King Fahd University of Petroleum and Minerals Department of Mathematics

> Math 208 Major Exam II 241 November 05, 2024

EXAM COVER

Number of versions: 4 Number of questions: 15

King Fahd University of Petroleum and Minerals Department of Mathematics **Math 208 Major Exam II** 241 November 05, 2024 Net Time Allowed: 90 Minutes

MASTER VERSION

241, Math 208, Major Exam II

MASTER

(correct)

1. The rank of the matrix
$$A = \begin{bmatrix} 1 & -3 & -8 & -5 \\ 2 & 1 & -4 & 11 \\ 1 & 3 & 3 & 13 \end{bmatrix}$$
 is
(a) 3 ______(b) 2

(c) 1

(d) 4

(e) 0

2. If the solution space of the system

 $x_1 + 2x_2 + 7x_3 - 9x_4 + 31x_5 = 0$ $2x_1 + 4x_2 + 7x_3 - 11x_4 + 34x_5 = 0$ $3x_1 + 6x_2 + 5x_3 - 11x_4 + 29x_5 = 0$

has all linear combination of the three vectors $\mathbf{u} = (\alpha, 1, 0, 0, 0), \mathbf{v} = (2, 0, 1, \beta, 0)$ and $\mathbf{w} = (-3, 0, \gamma, 0, 1)$; then $\alpha + \beta + \gamma =$

(e) 0

3. Consider the subspace S of \mathbb{R}^3 defined by

$$S = \{(x, y, z) | x - 4y + 7z = 0\}.$$

A basis of S consists of the vectors

(a) $\mathbf{v}_1 = (4, 1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$ (correct) (b) $\mathbf{v}_1 = (1, 1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$ (c) $\mathbf{v}_1 = (4, 2, 0), \ \mathbf{v}_2 = (7, 0, 1)$ (d) $\mathbf{v}_1 = (4, -1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$ (e) $\mathbf{v}_1 = (-4, 2, 0), \ \mathbf{v}_2 = (-7, 0, 1)$

4. If y(x) is the solution of the initial-value problem y'' + 2y' + y = 0; y(0) = 2, y'(0) = -1, then y(1) =

MASTER

5. The general solution of the differential equation y'' + 2y' + 5y = 0 is

(a)
$$y(x) = c_1 e^{-x} \sin(2x) + c_2 e^{-x} \cos(2x)$$
 (correct)
(b) $y(x) = c_1 e^x \sin(2x) + c_2 e^x \cos(2x)$
(c) $y(x) = c_1 e^{2x} \sin(x) + c_2 e^{2x} \cos(x)$
(d) $y(x) = c_1 e^{-2x} \sin(x) + c_2 e^{-2x} \cos(x)$
(e) $y(x) = c_1 e^{-2x} \sin(2x) + c_2 e^{2x}$

6. The general solution of the differential equation $y^{(4)} + y^{(3)} - 3y'' - 5y' - 2y = 0$ is

(a)
$$y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$$
 (correct)
(b) $y(x) = c_1 e^{2x} + c_2 e^{-2x} + (c_3 + c_4 x) e^{-x}$
(c) $y(x) = c_1 e^{-2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$
(d) $y(x) = c_1 e^{-2x} + c_2 e^{3x} + (c_3 + c_4 x) e^{-x}$
(e) $y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{x}$

(a)
$$y''' - 2y'' + 4y' - 8y = 0$$
 ______(correct)
(b) $y''' + 2y'' + 4y' - 8y = 0$
(c) $y''' - 2y'' - 4y' - 8y = 0$
(d) $y''' - 2y'' + 4y' + 8y = 0$
(e) $y''' - 3y'' + 4y' + 8y = 0$

- 8. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y^{(5)} y' = (1 + 2x)e^{-x} + 3$ is given by $y_p(x) =$
 - (a) $Ax + (Bx + Cx^2) e^{-x}$ _____(correct) (b) $Ax + (B + Cx) e^{-x}$
 - (c) $A + (B + Cx) e^{-x}$
 - (d) $A + (Bx + Cx^2) e^{-x}$
 - (e) $Ax^2 + (Bx + Cx^2)e^{-x}$

- 9. If $y_p = Ae^x \cos(x) + Be^x \sin(x)$, is a **particular solution** of the differential equation $y'' + 2y' + 5y = e^x \sin x$, then 65A + 65B =

