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1. The sum of all values of r such that y = erx is a solution of the differential equation
3y′′ + 3y′ − 4y = 0 is

(a) −1 (correct)

(b) 0

(c) 1

(d)
1

2

(e) −3

2

2. The explicit particular solution of the initial-value problem x2
dy

dx
+y = xy, y(1) = 2

is y(x) =

(a) 2xe
1
x−1 (correct)

(b) 2x2e
1
x−1

(c) 2xex − 1

(d) 2x2ex − 1

(e) xe
1
x + 1
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3. The general solution of the linear differential equation 2xy′− 3y = 9x3 is given by

(a) y(x) = 3x3 + cx
3
2 (correct)

(b) y(x) = 2x3 + cx
5
2

(c) y(x) = 3x2 + cx
−3
2

(d) y(x) = x3 + cx
2
3

(e) y(x) = x2 + cx
3
2

4. A general solution of the exact differential equation

(3x2 + 2y2) dx + (4xy + 6y2) dy = 0

is

(a) x3 + 2xy2 + 2y3 = C (correct)

(b) x3 − 2xy2 + 2y3 = C

(c) x3 − 2xy2 − 2y3 = C

(d) x3 + 2xy2 − 2y3 = C

(e) x3 + xy2 + y3 = C
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5. By making a suitable substitution, the differential equation xy′+ 6y = 3xy
4
3 can be

transformed into a linear differential equation

(a) v′ − 2

x
v = −1 (correct)

(b) v′ +
2

x
v = −1

(c) v′ − 2

x
v = 1

(d) v′ − 2

x
v = x

(e) v′ +
2

x
v = x

6. By making a suitable substitution, the differential equation x4y′ = x3y− 5y4 can be
transformed into a separable differential equation

(a)
dv

v4
+

5

x
dx = 0 (correct)

(b)
dv

v3
+

5

x
dx = 0

(c)
dv

v2
+

5

x
dx = 0

(d)
dv

v4
− 5

x
dx = 0

(e)
dv

v3
− 5

x
dx = 0
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7. If a certain substance cools from 100◦C to 60◦C in 10 minutes when it is taken
outside where the air temperature is 20◦C, then the temperature of the substance
40 minutes after it is taken outside is

(a) 25◦C (correct)

(b) 35◦C

(c) 15◦C

(d) 10◦C

(e) 40◦C

8. A particle is moving in a straight line with acceleration a(t) = 4(t+3)2, and an initial
position x(0) = 1, and an initial velocity v(0) = −1, then the position function x(t)
of the particle is given by

(a) x(t) =
1

3
(t + 3)4 − 37t− 26 (correct)

(b) x(t) =
1

4
(t + 3)4 − 37t− 26

(c) x(t) =
1

3
(t + 3)4 + 37t− 26

(d) x(t) =
1

4
(t + 3)4 + 37t− 26

(e) x(t) =
1

3
(t + 3)4 − 30t− 26
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9. Find the constant A that makes the differential equation(
1

x2
+

1

y2

)
dx +

(
Ax + 1

y3

)
dy = 0

exact.

(a) −2 (correct)

(b) 2

(c) 3

(d) −3

(e) 0

10. A general solution of the differential equation x2y′′ + 2xy′ = 12x3 is

(a) y(x) = x3 − A

x
+ B (correct)

(b) y(x) = x2 − A

x
+ B

(c) y(x) = x3 +
A

x
+ B

(d) y(x) = x2 +
A

x
+ B

(e) y(x) = x3 − Ax2 + B
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11. A general solution of the
dy

dx
= (x + y + 1)2 is

(a) y = −x− 1 + tan(x + c) (correct)

(b) y = −x + 1 + tan(x + c)

(c) y = −x− 1 + sec(x + c)

(d) y = −x + 1 + sec(x + c)

(e) y = x + 1 + tan(x + c)

12. The solution of the system

x1 − 2x2 − 4x3 + 8x4 = 0
2x1 + 3x2 + 6x3 + 9x4 = 0
3x1 + 5x2 + 4x3 + x4 = 0

is the set of all scalars multiples of a vector u where u =

(a) (−6, 5,−2, 1) (correct)

(b) (6, 5,−2, 1)

(c) (−6, 5, 2, 1)

(d) (−6,−5,−2,−1)

