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1. The rank of the matrix A =

 1 −3 −8 −5
2 1 −4 11
1 3 3 13

 is

(a) 3 (correct)

(b) 2

(c) 1

(d) 4

(e) 0

2. If the solution space of the system

x1 + 2x2 + 7x3 − 9x4 + 31x5 = 0
2x1 + 4x2 + 7x3 − 11x4 + 34x5 = 0
3x1 + 6x2 + 5x3 − 11x4 + 29x5 = 0

has all linear combination of the three vectors
u = (α, 1, 0, 0, 0), v = (2, 0, 1, β, 0) and w = (−3, 0, γ, 0, 1); then α + β + γ =

(a) −5 (correct)

(b) −4

(c) 6

(d) 4

(e) 0
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3. Consider the subspace S of R3 defined by

S = {(x, y, z)|x− 4y + 7z = 0}.

A basis of S consists of the vectors

(a) v1 = (4, 1, 0), v2 = (−7, 0, 1) (correct)

(b) v1 = (1, 1, 0), v2 = (−7, 0, 1)

(c) v1 = (4, 2, 0), v2 = (7, 0, 1)

(d) v1 = (4,−1, 0), v2 = (−7, 0, 1)

(e) v1 = (−4, 2, 0), v2 = (−7, 0, 1)

4. If y(x) is the solution of the initial-value problem y′′ + 2y′ + y = 0; y(0) = 2,
y′(0) = −1, then y(1) =

(a)
3

e
(correct)

(b)
2

e

(c)
1

e

(d)
4

e
(e) 0
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5. The general solution of the differential equation y′′ + 2y′ + 5y = 0 is

(a) y(x) = c1e
−x sin(2x) + c2e

−x cos(2x) (correct)

(b) y(x) = c1e
x sin(2x) + c2e

x cos(2x)

(c) y(x) = c1e
2x sin(x) + c2e

2x cos(x)

(d) y(x) = c1e
−2x sin(x) + c2e

−2x cos(x)

(e) y(x) = c1e
−2x sin(2x) + c2e

2x

6. The general solution of the differential equation y(4) + y(3) − 3y′′ − 5y′ − 2y = 0 is

(a) y(x) = c1e
2x + (c2 + c3x+ c4x

2)e−x (correct)

(b) y(x) = c1e
2x + c2e

−2x + (c3 + c4x)e−x

(c) y(x) = c1e
−2x + (c2 + c3x+ c4x

2)e−x

(d) y(x) = c1e
−2x + c2e

3x + (c3 + c4x)e−x

(e) y(x) = c1e
2x + (c2 + c3x+ c4x

2) ex
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7. A linear homogeneous constant-coefficient differential equation which has the general
solution y(x) = Ae2x +B cos(2x) + C sin(2x) is

(a) y′′′ − 2y′′ + 4y′ − 8y = 0 (correct)

(b) y′′′ + 2y′′ + 4y′ − 8y = 0

(c) y′′′ − 2y′′ − 4y′ − 8y = 0

(d) y′′′ − 2y′′ + 4y′ + 8y = 0

(e) y′′′ − 3y′′ + 4y′ + 8y = 0

8. An appropriate form of a particular solution yp for the non-homogeneous differential
equation y(5) − y′ = (1 + 2x)e−x + 3 is given by yp(x) =

(a) Ax+ (Bx+ Cx2) e−x (correct)

(b) Ax+ (B + Cx) e−x

(c) A+ (B + Cx) e−x

(d) A+ (Bx+ Cx2) e−x

(e) Ax2 + (Bx+ Cx2) e−x
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9. If yp = Aex cos(x)+Bex sin(x), is a particular solution of the differential equation
y′′ + 2y′ + 5y = ex sinx, then 65A+ 65B =

(a) 3 (correct)

(b) 4

(c) 5

(d) 11

(e) −4

10. A particular solution of the differential equation y′′ + y = secx
is given by yp(x) =

(a) x sinx+ cosx ln | cosx| (correct)

(b) sinx+ cosx ln | cosx|
(c) x2 sinx+ cosx ln | secx|
(d) x2 sinx+ sinx ln | cosx|
(e) 2x sinx+ cosx ln | sinx|
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11. If W (x) is the wronskian of the functions f(x) = ex sinx and g(x) = ex cosx,
then W (x) =

(a) −e2x (correct)