- 10. A **particular solution** of the differential equation $y'' + y = \sec x$ is given by $y_p(x) =$
 - (a) $x \sin x + \cos x \ln |\cos x|$ (correct) (b) $\sin x + \cos x \ln |\cos x|$ (c) $x^2 \sin x + \cos x \ln |\sec x|$
 - (c) $x \sin x + \cos x \sin |\sec x|$
 - (d) $x^2 \sin x + \sin x \ln |\cos x|$
 - (e) $2x\sin x + \cos x\ln|\sin x|$

11. If
$$W(x)$$
 is the wronskian of the functions $f(x) = e^x \sin x$ and $g(x) = e^x \cos x$,
then $W(x) =$

(a)
$$-e^{2x}$$
 _____(correct)
(b) e^{3x}
(c) e^{4x}
(d) $-e^{-3x}$

(e)
$$2$$

12. If the matrix $A = \begin{bmatrix} 6 & -10 \\ 2 & -3 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ (correct)
(b) $P = \begin{bmatrix} 2 & 5 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(c) $P = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(d) $P = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$
(e) $P = \begin{bmatrix} 5 & 2 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

13. The eigenvector associated with the eigenvalue $\lambda = 0$ of the matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & -2 & -1 \\ -2 & 6 & 3 \end{bmatrix} \text{ is } \begin{bmatrix} \alpha \\ -1 \\ \beta \end{bmatrix}, \text{ then } \alpha + \beta =$$

(e) 0

14. The characteristics polynomial of the matrix $A = \begin{bmatrix} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end{bmatrix}$ is $p(\lambda) =$

(a)
$$-\lambda^3 + 7\lambda^2 - 10\lambda$$
 (correct)
(b) $-\lambda^3 - 7\lambda^2 - 10\lambda$
(c) $-\lambda^3 + 7\lambda^2 + 10\lambda$
(d) $-\lambda^3 + 7\lambda^2 - 8\lambda + 4$

(e) $-\lambda^3 - 7\lambda^2 - 8\lambda + 2$

MASTER

(correct)

15. If the characteristic polynomial of the matrix $A = \begin{bmatrix} 7 & -3 & 1 \\ 8 & -3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ is $p(\lambda) = -(\lambda - 1)(\lambda - 3)^2$, then a basis for the eigenspace of $\lambda = 3$ is $\mathbf{v}_1 = \begin{bmatrix} 3 \\ \beta \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ \alpha \end{bmatrix}$, then $\alpha - \beta =$ (a) 0 (b) -8(c) 6 (d) -4(e) 2 King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01

CODE01

Math 208 Major Exam II 241 November 05, 2024 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Consider the subspace S of \mathbb{R}^3 defined by

$$S = \{(x, y, z) | x - 4y + 7z = 0\}.$$

A basis of S consists of the vectors

(a)
$$\mathbf{v}_1 = (4, -1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$$

(b) $\mathbf{v}_1 = (4, 1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$
(c) $\mathbf{v}_1 = (-4, 2, 0), \ \mathbf{v}_2 = (-7, 0, 1)$
(d) $\mathbf{v}_1 = (1, 1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$
(e) $\mathbf{v}_1 = (4, 2, 0), \ \mathbf{v}_2 = (7, 0, 1)$

2. If the characteristic polynomial of the matrix $A = \begin{bmatrix} 7 & -3 & 1 \\ 8 & -3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ is $p(\lambda) = -(\lambda - 1)(\lambda - 3)^2$, then a basis for the eigenspace of $\lambda = 3$ is $\mathbf{v}_1 = \begin{bmatrix} 3 \\ \beta \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ \alpha \end{bmatrix}$, then $\alpha - \beta =$

- (d) 0
- (e) −4

CODE01

- 3. The characteristics polynomial of the matrix $A = \begin{bmatrix} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end{bmatrix}$ is $p(\lambda) =$
 - (a) $-\lambda^3 7\lambda^2 10\lambda$ (b) $-\lambda^3 + 7\lambda^2 + 10\lambda$ (c) $-\lambda^3 + 7\lambda^2 - 10\lambda$ (d) $-\lambda^3 + 7\lambda^2 - 8\lambda + 4$ (e) $-\lambda^3 - 7\lambda^2 - 8\lambda + 2$

- 4. If y(x) is the solution of the initial-value problem y'' + 2y' + y = 0; y(0) = 2, y'(0) = -1, then y(1) =
 - (a) 0 (b) $\frac{3}{e}$ (c) $\frac{4}{e}$ (d) $\frac{2}{e}$ (e) $\frac{1}{e}$

