King Fahd University of Petroleum and Minerals Department of Mathematics

 $\begin{array}{c} \text{Math 208} \\ \text{Major Exam I} \\ 241 \\ \text{October 01} \ , \ 2024 \end{array}$

EXAM COVER

Number of versions: 4 Number of questions: 15

King Fahd University of Petroleum and Minerals Department of Mathematics

Math 208 Major Exam I 241

October 01, 2024Net Time Allowed: 90 Minutes

MASTER VERSION

1. The sum of all values of r such that $y = e^{rx}$ is a solution of the differential equation 3y'' + 3y' - 4y = 0 is

(a) -1 _____(correct)

- (b) 0
- (c) 1
- (d) $\frac{1}{2}$
- (e) $-\frac{3}{2}$

2. The explicit particular solution of the initial-value problem $x^2 \frac{dy}{dx} + y = xy$, y(1) = 2 is y(x) = 2

(a)
$$2xe^{\frac{1}{x}-1}$$
 _____(correct)

- (b) $2x^2e^{\frac{1}{x}-1}$
- (c) $2xe^x 1$
- (d) $2x^2e^x 1$
- (e) $xe^{\frac{1}{x}} + 1$

3. The general solution of the linear differential equation $2xy' - 3y = 9x^3$ is given by

(a)
$$y(x) = 3x^3 + cx^{\frac{3}{2}}$$
 _____(correct)

- (b) $y(x) = 2x^3 + cx^{\frac{5}{2}}$
- (c) $y(x) = 3x^2 + cx^{\frac{-3}{2}}$
- (d) $y(x) = x^3 + cx^{\frac{2}{3}}$
- (e) $y(x) = x^2 + cx^{\frac{3}{2}}$

4. A general solution of the exact differential equation

$$(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0$$

is

(a)
$$x^3 + 2xy^2 + 2y^3 = C$$
 _____(correct)

- (b) $x^3 2xy^2 + 2y^3 = C$
- (c) $x^3 2xy^2 2y^3 = C$
- (d) $x^3 + 2xy^2 2y^3 = C$
- (e) $x^3 + xy^2 + y^3 = C$

5. By making a suitable substitution, the differential equation $xy' + 6y = 3xy^{\frac{4}{3}}$ can be transformed into a linear differential equation

(a)
$$v' - \frac{2}{x}v = -1$$
 _____(correct)

(b)
$$v' + \frac{2}{x}v = -1$$

(c)
$$v' - \frac{2}{x}v = 1$$

$$(d) v' - \frac{2}{x}v = x$$

(e)
$$v' + \frac{2}{x}v = x$$

6. By making a suitable substitution, the differential equation $x^4y' = x^3y - 5y^4$ can be transformed into a separable differential equation

(a)
$$\frac{dv}{v^4} + \frac{5}{x}dx = 0$$
 _____(correct)

$$(b) \frac{dv}{v^3} + \frac{5}{x} dx = 0$$

$$(c) \frac{dv}{v^2} + \frac{5}{x} dx = 0$$

$$(d) \frac{dv}{v^4} - \frac{5}{x} dx = 0$$

$$(e) \frac{dv}{v^3} - \frac{5}{x} dx = 0$$

- 7. If a certain substance cools from $100^{\circ}C$ to $60^{\circ}C$ in 10 minutes when it is taken outside where the air temperature is $20^{\circ}C$, then the temperature of the substance 40 minutes after it is taken outside is
 - (a) $25^{\circ}C$ _____(correct)
 - (b) $35^{\circ} C$
 - (c) $15^{\circ} C$
 - (d) $10^{\circ} C$
 - (e) $40^{\circ} C$

8. A particle is moving in a straight line with acceleration $a(t) = 4(t+3)^2$, and an initial position x(0) = 1, and an initial velocity v(0) = -1, then the position function x(t) of the particle is given by

(a)
$$x(t) = \frac{1}{3}(t+3)^4 - 37t - 26$$
 _____(correct)

(b)
$$x(t) = \frac{1}{4}(t+3)^4 - 37t - 26$$

(c)
$$x(t) = \frac{1}{3}(t+3)^4 + 37t - 26$$

(d)
$$x(t) = \frac{1}{4}(t+3)^4 + 37t - 26$$

(e)
$$x(t) = \frac{1}{3}(t+3)^4 - 30t - 26$$

9. Find the constant A that makes the differential equation

$$\left(\frac{1}{x^2} + \frac{1}{y^2}\right) dx + \left(\frac{Ax+1}{y^3}\right) dy = 0$$

exact.