(e) (−6,−5,−2, 1)
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13. The value of k for which the vectors u = (1, 4, 5), v = (4, 2, k), w = (−3, 3,−1) of
R3 are linearly dependent is

(a)
104

15
(correct)

(b)
103

15

(c)
96

13

(d)
−96

13
(e) 0

14. Which one of the following statements is TRUE about the subset V of R3 defined
by V = {(x1, x2, x3) : x2 = 1}

(a) V is not closed under addition and not closed under multiplication by scalar
(correct)

(b) V is closed under addition and not closed under multiplication by scalar

(c) V is a subspace of R3

(d) V is not closed under addition but closed under multiplication by scalar

(e) V is closed under addition
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15. Let u = (4, 5), v = (−2, 7), w = (8, 29) be vectors in R2. If w = au + bv, then
a− b =

(a) 1 (correct)

(b) 4

(c) 0

(d) 2

(e) 3
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1. The general solution of the linear differential equation 2xy′− 3y = 9x3 is given by

(a) y(x) = x2 + cx
3
2

(b) y(x) = 3x2 + cx
−3
2

(c) y(x) = 2x3 + cx
5
2

(d) y(x) = x3 + cx
2
3

(e) y(x) = 3x3 + cx
3
2

2. Let u = (4, 5), v = (−2, 7), w = (8, 29) be vectors in R2. If w = au + bv, then
a− b =

(a) 2

(b) 4

(c) 0

(d) 1

(e) 3
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3. By making a suitable substitution, the differential equation x4y′ = x3y− 5y4 can be
transformed into a separable differential equation

(a)
dv

v4
+

5

x
dx = 0

(b)
dv

v3
+

5

x
dx = 0

(c)
dv

v2
+

5

x
dx = 0

(d)
dv

v3
− 5

x
dx = 0

(e)
dv

v4
− 5

x
dx = 0

4. Which one of the following statements is TRUE about the subset V of R3 defined
by V = {(x1, x2, x3) : x2 = 1}

(a) V is closed under addition and not closed under multiplication by scalar

(b) V is a subspace of R3

(c) V is not closed under addition but closed under multiplication by scalar

(d) V is closed under addition

(e) V is not closed under addition and not closed under multiplication by scalar
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5. Find the constant A that makes the differential equation(
1

x2
+

1

y2

)
dx +

(
Ax + 1

y3

)
dy = 0

exact.

(a) −2

(b) −3

(c) 2

(d) 0

(e) 3

6. A general solution of the differential equation x2y′′ + 2xy′ = 12x3 is

(a) y(x) = x2 − A

x
+ B

(b) y(x) = x3 +
A

x
+ B

(c) y(x) = x3 − A

x
+ B

(d) y(x) = x2 +
A

x
+ B

(e) y(x) = x3 − Ax2 + B
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7. A particle is moving in a straight line with acceleration a(t) = 4(t+3)2, and an initial
position x(0) = 1, and an initial velocity v(0) = −1, then the position function x(t)
of the particle is given by

(a) x(t) =
1

4
(t + 3)4 − 37t− 26

(b) x(t) =
1

3
(t + 3)4 − 30t− 26

(c) x(t) =
1

3
(t + 3)4 − 37t− 26

(d) x(t) =
1

3
(t + 3)4 + 37t− 26

(e) x(t) =
1

4
(t + 3)4 + 37t− 26

8. The value of k for which the vectors u = (1, 4, 5), v = (4, 2, k), w = (−3, 3,−1) of
R3 are linearly dependent is

(a)
104

15

(b)
103

15

(c)
96

13

(d)
−96

13
(e) 0
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9. By making a suitable substitution, the differential equation xy′+ 6y = 3xy
4
3 can be

transformed into a linear differential equation

(a) v′ +
2

x
v = −1

(b) v′ − 2

x
v = −1

(c) v′ − 2

x
v = x

(d) v′ +
2

x
v = x

(e) v′ − 2

x
v = 1

10. The solution of the system

x1 − 2x2 − 4x3 + 8x4 = 0
2x1 + 3x2 + 6x3 + 9x4 = 0
3x1 + 5x2 + 4x3 + x4 = 0

is the set of all scalars multiples of a vector u where u =

(a) (−6,−5,−2,−1)