(b) e3x

(c) e4x

(d) −e−3x

(e) 2

12. If the matrix A =

[
6 −10
2 −3

]
is diagonalizable with a diagonalizing matrix P and

a diagonal matrix D such that P−1AP = D, then

(a) P =

[
2 5
1 2

]
, D =

[
1 0
0 2

]
(correct)

(b) P =

[
2 5
2 1

]
, D =

[
1 0
0 2

]
(c) P =

[
5 2
2 1

]
, D =

[
1 0
0 2

]
(d) P =

[
2 5
1 2

]
, D =

[
0 1
2 0

]
(e) P =

[
5 2
1 2

]
, D =

[
1 0
0 2

]
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13. The eigenvector associated with the eigenvalue λ = 0 of the matrix

A =

 2 0 0
2 −2 −1
−2 6 3

 is

 α
−1
β

, then α + β =

(a) 2 (correct)

(b) −3

(c) 4

(d) −4

(e) 0

14. The characteristics polynomial of the matrix A =

 5 0 0
4 −4 −2
−2 12 6

 is p(λ) =

(a) −λ3 + 7λ2 − 10λ (correct)

(b) −λ3 − 7λ2 − 10λ

(c) −λ3 + 7λ2 + 10λ

(d) −λ3 + 7λ2 − 8λ+ 4

(e) −λ3 − 7λ2 − 8λ+ 2
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15. If the characteristic polynomial of the matrix A =

 7 −3 1
8 −3 2
0 0 3

 is

p(λ) = −(λ− 1)(λ− 3)2, then a basis for the eigenspace of λ = 3 is

v1 =

 3
β
0

 , v2 =

 −1
0
α

 , then α− β =

(a) 0 (correct)

(b) −8

(c) 6

(d) −4

(e) 2
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1. Consider the subspace S of R3 defined by

S = {(x, y, z)|x− 4y + 7z = 0}.

A basis of S consists of the vectors

(a) v1 = (4,−1, 0), v2 = (−7, 0, 1)

(b) v1 = (4, 1, 0), v2 = (−7, 0, 1)

(c) v1 = (−4, 2, 0), v2 = (−7, 0, 1)

(d) v1 = (1, 1, 0), v2 = (−7, 0, 1)

(e) v1 = (4, 2, 0), v2 = (7, 0, 1)

2. If the characteristic polynomial of the matrix A =

 7 −3 1
8 −3 2
0 0 3

 is

p(λ) = −(λ− 1)(λ− 3)2, then a basis for the eigenspace of λ = 3 is

v1 =

 3
β

0

 , v2 =

 −1
0
α

 , then α− β =

(a) 6

(b) 2

(c) −8

(d) 0

(e) −4
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3. The characteristics polynomial of the matrix A =

 5 0 0
4 −4 −2
−2 12 6

 is p(λ) =

(a) −λ3 − 7λ2 − 10λ

(b) −λ3 + 7λ2 + 10λ

(c) −λ3 + 7λ2 − 10λ

(d) −λ3 + 7λ2 − 8λ+ 4

(e) −λ3 − 7λ2 − 8λ+ 2

4. If y(x) is the solution of the initial-value problem y′′ + 2y′ + y = 0; y(0) = 2,
y′(0) = −1, then y(1) =

(a) 0

(b)
3

e

(c)
4

e

(d)
2

e

(e)
1

e
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5. A particular solution of the differential equation y′′ + y = secx
is given by yp(x) =

(a) x2 sinx+ sinx ln | cosx|
(b) x sinx+ cosx ln | cosx|
(c) sinx+ cosx ln | cosx|
(d) 2x sinx+ cosx ln | sinx|
(e) x2 sinx+ cosx ln | secx|

6. The rank of the matrix A =

 1 −3 −8 −5
2 1 −4 11
1 3 3 13

 is

(a) 1

(b) 0

(c) 4

(d) 3

(e) 2
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7. If the solution space of the system

x1 + 2x2 + 7x3 − 9x4 + 31x5 = 0
2x1 + 4x2 + 7x3 − 11x4 + 34x5 = 0
3x1 + 6x2 + 5x3 − 11x4 + 29x5 = 0

has all linear combination of the three vectors
u = (α, 1, 0, 0, 0), v = (2, 0, 1, β, 0) and w = (−3, 0, γ, 0, 1); then α + β + γ =