- (a) -2 _____(correct)
- (b) 2
- (c) 3
- (d) -3
- (e) 0

10. A general solution of the differential equation $x^2y'' + 2xy' = 12x^3$ is

(a)
$$y(x) = x^3 - \frac{A}{x} + B$$
 ______(correct)

(b)
$$y(x) = x^2 - \frac{A}{x} + B$$

(c)
$$y(x) = x^3 + \frac{A}{x} + B$$

(d)
$$y(x) = x^2 + \frac{A}{x} + B$$

(e)
$$y(x) = x^3 - Ax^2 + B$$

11. A general solution of the $\frac{dy}{dx} = (x+y+1)^2$ is

(a)
$$y = -x - 1 + \tan(x + c)$$
 _____(correct)

- (b) $y = -x + 1 + \tan(x + c)$
- (c) $y = -x 1 + \sec(x + c)$
- (d) $y = -x + 1 + \sec(x + c)$
- (e) $y = x + 1 + \tan(x + c)$

12. The solution of the system

$$x_1 - 2x_2 - 4x_3 + 8x_4 = 0$$

$$2x_1 + 3x_2 + 6x_3 + 9x_4 = 0$$

$$3x_1 + 5x_2 + 4x_3 + x_4 = 0$$

is the set of all scalars multiples of a vector u where u =

- (a) (-6, 5, -2, 1) _____(correct)
- (b) (6,5,-2,1)
- (c) (-6,5,2,1)
- (d) (-6, -5, -2, -1)
- (e) (-6, -5, -2, 1)

13. The value of k for which the vectors $\mathbf{u} = (1, 4, 5)$, $\mathbf{v} = (4, 2, k)$, $\mathbf{w} = (-3, 3, -1)$ of \mathbb{R}^3 are linearly dependent is

(a) $\frac{104}{15}$ ______(correct)

- (b) $\frac{103}{15}$
- (c) $\frac{96}{13}$
- (d) $\frac{-96}{13}$
- (e) 0

- 14. Which one of the following statements is **TRUE** about the subset V of \mathbb{R}^3 defined by $V = \{(x_1, x_2, x_3) : x_2 = 1\}$
 - (a) V is not closed under addition and not closed under multiplication by scalar (correct)
 - (b) V is closed under addition and not closed under multiplication by scalar
 - (c) V is a subspace of \mathbb{R}^3
 - (d) V is not closed under addition but closed under multiplication by scalar
 - (e) V is closed under addition

15. Let $\mathbf{u}=(4,5),\,\mathbf{v}=(-2,7),\,\mathbf{w}=(8,29)$ be vectors in \mathbb{R}^2 . If $\mathbf{w}=a\mathbf{u}+b\mathbf{v}$, then a-b=

- (a) 1 _____(correct)
- (b) 4
- (c) 0
- (d) 2
- (e) 3

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01 CODE01

Math 208 Major Exam I 241

October 01, 2024 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The general solution of the linear differential equation $2xy' 3y = 9x^3$ is given by
 - (a) $y(x) = x^2 + cx^{\frac{3}{2}}$
 - (b) $y(x) = 3x^2 + cx^{\frac{-3}{2}}$
 - (c) $y(x) = 2x^3 + cx^{\frac{5}{2}}$
 - (d) $y(x) = x^3 + cx^{\frac{2}{3}}$
 - (e) $y(x) = 3x^3 + cx^{\frac{3}{2}}$

- 2. Let $\mathbf{u}=(4,5),\,\mathbf{v}=(-2,7),\,\mathbf{w}=(8,29)$ be vectors in $\mathbb{R}^2.$ If $\mathbf{w}=a\mathbf{u}+b\mathbf{v},$ then a-b=
 - (a) 2
 - (b) 4
 - (c) 0
 - (d) 1
 - (e) 3

- 3. By making a suitable substitution, the differential equation $x^4y' = x^3y 5y^4$ can be transformed into a separable differential equation
 - (a) $\frac{dv}{v^4} + \frac{5}{x}dx = 0$
 - $(b) \frac{dv}{v^3} + \frac{5}{x} dx = 0$
 - $(c) \frac{dv}{v^2} + \frac{5}{x} dx = 0$
 - $(d) \frac{dv}{v^3} \frac{5}{x} dx = 0$
 - $(e) \frac{dv}{v^4} \frac{5}{x} dx = 0$