- 5. A **particular solution** of the differential equation $y'' + y = \sec x$ is given by $y_p(x) =$
 - (a) $x^2 \sin x + \sin x \ln |\cos x|$
 - (b) $x \sin x + \cos x \ln |\cos x|$
 - (c) $\sin x + \cos x \ln |\cos x|$
 - (d) $2x\sin x + \cos x\ln|\sin x|$
 - (e) $x^2 \sin x + \cos x \ln |\sec x|$

6. The rank of the matrix $A = \begin{bmatrix} 1 & -3 & -8 & -5 \\ 2 & 1 & -4 & 11 \\ 1 & 3 & 3 & 13 \end{bmatrix}$ is

- (a) 1
- (b) 0
- (c) 4
- (d) 3
- (e) 2

7. If the solution space of the system

$$x_1 + 2x_2 + 7x_3 - 9x_4 + 31x_5 = 0$$

$$2x_1 + 4x_2 + 7x_3 - 11x_4 + 34x_5 = 0$$

$$3x_1 + 6x_2 + 5x_3 - 11x_4 + 29x_5 = 0$$

has all linear combination of the three vectors $\mathbf{u} = (\alpha, 1, 0, 0, 0), \mathbf{v} = (2, 0, 1, \beta, 0)$ and $\mathbf{w} = (-3, 0, \gamma, 0, 1)$; then $\alpha + \beta + \gamma =$

- (a) 0
- (b) 4
- (c) -4
- (d) 6
- (e) -5

8. The general solution of the differential equation $y^{(4)} + y^{(3)} - 3y'' - 5y' - 2y = 0$ is

(a)
$$y(x) = c_1 e^{-2x} + c_2 e^{3x} + (c_3 + c_4 x) e^{-x}$$

(b) $y(x) = c_1 e^{-2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$
(c) $y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$
(d) $y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{x}$
(e) $y(x) = c_1 e^{2x} + c_2 e^{-2x} + (c_3 + c_4 x) e^{-x}$

- (a) $-e^{-3x}$
- (b) $-e^{2x}$ (c) e^{4x}
- (d) 2
- (e) e^{3x}

10. If the matrix $A = \begin{bmatrix} 6 & -10 \\ 2 & -3 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}, D = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$$

(b) $P = \begin{bmatrix} 5 & 2 \\ 1 & 2 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(c) $P = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(d) $P = \begin{bmatrix} 2 & 5 \\ 2 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(e) $P = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

11. The eigenvector associated with the eigenvalue $\lambda = 0$ of the matrix $\begin{bmatrix} 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha & 1 \end{bmatrix}$

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & -2 & -1 \\ -2 & 6 & 3 \end{bmatrix} \text{ is } \begin{bmatrix} \alpha \\ -1 \\ \beta \end{bmatrix}, \text{ then } \alpha + \beta =$$

- (a) −4
- (b) -3
- (c) 2
- (d) 0
- (e) 4

12. The general solution of the differential equation y'' + 2y' + 5y = 0 is

(a)
$$y(x) = c_1 e^{-x} \sin(2x) + c_2 e^{-x} \cos(2x)$$

(b) $y(x) = c_1 e^x \sin(2x) + c_2 e^x \cos(2x)$
(c) $y(x) = c_1 e^{-2x} \sin(2x) + c_2 e^{2x}$
(d) $y(x) = c_1 e^{2x} \sin(x) + c_2 e^{2x} \cos(x)$
(e) $y(x) = c_1 e^{-2x} \sin(x) + c_2 e^{-2x} \cos(x)$

- (a) $Ax + (Bx + Cx^2) e^{-x}$ (b) $A + (Bx + Cx^2) e^{-x}$
- (c) $A + (B + Cx) e^{-x}$
- (d) $Ax + (B + Cx) e^{-x}$
- (e) $Ax^2 + (Bx + Cx^2)e^{-x}$

- 14. If $y_p = Ae^x \cos(x) + Be^x \sin(x)$, is a **particular solution** of the differential equation $y'' + 2y' + 5y = e^x \sin x$, then 65A + 65B =
 - (a) 3
 - (b) 11
 - (c) 4
 - (d) -4
 - (e) 5

15. A linear homogeneous constant-coefficient differential equation which has the general solution $y(x) = Ae^{2x} + B\cos(2x) + C\sin(2x)$ is