(a) 0

(b) 4

(c) −4

(d) 6

(e) −5

8. The general solution of the differential equation y(4) + y(3) − 3y′′ − 5y′ − 2y = 0 is

(a) y(x) = c1e
−2x + c2e

3x + (c3 + c4x)e−x

(b) y(x) = c1e
−2x + (c2 + c3x+ c4x

2)e−x

(c) y(x) = c1e
2x + (c2 + c3x+ c4x

2)e−x

(d) y(x) = c1e
2x + (c2 + c3x+ c4x

2) ex

(e) y(x) = c1e
2x + c2e

−2x + (c3 + c4x)e−x
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9. If W (x) is the wronskian of the functions f(x) = ex sinx and g(x) = ex cosx,
then W (x) =

(a) −e−3x

(b) −e2x

(c) e4x

(d) 2

(e) e3x

10. If the matrix A =

[
6 −10
2 −3

]
is diagonalizable with a diagonalizing matrix P and

a diagonal matrix D such that P−1AP = D, then

(a) P =

[
2 5
1 2

]
, D =

[
0 1
2 0

]
(b) P =

[
5 2
1 2

]
, D =

[
1 0
0 2

]
(c) P =

[
2 5
1 2

]
, D =

[
1 0
0 2

]
(d) P =

[
2 5
2 1

]
, D =

[
1 0
0 2

]
(e) P =

[
5 2
2 1

]
, D =

[
1 0
0 2

]
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11. The eigenvector associated with the eigenvalue λ = 0 of the matrix

A =

 2 0 0
2 −2 −1
−2 6 3

 is

 α
−1
β

, then α + β =

(a) −4

(b) −3

(c) 2

(d) 0

(e) 4

12. The general solution of the differential equation y′′ + 2y′ + 5y = 0 is

(a) y(x) = c1e
−x sin(2x) + c2e

−x cos(2x)

(b) y(x) = c1e
x sin(2x) + c2e

x cos(2x)

(c) y(x) = c1e
−2x sin(2x) + c2e

2x

(d) y(x) = c1e
2x sin(x) + c2e

2x cos(x)

(e) y(x) = c1e
−2x sin(x) + c2e

−2x cos(x)
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13. An appropriate form of a particular solution yp for the non-homogeneous differential
equation y(5) − y′ = (1 + 2x)e−x + 3 is given by yp(x) =

(a) Ax+ (Bx+ Cx2) e−x

(b) A+ (Bx+ Cx2) e−x

(c) A+ (B + Cx) e−x

(d) Ax+ (B + Cx) e−x

(e) Ax2 + (Bx+ Cx2) e−x

14. If yp = Aex cos(x)+Bex sin(x), is a particular solution of the differential equation
y′′ + 2y′ + 5y = ex sinx, then 65A+ 65B =

(a) 3

(b) 11

(c) 4

(d) −4

(e) 5
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15. A linear homogeneous constant-coefficient differential equation which has the general
solution y(x) = Ae2x +B cos(2x) + C sin(2x) is

(a) y′′′ + 2y′′ + 4y′ − 8y = 0

(b) y′′′ − 2y′′ + 4y′ − 8y = 0

(c) y′′′ − 3y′′ + 4y′ + 8y = 0

(d) y′′′ − 2y′′ − 4y′ − 8y = 0

(e) y′′′ − 2y′′ + 4y′ + 8y = 0
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1. The eigenvector associated with the eigenvalue λ = 0 of the matrix

A =

 2 0 0
2 −2 −1
−2 6 3

 is

 α
−1
β

, then α + β =

(a) 0

(b) 4

(c) −4

(d) 2

(e) −3

2. A particular solution of the differential equation y′′ + y = secx
is given by yp(x) =

(a) x sinx+ cosx ln | cosx|
(b) x2 sinx+ sinx ln | cosx|
(c) 2x sinx+ cosx ln | sinx|
(d) sinx+ cosx ln | cosx|
(e) x2 sinx+ cosx ln | secx|
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3. The characteristics polynomial of the matrix A =

 5 0 0
4 −4 −2
−2 12 6

 is p(λ) =

(a) −λ3 + 7λ2 − 10λ

(b) −λ3 − 7λ2 − 8λ+ 2

(c) −λ3 + 7λ2 + 10λ

(d) −λ3 − 7λ2 − 10λ

(e) −λ3 + 7λ2 − 8λ+ 4

4. The rank of the matrix A =

 1 −3 −8 −5
2 1 −4 11
1 3 3 13

 is

(a) 4

(b) 0

(c) 1

(d) 2

(e) 3
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5. If y(x) is the solution of the initial-value problem y′′ + 2y′ + y = 0; y(0) = 2,
y′(0) = −1, then y(1) =