- 4. Which one of the following statements is **TRUE** about the subset V of \mathbb{R}^3 defined by $V = \{(x_1, x_2, x_3) : x_2 = 1\}$
 - (a) V is closed under addition and not closed under multiplication by scalar
 - (b) V is a subspace of \mathbb{R}^3
 - (c) V is not closed under addition but closed under multiplication by scalar
 - (d) V is closed under addition
 - (e) V is not closed under addition and not closed under multiplication by scalar

5. Find the constant A that makes the differential equation

$$\left(\frac{1}{x^2} + \frac{1}{y^2}\right) dx + \left(\frac{Ax+1}{y^3}\right) dy = 0$$

exact.

- (a) -2
- (b) -3
- (c) 2
- (d) 0
- (e) 3

6. A general solution of the differential equation $x^2y'' + 2xy' = 12x^3$ is

(a)
$$y(x) = x^2 - \frac{A}{x} + B$$

(b)
$$y(x) = x^3 + \frac{A}{x} + B$$

(c)
$$y(x) = x^3 - \frac{A}{x} + B$$

(d)
$$y(x) = x^2 + \frac{A}{x} + B$$

(e)
$$y(x) = x^3 - Ax^2 + B$$

- 7. A particle is moving in a straight line with acceleration $a(t) = 4(t+3)^2$, and an initial position x(0) = 1, and an initial velocity v(0) = -1, then the position function x(t) of the particle is given by
 - (a) $x(t) = \frac{1}{4}(t+3)^4 37t 26$
 - (b) $x(t) = \frac{1}{3}(t+3)^4 30t 26$
 - (c) $x(t) = \frac{1}{3}(t+3)^4 37t 26$
 - (d) $x(t) = \frac{1}{3}(t+3)^4 + 37t 26$
 - (e) $x(t) = \frac{1}{4}(t+3)^4 + 37t 26$

- 8. The value of k for which the vectors $\mathbf{u} = (1, 4, 5)$, $\mathbf{v} = (4, 2, k)$, $\mathbf{w} = (-3, 3, -1)$ of \mathbb{R}^3 are linearly dependent is
 - (a) $\frac{104}{15}$
 - (b) $\frac{103}{15}$
 - (c) $\frac{96}{13}$
 - (d) $\frac{-96}{13}$
 - (e) 0

- 9. By making a suitable substitution, the differential equation $xy' + 6y = 3xy^{\frac{4}{3}}$ can be transformed into a linear differential equation
 - (a) $v' + \frac{2}{x}v = -1$
 - (b) $v' \frac{2}{x}v = -1$
 - (c) $v' \frac{2}{x}v = x$
 - $(d) v' + \frac{2}{x}v = x$
 - (e) $v' \frac{2}{x}v = 1$

10. The solution of the system

$$x_1 - 2x_2 - 4x_3 + 8x_4 = 0$$

$$2x_1 + 3x_2 + 6x_3 + 9x_4 = 0$$

$$3x_1 + 5x_2 + 4x_3 + x_4 = 0$$

is the set of all scalars multiples of a vector u where u =

- (a) (-6, -5, -2, -1)
- (b) (-6, -5, -2, 1)
- (c) (-6,5,2,1)
- (d) (-6, 5, -2, 1)
- (e) (6,5,-2,1)

- 11. The explicit particular solution of the initial-value problem $x^2 \frac{dy}{dx} + y = xy$, y(1) = 2 is y(x) = 2
 - (a) $2xe^{\frac{1}{x}-1}$
 - (b) $2xe^x 1$
 - (c) $xe^{\frac{1}{x}} + 1$
 - (d) $2x^2e^{\frac{1}{x}-1}$
 - (e) $2x^2e^x 1$

- 12. If a certain substance cools from $100^{\circ}C$ to $60^{\circ}C$ in 10 minutes when it is taken outside where the air temperature is $20^{\circ}C$, then the temperature of the substance 40 minutes after it is taken outside is
 - (a) $10^{\circ} C$
 - (b) $25^{\circ} C$
 - (c) $35^{\circ} C$
 - (d) $40^{\circ} C$
 - (e) $15^{\circ} C$