(b) (−6,−5,−2, 1)

(c) (−6, 5, 2, 1)

(d) (−6, 5,−2, 1)

(e) (6, 5,−2, 1)
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11. The explicit particular solution of the initial-value problem x2
dy

dx
+y = xy, y(1) = 2

is y(x) =

(a) 2xe
1
x−1

(b) 2xex − 1

(c) xe
1
x + 1

(d) 2x2e
1
x−1

(e) 2x2ex − 1

12. If a certain substance cools from 100◦C to 60◦C in 10 minutes when it is taken
outside where the air temperature is 20◦C, then the temperature of the substance
40 minutes after it is taken outside is

(a) 10◦C

(b) 25◦C

(c) 35◦C

(d) 40◦C

(e) 15◦C
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13. A general solution of the exact differential equation

(3x2 + 2y2) dx + (4xy + 6y2) dy = 0

is

(a) x3 + 2xy2 − 2y3 = C

(b) x3 − 2xy2 + 2y3 = C

(c) x3 + 2xy2 + 2y3 = C

(d) x3 + xy2 + y3 = C

(e) x3 − 2xy2 − 2y3 = C

14. The sum of all values of r such that y = erx is a solution of the differential equation
3y′′ + 3y′ − 4y = 0 is

(a)
1

2
(b) 0

(c) −1

(d) −3

2
(e) 1
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15. A general solution of the
dy

dx
= (x + y + 1)2 is

(a) y = −x + 1 + sec(x + c)

(b) y = x + 1 + tan(x + c)

(c) y = −x + 1 + tan(x + c)

(d) y = −x− 1 + tan(x + c)

(e) y = −x− 1 + sec(x + c)
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1. The general solution of the linear differential equation 2xy′− 3y = 9x3 is given by

(a) y(x) = 3x3 + cx
3
2

(b) y(x) = x3 + cx
2
3

(c) y(x) = 3x2 + cx
−3
2

(d) y(x) = 2x3 + cx
5
2

(e) y(x) = x2 + cx
3
2

2. The solution of the system

x1 − 2x2 − 4x3 + 8x4 = 0
2x1 + 3x2 + 6x3 + 9x4 = 0
3x1 + 5x2 + 4x3 + x4 = 0

is the set of all scalars multiples of a vector u where u =

(a) (−6, 5, 2, 1)

(b) (6, 5,−2, 1)

(c) (−6,−5,−2, 1)

(d) (−6, 5,−2, 1)

(e) (−6,−5,−2,−1)
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3. The sum of all values of r such that y = erx is a solution of the differential equation
3y′′ + 3y′ − 4y = 0 is

(a) 0

(b) 1

(c)
1

2

(d) −3

2
(e) −1

4. A general solution of the
dy

dx
= (x + y + 1)2 is

(a) y = −x− 1 + sec(x + c)

(b) y = −x− 1 + tan(x + c)

(c) y = x + 1 + tan(x + c)

(d) y = −x + 1 + tan(x + c)

(e) y = −x + 1 + sec(x + c)
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5. By making a suitable substitution, the differential equation x4y′ = x3y− 5y4 can be
transformed into a separable differential equation

(a)
dv

v3
+

5

x
dx = 0

(b)
dv

v4
+

5

x
dx = 0

(c)
dv

v4
− 5

x
dx = 0

(d)
dv

v3
− 5

x
dx = 0

(e)
dv

v2
+

5

x
dx = 0

6. A general solution of the exact differential equation

(3x2 + 2y2) dx + (4xy + 6y2) dy = 0

is

(a) x3 + xy2 + y3 = C

(b) x3 − 2xy2 + 2y3 = C

(c) x3 − 2xy2 − 2y3 = C

(d) x3 + 2xy2 + 2y3 = C

(e) x3 + 2xy2 − 2y3 = C
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7. Which one of the following statements is TRUE about the subset V of R3 defined
by V = {(x1, x2, x3) : x2 = 1}