(a)
4

e

(b)
2

e
(c) 0

(d)
1

e

(e)
3

e

6. An appropriate form of a particular solution yp for the non-homogeneous differential
equation y(5) − y′ = (1 + 2x)e−x + 3 is given by yp(x) =

(a) Ax+ (B + Cx) e−x

(b) A+ (Bx+ Cx2) e−x

(c) Ax+ (Bx+ Cx2) e−x

(d) Ax2 + (Bx+ Cx2) e−x

(e) A+ (B + Cx) e−x
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7. The general solution of the differential equation y′′ + 2y′ + 5y = 0 is

(a) y(x) = c1e
2x sin(x) + c2e

2x cos(x)

(b) y(x) = c1e
−x sin(2x) + c2e

−x cos(2x)

(c) y(x) = c1e
−2x sin(2x) + c2e

2x

(d) y(x) = c1e
x sin(2x) + c2e

x cos(2x)

(e) y(x) = c1e
−2x sin(x) + c2e

−2x cos(x)

8. Consider the subspace S of R3 defined by

S = {(x, y, z)|x− 4y + 7z = 0}.

A basis of S consists of the vectors

(a) v1 = (4,−1, 0), v2 = (−7, 0, 1)

(b) v1 = (1, 1, 0), v2 = (−7, 0, 1)

(c) v1 = (−4, 2, 0), v2 = (−7, 0, 1)

(d) v1 = (4, 2, 0), v2 = (7, 0, 1)

(e) v1 = (4, 1, 0), v2 = (−7, 0, 1)
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9. A linear homogeneous constant-coefficient differential equation which has the general
solution y(x) = Ae2x +B cos(2x) + C sin(2x) is

(a) y′′′ + 2y′′ + 4y′ − 8y = 0

(b) y′′′ − 2y′′ − 4y′ − 8y = 0

(c) y′′′ − 2y′′ + 4y′ + 8y = 0

(d) y′′′ − 3y′′ + 4y′ + 8y = 0

(e) y′′′ − 2y′′ + 4y′ − 8y = 0

10. If yp = Aex cos(x)+Bex sin(x), is a particular solution of the differential equation
y′′ + 2y′ + 5y = ex sinx, then 65A+ 65B =

(a) 11

(b) 4

(c) 5

(d) −4

(e) 3
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11. If the matrix A =

[
6 −10
2 −3

]
is diagonalizable with a diagonalizing matrix P and

a diagonal matrix D such that P−1AP = D, then

(a) P =

[
5 2
1 2

]
, D =

[
1 0
0 2

]
(b) P =

[
2 5
1 2

]
, D =

[
0 1
2 0

]
(c) P =

[
5 2
2 1

]
, D =

[
1 0
0 2

]
(d) P =

[
2 5
2 1

]
, D =

[
1 0
0 2

]
(e) P =

[
2 5
1 2

]
, D =

[
1 0
0 2

]

12. The general solution of the differential equation y(4) + y(3) − 3y′′ − 5y′ − 2y = 0 is

(a) y(x) = c1e
2x + (c2 + c3x+ c4x

2)e−x

(b) y(x) = c1e
2x + c2e

−2x + (c3 + c4x)e−x

(c) y(x) = c1e
−2x + (c2 + c3x+ c4x

2)e−x

(d) y(x) = c1e
−2x + c2e

3x + (c3 + c4x)e−x

(e) y(x) = c1e
2x + (c2 + c3x+ c4x

2) ex
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13. If the solution space of the system

x1 + 2x2 + 7x3 − 9x4 + 31x5 = 0
2x1 + 4x2 + 7x3 − 11x4 + 34x5 = 0
3x1 + 6x2 + 5x3 − 11x4 + 29x5 = 0

has all linear combination of the three vectors
u = (α, 1, 0, 0, 0), v = (2, 0, 1, β, 0) and w = (−3, 0, γ, 0, 1); then α + β + γ =

(a) 4

(b) −4

(c) 0

(d) −5

(e) 6

14. If the characteristic polynomial of the matrix A =

 7 −3 1
8 −3 2
0 0 3

 is

p(λ) = −(λ− 1)(λ− 3)2, then a basis for the eigenspace of λ = 3 is

v1 =

 3
β
0

 , v2 =

 −1
0
α

 , then α− β =

(a) 2

(b) 0

(c) −8

(d) −4

(e) 6
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15. If W (x) is the wronskian of the functions f(x) = ex sinx and g(x) = ex cosx,
then W (x) =