13. A general solution of the exact differential equation

$$(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0$$

is

- (a) $x^3 + 2xy^2 2y^3 = C$
- (b) $x^3 2xy^2 + 2y^3 = C$
- (c) $x^3 + 2xy^2 + 2y^3 = C$
- (d) $x^3 + xy^2 + y^3 = C$
- (e) $x^3 2xy^2 2y^3 = C$

- 14. The sum of all values of r such that $y = e^{rx}$ is a solution of the differential equation 3y'' + 3y' 4y = 0 is
 - (a) $\frac{1}{2}$
 - (b) 0
 - (c) -1
 - (d) $-\frac{3}{2}$
 - (e) 1

15. A general solution of the $\frac{dy}{dx} = (x+y+1)^2$ is

(a)
$$y = -x + 1 + \sec(x + c)$$

(b)
$$y = x + 1 + \tan(x + c)$$

(c)
$$y = -x + 1 + \tan(x + c)$$

(d)
$$y = -x - 1 + \tan(x + c)$$

(e)
$$y = -x - 1 + \sec(x + c)$$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02 CODE02

Math 208 Major Exam I 241

October 01, 2024 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The general solution of the linear differential equation $2xy' 3y = 9x^3$ is given by
 - (a) $y(x) = 3x^3 + cx^{\frac{3}{2}}$
 - (b) $y(x) = x^3 + cx^{\frac{2}{3}}$
 - (c) $y(x) = 3x^2 + cx^{\frac{-3}{2}}$
 - (d) $y(x) = 2x^3 + cx^{\frac{5}{2}}$
 - (e) $y(x) = x^2 + cx^{\frac{3}{2}}$

2. The solution of the system

$$x_1 - 2x_2 - 4x_3 + 8x_4 = 0$$

$$2x_1 + 3x_2 + 6x_3 + 9x_4 = 0$$

$$3x_1 + 5x_2 + 4x_3 + x_4 = 0$$

is the set of all scalars multiples of a vector u where u =

- (a) (-6, 5, 2, 1)
- (b) (6,5,-2,1)
- (c) (-6, -5, -2, 1)
- (d) (-6, 5, -2, 1)
- (e) (-6, -5, -2, -1)

- 3. The sum of all values of r such that $y = e^{rx}$ is a solution of the differential equation 3y'' + 3y' 4y = 0 is
 - (a) 0
 - (b) 1
 - (c) $\frac{1}{2}$
 - (d) $-\frac{3}{2}$
 - (e) -1

- 4. A general solution of the $\frac{dy}{dx} = (x+y+1)^2$ is
 - (a) $y = -x 1 + \sec(x + c)$
 - (b) $y = -x 1 + \tan(x + c)$
 - (c) $y = x + 1 + \tan(x + c)$
 - (d) $y = -x + 1 + \tan(x + c)$
 - (e) $y = -x + 1 + \sec(x + c)$

- 5. By making a suitable substitution, the differential equation $x^4y' = x^3y 5y^4$ can be transformed into a separable differential equation
 - (a) $\frac{dv}{v^3} + \frac{5}{x}dx = 0$
 - (b) $\frac{dv}{v^4} + \frac{5}{x} dx = 0$
 - $(c) \frac{dv}{v^4} \frac{5}{x} dx = 0$
 - $(d) \frac{dv}{v^3} \frac{5}{x} dx = 0$
 - (e) $\frac{dv}{v^2} + \frac{5}{x}dx = 0$

6. A general solution of the exact differential equation

$$(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0$$

is

- (a) $x^3 + xy^2 + y^3 = C$
- (b) $x^3 2xy^2 + 2y^3 = C$
- (c) $x^3 2xy^2 2y^3 = C$
- (d) $x^3 + 2xy^2 + 2y^3 = C$
- (e) $x^3 + 2xy^2 2y^3 = C$

- 7. Which one of the following statements is **TRUE** about the subset V of \mathbb{R}^3 defined by $V = \{(x_1, x_2, x_3) : x_2 = 1\}$
 - (a) V is closed under addition
 - (b) V is closed under addition and not closed under multiplication by scalar
 - (c) V is not closed under addition and not closed under multiplication by scalar
 - (d) V is a subspace of \mathbb{R}^3
 - (e) V is not closed under addition but closed under multiplication by scalar

8. By making a suitable substitution, the differential equation $xy' + 6y = 3xy^{\frac{4}{3}}$ can be transformed into a linear differential equation