(a) V is closed under addition

(b) V is closed under addition and not closed under multiplication by scalar

(c) V is not closed under addition and not closed under multiplication by scalar

(d) V is a subspace of R3

(e) V is not closed under addition but closed under multiplication by scalar

8. By making a suitable substitution, the differential equation xy′+ 6y = 3xy
4
3 can be

transformed into a linear differential equation

(a) v′ +
2

x
v = −1

(b) v′ − 2

x
v = −1

(c) v′ − 2

x
v = x

(d) v′ − 2

x
v = 1

(e) v′ +
2

x
v = x
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9. Let u = (4, 5), v = (−2, 7), w = (8, 29) be vectors in R2. If w = au + bv, then
a− b =

(a) 0

(b) 3

(c) 1

(d) 2

(e) 4

10. The explicit particular solution of the initial-value problem x2
dy

dx
+y = xy, y(1) = 2

is y(x) =

(a) 2xex − 1

(b) 2x2ex − 1

(c) 2x2e
1
x−1

(d) 2xe
1
x−1

(e) xe
1
x + 1
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11. Find the constant A that makes the differential equation(
1

x2
+

1

y2

)
dx +

(
Ax + 1

y3

)
dy = 0

exact.

(a) 3

(b) −2

(c) 2

(d) 0

(e) −3

12. A particle is moving in a straight line with acceleration a(t) = 4(t+3)2, and an initial
position x(0) = 1, and an initial velocity v(0) = −1, then the position function x(t)
of the particle is given by

(a) x(t) =
1

4
(t + 3)4 + 37t− 26

(b) x(t) =
1

3
(t + 3)4 − 37t− 26

(c) x(t) =
1

4
(t + 3)4 − 37t− 26

(d) x(t) =
1

3
(t + 3)4 − 30t− 26

(e) x(t) =
1

3
(t + 3)4 + 37t− 26
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13. If a certain substance cools from 100◦C to 60◦C in 10 minutes when it is taken
outside where the air temperature is 20◦C, then the temperature of the substance
40 minutes after it is taken outside is

(a) 10◦C

(b) 15◦C

(c) 40◦C

(d) 25◦C

(e) 35◦C

14. The value of k for which the vectors u = (1, 4, 5), v = (4, 2, k), w = (−3, 3,−1) of
R3 are linearly dependent is

(a) 0

(b)
−96

13

(c)
104

15

(d)
96

13

(e)
103

15



241, Math 208, Major Exam I Page 8 of 8 CODE02

15. A general solution of the differential equation x2y′′ + 2xy′ = 12x3 is

(a) y(x) = x3 − A

x
+ B

(b) y(x) = x3 +
A

x
+ B

(c) y(x) = x2 − A

x
+ B

(d) y(x) = x3 − Ax2 + B

(e) y(x) = x2 +
A

x
+ B
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1. A general solution of the exact differential equation

(3x2 + 2y2) dx + (4xy + 6y2) dy = 0

is

(a) x3 − 2xy2 − 2y3 = C

(b) x3 + xy2 + y3 = C

(c) x3 + 2xy2 − 2y3 = C

(d) x3 + 2xy2 + 2y3 = C

(e) x3 − 2xy2 + 2y3 = C

2. The general solution of the linear differential equation 2xy′− 3y = 9x3 is given by

(a) y(x) = x2 + cx
3
2

(b) y(x) = x3 + cx
2
3

(c) y(x) = 3x2 + cx
−3
2

(d) y(x) = 2x3 + cx
5
2

(e) y(x) = 3x3 + cx
3
2



241, Math 208, Major Exam I Page 2 of 8 CODE03

3. The value of k for which the vectors u = (1, 4, 5), v = (4, 2, k), w = (−3, 3,−1) of
R3 are linearly dependent is

(a)
96

13
(b) 0

(c)
−96

13

(d)
103

15

(e)
104

15

4. The solution of the system

x1 − 2x2 − 4x3 + 8x4 = 0
2x1 + 3x2 + 6x3 + 9x4 = 0
3x1 + 5x2 + 4x3 + x4 = 0

is the set of all scalars multiples of a vector u where u =

(a) (6, 5,−2, 1)

(b) (−6,−5,−2,−1)

(c) (−6,−5,−2, 1)

(d) (−6, 5, 2, 1)

(e) (−6, 5,−2, 1)
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5. If a certain substance cools from 100◦C to 60◦C in 10 minutes when it is taken
outside where the air temperature is 20◦C, then the temperature of the substance
40 minutes after it is taken outside is

(a) 40◦C

(b) 10◦C

(c) 15◦C

(d) 35◦C

(e) 25◦C

6. The sum of all values of r such that y = erx is a solution of the differential equation
3y′′ + 3y′ − 4y = 0 is

(a) 0

(b) 1

(c) −1

(d)
1

2

(e) −3

2



241, Math 208, Major Exam I Page 4 of 8 CODE03

7. Find the constant A that makes the differential equation(
1

x2
+

1

y2

)
dx +

(
Ax + 1

y3

)
dy = 0

exact.