(a)
$$y''' + 2y'' + 4y' - 8y = 0$$

(b) $y''' - 2y'' + 4y' - 8y = 0$
(c) $y''' - 3y'' + 4y' + 8y = 0$
(d) $y''' - 2y'' - 4y' - 8y = 0$
(e) $y''' - 2y'' + 4y' + 8y = 0$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02

CODE02

Math 208 Major Exam II 241 November 05, 2024 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The eigenvector associated with the eigenvalue $\lambda = 0$ of the matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & -2 & -1 \\ -2 & 6 & 3 \end{bmatrix} \text{ is } \begin{bmatrix} \alpha \\ -1 \\ \beta \end{bmatrix}, \text{ then } \alpha + \beta =$$

- (a) 0
- (b) 4
- (c) -4
- (d) 2
- (e) -3

- 2. A **particular solution** of the differential equation $y'' + y = \sec x$ is given by $y_p(x) =$
 - (a) $x \sin x + \cos x \ln |\cos x|$
 - (b) $x^2 \sin x + \sin x \ln |\cos x|$
 - (c) $2x\sin x + \cos x\ln|\sin x|$
 - (d) $\sin x + \cos x \ln |\cos x|$
 - (e) $x^2 \sin x + \cos x \ln |\sec x|$

Ē

CODE02

3. The characteristics polynomial of the matrix
$$A = \begin{bmatrix} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end{bmatrix}$$
 is $p(\lambda) = \begin{pmatrix} -2 & 12 & 6 \end{pmatrix}$

(a)
$$-\lambda^3 + 7\lambda^2 - 10\lambda$$

(b) $-\lambda^3 - 7\lambda^2 - 8\lambda + 2$
(c) $-\lambda^3 + 7\lambda^2 + 10\lambda$
(d) $-\lambda^3 - 7\lambda^2 - 10\lambda$
(e) $-\lambda^3 + 7\lambda^2 - 8\lambda + 4$

4. The rank of the matrix
$$A = \begin{bmatrix} 1 & -3 & -8 & -5 \\ 2 & 1 & -4 & 11 \\ 1 & 3 & 3 & 13 \end{bmatrix}$$
 is

(a)
$$4$$

- (b) 0
- (c) 1
- (d) 2
- (e) 3

- 5. If y(x) is the solution of the initial-value problem y'' + 2y' + y = 0; y(0) = 2, y'(0) = -1, then y(1) =
 - (a) $\frac{4}{e}$ (b) $\frac{2}{e}$ (c) 0 (d) $\frac{1}{e}$ (e) $\frac{3}{e}$

6. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y^{(5)} - y' = (1 + 2x)e^{-x} + 3$ is given by $y_p(x) =$

(a)
$$Ax + (B + Cx) e^{-x}$$

(b) $A + (Bx + Cx^2) e^{-x}$
(c) $Ax + (Bx + Cx^2) e^{-x}$
(d) $Ax^2 + (Bx + Cx^2) e^{-x}$
(e) $A + (B + Cx) e^{-x}$

7. The general solution of the differential equation y'' + 2y' + 5y = 0 is

(a)
$$y(x) = c_1 e^{2x} \sin(x) + c_2 e^{2x} \cos(x)$$

(b) $y(x) = c_1 e^{-x} \sin(2x) + c_2 e^{-x} \cos(2x)$
(c) $y(x) = c_1 e^{-2x} \sin(2x) + c_2 e^{2x}$
(d) $y(x) = c_1 e^x \sin(2x) + c_2 e^x \cos(2x)$
(e) $y(x) = c_1 e^{-2x} \sin(x) + c_2 e^{-2x} \cos(x)$

8. Consider the subspace S of \mathbb{R}^3 defined by

$$S = \{(x, y, z) | x - 4y + 7z = 0\}.$$

A basis of S consists of the vectors

(a)
$$\mathbf{v}_1 = (4, -1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$$

(b) $\mathbf{v}_1 = (1, 1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$
(c) $\mathbf{v}_1 = (-4, 2, 0), \ \mathbf{v}_2 = (-7, 0, 1)$
(d) $\mathbf{v}_1 = (4, 2, 0), \ \mathbf{v}_2 = (7, 0, 1)$
(e) $\mathbf{v}_1 = (4, 1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$

- 9. A linear homogeneous constant-coefficient differential equation which has the general solution $y(x) = Ae^{2x} + B\cos(2x) + C\sin(2x)$ is
 - (a) y''' + 2y'' + 4y' 8y = 0(b) y''' - 2y'' - 4y' - 8y = 0(c) y''' - 2y'' + 4y' + 8y = 0(d) y''' - 3y'' + 4y' + 8y = 0(e) y''' - 2y'' + 4y' - 8y = 0