(a)
$$v' + \frac{2}{x}v = -1$$

(b)
$$v' - \frac{2}{x}v = -1$$

(c)
$$v' - \frac{2}{x}v = x$$

$$(d) v' - \frac{2}{x}v = 1$$

(e)
$$v' + \frac{2}{x}v = x$$

- 9. Let $\mathbf{u} = (4,5)$, $\mathbf{v} = (-2,7)$, $\mathbf{w} = (8,29)$ be vectors in \mathbb{R}^2 . If $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then a b =
 - (a) 0
 - (b) 3
 - (c) 1
 - (d) 2
 - (e) 4

- 10. The explicit particular solution of the initial-value problem $x^2 \frac{dy}{dx} + y = xy$, y(1) = 2 is y(x) = 2
 - (a) $2xe^x 1$
 - (b) $2x^2e^x 1$
 - (c) $2x^2e^{\frac{1}{x}-1}$
 - (d) $2xe^{\frac{1}{x}-1}$
 - (e) $xe^{\frac{1}{x}} + 1$

11. Find the constant A that makes the differential equation

$$\left(\frac{1}{x^2} + \frac{1}{y^2}\right) dx + \left(\frac{Ax+1}{y^3}\right) dy = 0$$

exact.

- (a) 3
- (b) -2
- (c) 2
- (d) 0
- (e) -3

12. A particle is moving in a straight line with acceleration $a(t) = 4(t+3)^2$, and an initial position x(0) = 1, and an initial velocity v(0) = -1, then the position function x(t) of the particle is given by

(a)
$$x(t) = \frac{1}{4}(t+3)^4 + 37t - 26$$

(b)
$$x(t) = \frac{1}{3}(t+3)^4 - 37t - 26$$

(c)
$$x(t) = \frac{1}{4}(t+3)^4 - 37t - 26$$

(d)
$$x(t) = \frac{1}{3}(t+3)^4 - 30t - 26$$

(e)
$$x(t) = \frac{1}{3}(t+3)^4 + 37t - 26$$

- 13. If a certain substance cools from $100^{\circ}C$ to $60^{\circ}C$ in 10 minutes when it is taken outside where the air temperature is $20^{\circ}C$, then the temperature of the substance 40 minutes after it is taken outside is
 - (a) $10^{\circ} C$
 - (b) $15^{\circ} C$
 - (c) $40^{\circ} C$
 - (d) $25^{\circ} C$
 - (e) $35^{\circ} C$

- 14. The value of k for which the vectors $\mathbf{u} = (1, 4, 5)$, $\mathbf{v} = (4, 2, k)$, $\mathbf{w} = (-3, 3, -1)$ of \mathbb{R}^3 are linearly dependent is
 - (a) 0
 - (b) $\frac{-96}{13}$
 - (c) $\frac{104}{15}$
 - (d) $\frac{96}{13}$
 - (e) $\frac{103}{15}$

15. A general solution of the differential equation $x^2y'' + 2xy' = 12x^3$ is

(a)
$$y(x) = x^3 - \frac{A}{x} + B$$

(b)
$$y(x) = x^3 + \frac{A}{x} + B$$

(c)
$$y(x) = x^2 - \frac{A}{x} + B$$

(d)
$$y(x) = x^3 - Ax^2 + B$$

(e)
$$y(x) = x^2 + \frac{A}{x} + B$$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE03 CODE03

Math 208 Major Exam I 241

October 01, 2024 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. A general solution of the exact differential equation

$$(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0$$

is

- (a) $x^3 2xy^2 2y^3 = C$
- (b) $x^3 + xy^2 + y^3 = C$
- (c) $x^3 + 2xy^2 2y^3 = C$
- (d) $x^3 + 2xy^2 + 2y^3 = C$
- (e) $x^3 2xy^2 + 2y^3 = C$

- 2. The general solution of the linear differential equation $2xy' 3y = 9x^3$ is given by
 - (a) $y(x) = x^2 + cx^{\frac{3}{2}}$
 - (b) $y(x) = x^3 + cx^{\frac{2}{3}}$
 - (c) $y(x) = 3x^2 + cx^{\frac{-3}{2}}$
 - (d) $y(x) = 2x^3 + cx^{\frac{5}{2}}$
 - (e) $y(x) = 3x^3 + cx^{\frac{3}{2}}$