(a) 0

(b) 2

(c) −3

(d) −2

(e) 3

8. The explicit particular solution of the initial-value problem x2
dy

dx
+y = xy, y(1) = 2

is y(x) =

(a) xe
1
x + 1

(b) 2xex − 1

(c) 2xe
1
x−1

(d) 2x2ex − 1

(e) 2x2e
1
x−1
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9. By making a suitable substitution, the differential equation x4y′ = x3y− 5y4 can be
transformed into a separable differential equation

(a)
dv

v4
− 5

x
dx = 0

(b)
dv

v4
+

5

x
dx = 0

(c)
dv

v3
+

5

x
dx = 0

(d)
dv

v2
+

5

x
dx = 0

(e)
dv

v3
− 5

x
dx = 0

10. A general solution of the
dy

dx
= (x + y + 1)2 is

(a) y = −x + 1 + tan(x + c)

(b) y = −x− 1 + sec(x + c)

(c) y = −x− 1 + tan(x + c)

(d) y = −x + 1 + sec(x + c)

(e) y = x + 1 + tan(x + c)
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11. By making a suitable substitution, the differential equation xy′+ 6y = 3xy
4
3 can be

transformed into a linear differential equation

(a) v′ +
2

x
v = x

(b) v′ +
2

x
v = −1

(c) v′ − 2

x
v = −1

(d) v′ − 2

x
v = 1

(e) v′ − 2

x
v = x

12. A particle is moving in a straight line with acceleration a(t) = 4(t+3)2, and an initial
position x(0) = 1, and an initial velocity v(0) = −1, then the position function x(t)
of the particle is given by

(a) x(t) =
1

3
(t + 3)4 − 30t− 26

(b) x(t) =
1

4
(t + 3)4 + 37t− 26

(c) x(t) =
1

4
(t + 3)4 − 37t− 26

(d) x(t) =
1

3
(t + 3)4 + 37t− 26

(e) x(t) =
1

3
(t + 3)4 − 37t− 26
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13. Which one of the following statements is TRUE about the subset V of R3 defined
by V = {(x1, x2, x3) : x2 = 1}

(a) V is closed under addition

(b) V is a subspace of R3

(c) V is not closed under addition and not closed under multiplication by scalar

(d) V is closed under addition and not closed under multiplication by scalar

(e) V is not closed under addition but closed under multiplication by scalar

14. A general solution of the differential equation x2y′′ + 2xy′ = 12x3 is

(a) y(x) = x2 +
A

x
+ B

(b) y(x) = x2 − A

x
+ B

(c) y(x) = x3 +
A

x
+ B

(d) y(x) = x3 − Ax2 + B

(e) y(x) = x3 − A

x
+ B



241, Math 208, Major Exam I Page 8 of 8 CODE03

15. Let u = (4, 5), v = (−2, 7), w = (8, 29) be vectors in R2. If w = au + bv, then
a− b =

(a) 4

(b) 0

(c) 3

(d) 2

(e) 1
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1. If a certain substance cools from 100◦C to 60◦C in 10 minutes when it is taken
outside where the air temperature is 20◦C, then the temperature of the substance
40 minutes after it is taken outside is

(a) 10◦C

(b) 25◦C

(c) 15◦C

(d) 40◦C

(e) 35◦C

2. A general solution of the exact differential equation

(3x2 + 2y2) dx + (4xy + 6y2) dy = 0

is

(a) x3 + 2xy2 + 2y3 = C

(b) x3 + xy2 + y3 = C

(c) x3 + 2xy2 − 2y3 = C

(d) x3 − 2xy2 + 2y3 = C

(e) x3 − 2xy2 − 2y3 = C
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3. The general solution of the linear differential equation 2xy′− 3y = 9x3 is given by

