 7 & 2 \\ 10 & -15 & -4 \end{bmatrix}$

(a)
$$-\lambda^3 + 4\lambda^2 - 5\lambda + 2$$
 _____(correct)

- (b) $\lambda^3 + 4\lambda^2 5\lambda + 2$
- (c) $-\lambda^3 4\lambda^2 5\lambda + 2$
- (d) $\lambda^3 + 4\lambda^2 + 5\lambda + 2$
- (e) $-\lambda^3 + 4\lambda^2 + 5\lambda 2$

- 12. The eigenvector associated with eigenvalue $\lambda = 1$ of the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ -6 & 9 & 3 \\ 4 & -8 & -1 \end{bmatrix}$ is $\begin{bmatrix} 1 \\ 0 \\ \alpha \end{bmatrix}$, where $\alpha =$
 - (a) 2 _____(correct)
 - (b) 3
 - (c) -2
 - (d) -3
 - (e) 1

13. If the matrix $A = \begin{bmatrix} 10 & -6 \\ 12 & -7 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal-matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ _____(correct)

(b)
$$P = \begin{bmatrix} 3 & 3 \\ 3 & 4 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(c)
$$P = \begin{bmatrix} 3 & 2 \\ 4 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(d)
$$P = \begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(e)
$$P = \begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$

14. If W(x) is the wroskian of the functions

$$f(x) = e^x$$
, $g(x) = e^{-x}$, $h(x) = e^{2x}$,

then W(0) =

- (a) -6 _____(correct)
- (b) 6
- (c) -4
- (d) 4
- (e) 8

15. If the characteristic polynomial of the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 7 & 2 \\ 10 & -15 & -4 \end{bmatrix}$$
 is $p(\lambda) = -(\lambda - 1)^2(\lambda - 2)$,

then a basis for the eigenspace of $\lambda = 1$ is

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ \alpha \end{bmatrix}, v_2 = \begin{bmatrix} \beta \\ 2 \\ 0 \end{bmatrix},$$

then $\alpha + \beta =$

- (a) 5 _____(correct)
- (b) 4
- (c) 0
- (d) -4
- (e) -5