- 3. The value of k for which the vectors $\mathbf{u} = (1, 4, 5)$, $\mathbf{v} = (4, 2, k)$, $\mathbf{w} = (-3, 3, -1)$ of \mathbb{R}^3 are linearly dependent is
 - (a) $\frac{96}{13}$
 - (b) 0
 - (c) $\frac{-96}{13}$
 - (d) $\frac{103}{15}$
 - (e) $\frac{104}{15}$

4. The solution of the system

$$x_1 - 2x_2 - 4x_3 + 8x_4 = 0$$

$$2x_1 + 3x_2 + 6x_3 + 9x_4 = 0$$

$$3x_1 + 5x_2 + 4x_3 + x_4 = 0$$

is the set of all scalars multiples of a vector u where u =

- (a) (6,5,-2,1)
- (b) (-6, -5, -2, -1)
- (c) (-6, -5, -2, 1)
- (d) (-6,5,2,1)
- (e) (-6, 5, -2, 1)

- 5. If a certain substance cools from $100^{\circ}C$ to $60^{\circ}C$ in 10 minutes when it is taken outside where the air temperature is $20^{\circ}C$, then the temperature of the substance 40 minutes after it is taken outside is
 - (a) $40^{\circ} C$
 - (b) $10^{\circ} C$
 - (c) $15^{\circ} C$
 - (d) $35^{\circ} C$
 - (e) $25^{\circ} C$

- 6. The sum of all values of r such that $y = e^{rx}$ is a solution of the differential equation 3y'' + 3y' 4y = 0 is
 - (a) 0
 - (b) 1
 - (c) -1
 - (d) $\frac{1}{2}$
 - (e) $-\frac{3}{2}$

7. Find the constant A that makes the differential equation

$$\left(\frac{1}{x^2} + \frac{1}{y^2}\right) dx + \left(\frac{Ax+1}{y^3}\right) dy = 0$$

exact.

- (a) 0
- (b) 2
- (c) -3
- (d) -2
- (e) 3

- 8. The explicit particular solution of the initial-value problem $x^2 \frac{dy}{dx} + y = xy$, y(1) = 2 is y(x) = 2
 - (a) $xe^{\frac{1}{x}} + 1$
 - (b) $2xe^x 1$
 - (c) $2xe^{\frac{1}{x}-1}$
 - (d) $2x^2e^x 1$
 - (e) $2x^2e^{\frac{1}{x}-1}$

- 9. By making a suitable substitution, the differential equation $x^4y' = x^3y 5y^4$ can be transformed into a separable differential equation
 - (a) $\frac{dv}{v^4} \frac{5}{x} dx = 0$
 - $(b) \frac{dv}{v^4} + \frac{5}{x} dx = 0$
 - $(c) \frac{dv}{v^3} + \frac{5}{x} dx = 0$
 - $(d) \frac{dv}{v^2} + \frac{5}{x} dx = 0$
 - (e) $\frac{dv}{v^3} \frac{5}{x}dx = 0$

- 10. A general solution of the $\frac{dy}{dx} = (x+y+1)^2$ is
 - (a) $y = -x + 1 + \tan(x + c)$
 - (b) $y = -x 1 + \sec(x + c)$
 - (c) $y = -x 1 + \tan(x + c)$
 - (d) $y = -x + 1 + \sec(x + c)$
 - (e) $y = x + 1 + \tan(x + c)$

- 11. By making a suitable substitution, the differential equation $xy' + 6y = 3xy^{\frac{4}{3}}$ can be transformed into a linear differential equation
 - (a) $v' + \frac{2}{x}v = x$
 - (b) $v' + \frac{2}{x}v = -1$
 - (c) $v' \frac{2}{x}v = -1$
 - $(d) v' \frac{2}{x}v = 1$
 - (e) $v' \frac{2}{x}v = x$

- 12. A particle is moving in a straight line with acceleration $a(t) = 4(t+3)^2$, and an initial position x(0) = 1, and an initial velocity v(0) = -1, then the position function x(t) of the particle is given by
 - (a) $x(t) = \frac{1}{3}(t+3)^4 30t 26$
 - (b) $x(t) = \frac{1}{4}(t+3)^4 + 37t 26$
 - (c) $x(t) = \frac{1}{4}(t+3)^4 37t 26$
 - (d) $x(t) = \frac{1}{3}(t+3)^4 + 37t 26$
 - (e) $x(t) = \frac{1}{3}(t+3)^4 37t 26$