(a) y(x) = 3x2 + cx
−3
2

(b) y(x) = 3x3 + cx
3
2

(c) y(x) = x3 + cx
2
3

(d) y(x) = x2 + cx
3
2

(e) y(x) = 2x3 + cx
5
2

4. Which one of the following statements is TRUE about the subset V of R3 defined
by V = {(x1, x2, x3) : x2 = 1}

(a) V is a subspace of R3

(b) V is not closed under addition but closed under multiplication by scalar

(c) V is closed under addition and not closed under multiplication by scalar

(d) V is not closed under addition and not closed under multiplication by scalar

(e) V is closed under addition
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5. Let u = (4, 5), v = (−2, 7), w = (8, 29) be vectors in R2. If w = au + bv, then
a− b =

(a) 2

(b) 3

(c) 4

(d) 0

(e) 1

6. The sum of all values of r such that y = erx is a solution of the differential equation
3y′′ + 3y′ − 4y = 0 is

(a)
1

2

(b) −3

2
(c) −1

(d) 0

(e) 1



241, Math 208, Major Exam I Page 4 of 8 CODE04

7. A general solution of the
dy

dx
= (x + y + 1)2 is

(a) y = −x + 1 + tan(x + c)

(b) y = x + 1 + tan(x + c)

(c) y = −x− 1 + tan(x + c)

(d) y = −x + 1 + sec(x + c)

(e) y = −x− 1 + sec(x + c)

8. By making a suitable substitution, the differential equation x4y′ = x3y− 5y4 can be
transformed into a separable differential equation

(a)
dv

v4
− 5

x
dx = 0

(b)
dv

v2
+

5

x
dx = 0

(c)
dv

v4
+

5

x
dx = 0

(d)
dv

v3
+

5

x
dx = 0

(e)
dv

v3
− 5

x
dx = 0
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9. By making a suitable substitution, the differential equation xy′+ 6y = 3xy
4
3 can be

transformed into a linear differential equation

(a) v′ − 2

x
v = x

(b) v′ − 2

x
v = −1

(c) v′ +
2

x
v = x

(d) v′ − 2

x
v = 1

(e) v′ +
2

x
v = −1

10. The explicit particular solution of the initial-value problem x2
dy

dx
+y = xy, y(1) = 2

is y(x) =

(a) 2xex − 1

(b) xe
1
x + 1

(c) 2xe
1
x−1

(d) 2x2ex − 1

(e) 2x2e
1
x−1
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11. Find the constant A that makes the differential equation(
1

x2
+

1

y2

)
dx +

(
Ax + 1

y3

)
dy = 0

exact.

(a) −2

(b) 3

(c) −3

(d) 2

(e) 0

12. The value of k for which the vectors u = (1, 4, 5), v = (4, 2, k), w = (−3, 3,−1) of
R3 are linearly dependent is

(a)
104

15

(b)
96

13

(c)
−96

13
(d) 0

(e)
103

15
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13. A particle is moving in a straight line with acceleration a(t) = 4(t+3)2, and an initial
position x(0) = 1, and an initial velocity v(0) = −1, then the position function x(t)
of the particle is given by

(a) x(t) =
1

4
(t + 3)4 − 37t− 26

(b) x(t) =
1

3
(t + 3)4 + 37t− 26

(c) x(t) =
1

3
(t + 3)4 − 30t− 26

(d) x(t) =
1

4
(t + 3)4 + 37t− 26

(e) x(t) =
1

3
(t + 3)4 − 37t− 26

14. A general solution of the differential equation x2y′′ + 2xy′ = 12x3 is

(a) y(x) = x2 − A

x
+ B

(b) y(x) = x3 − A

x
+ B

(c) y(x) = x2 +
A

x
+ B

(d) y(x) = x3 − Ax2 + B

(e) y(x) = x3 +
A

x
+ B
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15. The solution of the system

x1 − 2x2 − 4x3 + 8x4 = 0
2x1 + 3x2 + 6x3 + 9x4 = 0
3x1 + 5x2 + 4x3 + x4 = 0

is the set of all scalars multiples of a vector u where u =

(a) (−6,−5,−2, 1)

(b) (−6, 5,−2, 1)

(c) (6, 5,−2, 1)

(d) (−6, 5, 2, 1)

(e) (−6,−5,−2,−1)
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