(a) e4x

(b) −e−3x

(c) e3x

(d) 2

(e) −e2x
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1. The general solution of the differential equation y(4) + y(3) − 3y′′ − 5y′ − 2y = 0 is

(a) y(x) = c1e
2x + (c2 + c3x+ c4x

2) ex

(b) y(x) = c1e
−2x + (c2 + c3x+ c4x

2)e−x

(c) y(x) = c1e
2x + c2e

−2x + (c3 + c4x)e−x

(d) y(x) = c1e
2x + (c2 + c3x+ c4x

2)e−x

(e) y(x) = c1e
−2x + c2e

3x + (c3 + c4x)e−x

2. If the solution space of the system

x1 + 2x2 + 7x3 − 9x4 + 31x5 = 0
2x1 + 4x2 + 7x3 − 11x4 + 34x5 = 0
3x1 + 6x2 + 5x3 − 11x4 + 29x5 = 0

has all linear combination of the three vectors
u = (α, 1, 0, 0, 0), v = (2, 0, 1, β, 0) and w = (−3, 0, γ, 0, 1); then α + β + γ =

(a) 4

(b) −5

(c) −4

(d) 6

(e) 0
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3. The rank of the matrix A =

 1 −3 −8 −5
2 1 −4 11
1 3 3 13

 is

(a) 0

(b) 2

(c) 3

(d) 1

(e) 4

4. The characteristics polynomial of the matrix A =

 5 0 0
4 −4 −2
−2 12 6

 is p(λ) =

(a) −λ3 + 7λ2 + 10λ

(b) −λ3 + 7λ2 − 10λ

(c) −λ3 − 7λ2 − 10λ

(d) −λ3 + 7λ2 − 8λ+ 4

(e) −λ3 − 7λ2 − 8λ+ 2
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5. A particular solution of the differential equation y′′ + y = secx
is given by yp(x) =

(a) x sinx+ cosx ln | cosx|
(b) sinx+ cosx ln | cosx|
(c) x2 sinx+ sinx ln | cosx|
(d) 2x sinx+ cosx ln | sinx|
(e) x2 sinx+ cosx ln | secx|

6. The eigenvector associated with the eigenvalue λ = 0 of the matrix

A =

 2 0 0
2 −2 −1
−2 6 3

 is

 α

−1
β

, then α + β =

(a) 0

(b) 2

(c) −4

(d) 4

(e) −3
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7. If the characteristic polynomial of the matrix A =

 7 −3 1
8 −3 2
0 0 3

 is

p(λ) = −(λ− 1)(λ− 3)2, then a basis for the eigenspace of λ = 3 is

v1 =

 3
β
0

 , v2 =

 −1
0
α

 , then α− β =

(a) 6

(b) −8

(c) 0

(d) −4

(e) 2

8. Consider the subspace S of R3 defined by

S = {(x, y, z)|x− 4y + 7z = 0}.

A basis of S consists of the vectors

(a) v1 = (4, 1, 0), v2 = (−7, 0, 1)

(b) v1 = (4, 2, 0), v2 = (7, 0, 1)

(c) v1 = (4,−1, 0), v2 = (−7, 0, 1)

(d) v1 = (−4, 2, 0), v2 = (−7, 0, 1)

(e) v1 = (1, 1, 0), v2 = (−7, 0, 1)
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9. A linear homogeneous constant-coefficient differential equation which has the general
solution y(x) = Ae2x +B cos(2x) + C sin(2x) is

(a) y′′′ − 2y′′ + 4y′ + 8y = 0

(b) y′′′ − 2y′′ − 4y′ − 8y = 0

(c) y′′′ − 3y′′ + 4y′ + 8y = 0

(d) y′′′ − 2y′′ + 4y′ − 8y = 0

(e) y′′′ + 2y′′ + 4y′ − 8y = 0

10. If y(x) is the solution of the initial-value problem y′′ + 2y′ + y = 0; y(0) = 2,
y′(0) = −1, then y(1) =

(a)
4

e

(b)
2

e

(c)
3

e

(d)
1

e
(e) 0
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11. If W (x) is the wronskian of the functions f(x) = ex sinx and g(x) = ex cosx,
then W (x) =