- 13. Which one of the following statements is **TRUE** about the subset V of \mathbb{R}^3 defined by $V = \{(x_1, x_2, x_3) : x_2 = 1\}$
 - (a) V is closed under addition
 - (b) V is a subspace of \mathbb{R}^3
 - (c) V is not closed under addition and not closed under multiplication by scalar
 - (d) V is closed under addition and not closed under multiplication by scalar
 - (e) V is not closed under addition but closed under multiplication by scalar

14. A general solution of the differential equation $x^2y'' + 2xy' = 12x^3$ is

(a)
$$y(x) = x^2 + \frac{A}{x} + B$$

(b)
$$y(x) = x^2 - \frac{A}{x} + B$$

(c)
$$y(x) = x^3 + \frac{A}{x} + B$$

(d)
$$y(x) = x^3 - Ax^2 + B$$

(e)
$$y(x) = x^3 - \frac{A}{x} + B$$

15. Let $\mathbf{u}=(4,5),\,\mathbf{v}=(-2,7),\,\mathbf{w}=(8,29)$ be vectors in \mathbb{R}^2 . If $\mathbf{w}=a\mathbf{u}+b\mathbf{v}$, then a-b=

- (a) 4
- (b) 0
- (c) 3
- (d) 2
- (e) 1

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04 CODE04

Math 208 Major Exam I 241

October 01, 2024 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. If a certain substance cools from $100^{\circ}C$ to $60^{\circ}C$ in 10 minutes when it is taken outside where the air temperature is $20^{\circ}C$, then the temperature of the substance 40 minutes after it is taken outside is
 - (a) $10^{\circ} C$
 - (b) $25^{\circ} C$
 - (c) $15^{\circ} C$
 - (d) $40^{\circ} C$
 - (e) $35^{\circ} C$

2. A general solution of the exact differential equation

$$(3x^2 + 2y^2) dx + (4xy + 6y^2) dy = 0$$

is

- (a) $x^3 + 2xy^2 + 2y^3 = C$
- (b) $x^3 + xy^2 + y^3 = C$
- (c) $x^3 + 2xy^2 2y^3 = C$
- (d) $x^3 2xy^2 + 2y^3 = C$
- (e) $x^3 2xy^2 2y^3 = C$

3. The general solution of the linear differential equation $2xy' - 3y = 9x^3$ is given by

(a)
$$y(x) = 3x^2 + cx^{\frac{-3}{2}}$$

(b)
$$y(x) = 3x^3 + cx^{\frac{3}{2}}$$

(c)
$$y(x) = x^3 + cx^{\frac{2}{3}}$$

(d)
$$y(x) = x^2 + cx^{\frac{3}{2}}$$

(e)
$$y(x) = 2x^3 + cx^{\frac{5}{2}}$$

- 4. Which one of the following statements is **TRUE** about the subset V of \mathbb{R}^3 defined by $V = \{(x_1, x_2, x_3) : x_2 = 1\}$
 - (a) V is a subspace of \mathbb{R}^3
 - (b) V is not closed under addition but closed under multiplication by scalar
 - (c) V is closed under addition and not closed under multiplication by scalar
 - (d) V is not closed under addition and not closed under multiplication by scalar
 - (e) V is closed under addition

- 5. Let $\mathbf{u} = (4,5)$, $\mathbf{v} = (-2,7)$, $\mathbf{w} = (8,29)$ be vectors in \mathbb{R}^2 . If $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then a b =
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 0
 - (e) 1

- 6. The sum of all values of r such that $y=e^{rx}$ is a solution of the differential equation 3y''+3y'-4y=0 is
 - (a) $\frac{1}{2}$
 - (b) $-\frac{3}{2}$
 - (c) -1
 - (d) 0
 - (e) 1

- 7. A general solution of the $\frac{dy}{dx} = (x+y+1)^2$ is
 - (a) $y = -x + 1 + \tan(x + c)$
 - (b) $y = x + 1 + \tan(x + c)$
 - (c) $y = -x 1 + \tan(x + c)$
 - (d) $y = -x + 1 + \sec(x + c)$
 - (e) $y = -x 1 + \sec(x + c)$

- 8. By making a suitable substitution, the differential equation $x^4y' = x^3y 5y^4$ can be transformed into a separable differential equation
 - (a) $\frac{dv}{v^4} \frac{5}{x} dx = 0$
 - $(b) \frac{dv}{v^2} + \frac{5}{x} dx = 0$
 - $(c) \frac{dv}{v^4} + \frac{5}{x} dx = 0$
 - $(d) \frac{dv}{v^3} + \frac{5}{x} dx = 0$
 - $(e) \frac{dv}{v^3} \frac{5}{x} dx = 0$