(a) 2

(b) e3x

(c) e4x

(d) −e−3x

(e) −e2x

12. If yp = Aex cos(x)+Bex sin(x), is a particular solution of the differential equation
y′′ + 2y′ + 5y = ex sinx, then 65A+ 65B =

(a) 11

(b) 5

(c) 4

(d) 3

(e) −4
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13. The general solution of the differential equation y′′ + 2y′ + 5y = 0 is

(a) y(x) = c1e
−2x sin(x) + c2e

−2x cos(x)

(b) y(x) = c1e
2x sin(x) + c2e

2x cos(x)

(c) y(x) = c1e
x sin(2x) + c2e

x cos(2x)

(d) y(x) = c1e
−2x sin(2x) + c2e

2x

(e) y(x) = c1e
−x sin(2x) + c2e

−x cos(2x)

14. An appropriate form of a particular solution yp for the non-homogeneous differential
equation y(5) − y′ = (1 + 2x)e−x + 3 is given by yp(x) =

(a) Ax2 + (Bx+ Cx2) e−x

(b) A+ (Bx+ Cx2) e−x

(c) Ax+ (Bx+ Cx2) e−x

(d) Ax+ (B + Cx) e−x

(e) A+ (B + Cx) e−x
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15. If the matrix A =

[
6 −10
2 −3

]
is diagonalizable with a diagonalizing matrix P and

a diagonal matrix D such that P−1AP = D, then

(a) P =

[
5 2
1 2

]
, D =

[
1 0
0 2

]
(b) P =

[
2 5
2 1

]
, D =

[
1 0
0 2

]
(c) P =

[
2 5
1 2

]
, D =

[
0 1
2 0

]
(d) P =

[
5 2
2 1

]
, D =

[
1 0
0 2

]
(e) P =

[
2 5
1 2

]
, D =

[
1 0
0 2

]
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1. The general solution of the differential equation y(4) + y(3) − 3y′′ − 5y′ − 2y = 0 is

(a) y(x) = c1e
−2x + c2e

3x + (c3 + c4x)e−x

(b) y(x) = c1e
2x + (c2 + c3x+ c4x

2)e−x

(c) y(x) = c1e
2x + (c2 + c3x+ c4x

2) ex

(d) y(x) = c1e
−2x + (c2 + c3x+ c4x

2)e−x

(e) y(x) = c1e
2x + c2e

−2x + (c3 + c4x)e−x

2. If the matrix A =

[
6 −10
2 −3

]
is diagonalizable with a diagonalizing matrix P and

a diagonal matrix D such that P−1AP = D, then

(a) P =

[
2 5
2 1

]
, D =

[
1 0
0 2

]
(b) P =

[
5 2
1 2

]
, D =

[
1 0
0 2

]
(c) P =

[
2 5
1 2

]
, D =

[
0 1
2 0

]
(d) P =

[
2 5
1 2

]
, D =

[
1 0
0 2

]
(e) P =

[
5 2
2 1

]
, D =

[
1 0
0 2

]
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3. A linear homogeneous constant-coefficient differential equation which has the general
solution y(x) = Ae2x +B cos(2x) + C sin(2x) is

(a) y′′′ + 2y′′ + 4y′ − 8y = 0

(b) y′′′ − 2y′′ + 4y′ − 8y = 0

(c) y′′′ − 3y′′ + 4y′ + 8y = 0

(d) y′′′ − 2y′′ − 4y′ − 8y = 0

(e) y′′′ − 2y′′ + 4y′ + 8y = 0

4. The characteristics polynomial of the matrix A =

 5 0 0
4 −4 −2
−2 12 6

 is p(λ) =

(a) −λ3 − 7λ2 − 10λ

(b) −λ3 + 7λ2 + 10λ

(c) −λ3 + 7λ2 − 8λ+ 4

(d) −λ3 − 7λ2 − 8λ+ 2

(e) −λ3 + 7λ2 − 10λ
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5. If yp = Aex cos(x)+Bex sin(x), is a particular solution of the differential equation
y′′ + 2y′ + 5y = ex sinx, then 65A+ 65B =

(a) 5

(b) 3

(c) −4

(d) 11

(e) 4

6. If y(x) is the solution of the initial-value problem y′′ + 2y′ + y = 0; y(0) = 2,
y′(0) = −1, then y(1) =

(a)
1

e

(b)
2

e

(c)
3

e

(d)
4

e
(e) 0
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7. The general solution of the differential equation y′′ + 2y′ + 5y = 0 is

(a) y(x) = c1e
−2x sin(2x) + c2e

2x

(b) y(x) = c1e
−x sin(2x) + c2e

−x cos(2x)

(c) y(x) = c1e
2x sin(x) + c2e

2x cos(x)

(d) y(x) = c1e
x sin(2x) + c2e

x cos(2x)

(e) y(x) = c1e
−2x sin(x) + c2e

−2x cos(x)

8. If the characteristic polynomial of the matrix A =

 7 −3 1
8 −3 2
0 0 3

 is

p(λ) = −(λ− 1)(λ− 3)2, then a basis for the eigenspace of λ = 3 is

v1 =

 3
β
0

 , v2 =

 −1
0
α

 , then α− β =

(a) 0

(b) −4

(c) 2

(d) −8

(e) 6
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9. The rank of the matrix A =

 1 −3 −8 −5
2 1 −4 11
1 3 3 13

 is

(a) 3

(b) 0

(c) 4

(d) 1

(e) 2

10. If W (x) is the wronskian of the functions f(x) = ex sinx and g(x) = ex cosx,
then W (x) =

(a) 2

(b) e3x

(c) e4x

(d) −e2x

(e) −e−3x
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11. The eigenvector associated with the eigenvalue λ = 0 of the matrix

A =

 2 0 0
2 −2 −1
−2 6 3

 is

 α
−1
β

, then α + β =

(a) 2

(b) −4

(c) 0

(d) 4

(e) −3

12. A particular solution of the differential equation y′′ + y = secx
is given by yp(x) =

(a) x2 sinx+ cosx ln | secx|
(b) x2 sinx+ sinx ln | cosx|
(c) x sinx+ cosx ln | cosx|
(d) sinx+ cosx ln | cosx|
(e) 2x sinx+ cosx ln | sinx|
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13. Consider the subspace S of R3 defined by

S = {(x, y, z)|x− 4y + 7z = 0}.

A basis of S consists of the vectors

(a) v1 = (4, 1, 0), v2 = (−7, 0, 1)

(b) v1 = (1, 1, 0), v2 = (−7, 0, 1)

(c) v1 = (4, 2, 0), v2 = (7, 0, 1)

(d) v1 = (4,−1, 0), v2 = (−7, 0, 1)

(e) v1 = (−4, 2, 0), v2 = (−7, 0, 1)

14. An appropriate form of a particular solution yp for the non-homogeneous differential
equation y(5) − y′ = (1 + 2x)e−x + 3 is given by yp(x) =

(a) A+ (B + Cx) e−x

(b) A+ (Bx+ Cx2) e−x

(c) Ax2 + (Bx+ Cx2) e−x

(d) Ax+ (Bx+ Cx2) e−x

(e) Ax+ (B + Cx) e−x



241, Math 208, Major Exam II Page 8 of 8 CODE04

15. If the solution space of the system

x1 + 2x2 + 7x3 − 9x4 + 31x5 = 0
2x1 + 4x2 + 7x3 − 11x4 + 34x5 = 0
3x1 + 6x2 + 5x3 − 11x4 + 29x5 = 0

has all linear combination of the three vectors
u = (α, 1, 0, 0, 0), v = (2, 0, 1, β, 0) and w = (−3, 0, γ, 0, 1); then α + β + γ =

(a) 6

(b) 0

(c) −5

(d) −4

(e) 4



Math 208, 241, Major Exam II Answer KEY

Q MASTER CODE01 CODE02 CODE03 CODE04
1 A B 3 D 13 D 6 B 6

2 A D 15 A 10 B 2 D 12

3 A C 14 A 14 C 1 B 7

4 A B 4 E 1 B 14 E 14

5 A B 10 E 4 A 10 B 9

6 A D 1 C 8 B 13 C 4

7 A E 2 B 5 C 15 B 5

8 A C 6 E 3 A 3 A 15

9 A B 11 E 7 D 7 A 1

10 A C 12 E 9 C 4 D 11

11 A C 13 E 12 E 11 A 13

12 A A 5 A 6 D 9 C 10

13 A A 8 D 2 E 5 A 3

14 A A 9 B 15 C 8 D 8

15 A B 7 E 11 E 12 C 2
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Answer Counts

V A B C D E
1 3 5 4 2 1
2 3 2 1 2 7
3 2 3 4 3 3
4 4 4 3 3 1