- 9. By making a suitable substitution, the differential equation $xy' + 6y = 3xy^{\frac{4}{3}}$ can be transformed into a linear differential equation
 - (a) $v' \frac{2}{x}v = x$
 - (b) $v' \frac{2}{x}v = -1$
 - (c) $v' + \frac{2}{x}v = x$
 - $(d) v' \frac{2}{x}v = 1$
 - (e) $v' + \frac{2}{x}v = -1$

- 10. The explicit particular solution of the initial-value problem $x^2 \frac{dy}{dx} + y = xy$, y(1) = 2 is y(x) = 2
 - (a) $2xe^x 1$
 - (b) $xe^{\frac{1}{x}} + 1$
 - (c) $2xe^{\frac{1}{x}-1}$
 - (d) $2x^2e^x 1$
 - (e) $2x^2e^{\frac{1}{x}-1}$

11. Find the constant A that makes the differential equation

$$\left(\frac{1}{x^2} + \frac{1}{y^2}\right) dx + \left(\frac{Ax+1}{y^3}\right) dy = 0$$

exact.

- (a) -2
- (b) 3
- (c) -3
- (d) 2
- (e) 0

- 12. The value of k for which the vectors $\mathbf{u} = (1, 4, 5)$, $\mathbf{v} = (4, 2, k)$, $\mathbf{w} = (-3, 3, -1)$ of \mathbb{R}^3 are linearly dependent is
 - (a) $\frac{104}{15}$
 - (b) $\frac{96}{13}$
 - (c) $\frac{-96}{13}$
 - (d) 0
 - (e) $\frac{103}{15}$

13. A particle is moving in a straight line with acceleration $a(t) = 4(t+3)^2$, and an initial position x(0) = 1, and an initial velocity v(0) = -1, then the position function x(t) of the particle is given by

(a)
$$x(t) = \frac{1}{4}(t+3)^4 - 37t - 26$$

(b)
$$x(t) = \frac{1}{3}(t+3)^4 + 37t - 26$$

(c)
$$x(t) = \frac{1}{3}(t+3)^4 - 30t - 26$$

(d)
$$x(t) = \frac{1}{4}(t+3)^4 + 37t - 26$$

(e)
$$x(t) = \frac{1}{3}(t+3)^4 - 37t - 26$$

14. A general solution of the differential equation $x^2y'' + 2xy' = 12x^3$ is

(a)
$$y(x) = x^2 - \frac{A}{x} + B$$

(b)
$$y(x) = x^3 - \frac{A}{x} + B$$

(c)
$$y(x) = x^2 + \frac{A}{x} + B$$

(d)
$$y(x) = x^3 - Ax^2 + B$$

(e)
$$y(x) = x^3 + \frac{A}{x} + B$$

15. The solution of the system

$$x_1 - 2x_2 - 4x_3 + 8x_4 = 0$$

$$2x_1 + 3x_2 + 6x_3 + 9x_4 = 0$$
$$3x_1 + 5x_2 + 4x_3 + x_4 = 0$$

is the set of all scalars multiples of a vector u where u =

(a)
$$(-6, -5, -2, 1)$$

(b)
$$(-6, 5, -2, 1)$$

(c)
$$(6,5,-2,1)$$

(d)
$$(-6,5,2,1)$$

(e)
$$(-6, -5, -2, -1)$$

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	A	Е 3	А 3	D 4	В 7
2	A	D 15	D 12	Е 3	A 4
3	A	A 6	E 1	E 13	Вз
4	A	E 14	В 11	E 12	D 14
5	A	A 9	В 6	E ,	E 15
6	A	C 10	D 4	C 1	C 1
7	A	C 8	C 14	D 9	C 11
8	A	A 13	В 5	C 2	С 6
9	A	В 5	C 15	В 6	В 5
10	A	D 12	D 2	C 11	C 2
11	A	A 2	В 9	C 5	A 9
12	A	В 7	В 8	E 8	A 13
13	A	C 4	D 7	C 14	E 8
14	A	С 1	C 13	E 10	В 10
15	A	D 11	A 10	E 15	В 12

Answer Counts

V	A	В	С	D	Ε
1	4	2	4	3	2
2	2	5	3	4	1
3	0	1	5	2	7
4	3	5	4	1	2