- 10. If $y_p = Ae^x \cos(x) + Be^x \sin(x)$, is a **particular solution** of the differential equation $y'' + 2y' + 5y = e^x \sin x$, then 65A + 65B =
 - (a) 11
 - (b) 4
 - (c) 5
 - (d) −4
 - (e) 3

CODE02

11. If the matrix $A = \begin{bmatrix} 6 & -10 \\ 2 & -3 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 5 & 2 \\ 1 & 2 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(b) $P = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$
(c) $P = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(d) $P = \begin{bmatrix} 2 & 5 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(e) $P = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

12. The general solution of the differential equation $y^{(4)} + y^{(3)} - 3y'' - 5y' - 2y = 0$ is

(a)
$$y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$$

(b) $y(x) = c_1 e^{2x} + c_2 e^{-2x} + (c_3 + c_4 x) e^{-x}$
(c) $y(x) = c_1 e^{-2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$
(d) $y(x) = c_1 e^{-2x} + c_2 e^{3x} + (c_3 + c_4 x) e^{-x}$
(e) $y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{x}$

13. If the solution space of the system

$$x_1 + 2x_2 + 7x_3 - 9x_4 + 31x_5 = 0$$

$$2x_1 + 4x_2 + 7x_3 - 11x_4 + 34x_5 = 0$$

$$3x_1 + 6x_2 + 5x_3 - 11x_4 + 29x_5 = 0$$

has all linear combination of the three vectors $\mathbf{u} = (\alpha, 1, 0, 0, 0), \mathbf{v} = (2, 0, 1, \beta, 0)$ and $\mathbf{w} = (-3, 0, \gamma, 0, 1)$; then $\alpha + \beta + \gamma =$

- (a) 4
- (b) −4
- (c) 0
- (d) -5
- (e) 6

14. If the characteristic polynomial of the matrix $A = \begin{bmatrix} 7 & -3 & 1 \\ 8 & -3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ is $p(\lambda) = -(\lambda - 1)(\lambda - 3)^2$, then a basis for the eigenspace of $\lambda = 3$ is $\mathbf{v}_1 = \begin{bmatrix} 3 \\ \beta \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ \alpha \end{bmatrix}$, then $\alpha - \beta =$

- (a) 2
- (b) 0
- (c) -8
- (d) -4
- (e) 6

- 15. If W(x) is the wronskian of the functions $f(x) = e^x \sin x$ and $g(x) = e^x \cos x$, then W(x) =
 - (a) e^{4x} (b) $-e^{-3x}$ (c) e^{3x} (d) 2
 - (e) $-e^{2x}$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE03

CODE03

Math 208 Major Exam II 241 November 05, 2024 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

CODE03

1. The general solution of the differential equation $y^{(4)} + y^{(3)} - 3y'' - 5y' - 2y = 0$ is

(a)
$$y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^x$$

(b) $y(x) = c_1 e^{-2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$
(c) $y(x) = c_1 e^{2x} + c_2 e^{-2x} + (c_3 + c_4 x) e^{-x}$
(d) $y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$
(e) $y(x) = c_1 e^{-2x} + c_2 e^{3x} + (c_3 + c_4 x) e^{-x}$

2. If the solution space of the system

 $\begin{aligned} x_1 + 2x_2 + 7x_3 - 9x_4 + 31x_5 &= 0\\ 2x_1 + 4x_2 + 7x_3 - 11x_4 + 34x_5 &= 0\\ 3x_1 + 6x_2 + 5x_3 - 11x_4 + 29x_5 &= 0 \end{aligned}$

has all linear combination of the three vectors $\mathbf{u} = (\alpha, 1, 0, 0, 0), \mathbf{v} = (2, 0, 1, \beta, 0)$ and $\mathbf{w} = (-3, 0, \gamma, 0, 1)$; then $\alpha + \beta + \gamma =$

- (a) 4
- (b) -5
- (c) −4
- (d) 6
- (e) 0

241, Math 208, Major Exam II

CODE03

3. The rank of the matrix
$$A = \begin{bmatrix} 1 & -3 & -8 & -5 \\ 2 & 1 & -4 & 11 \\ 1 & 3 & 3 & 13 \end{bmatrix}$$
 is

- (a) 0
- (b) 2
- (c) 3
- (d) 1
- (e) 4

4. The characteristics polynomial of the matrix $A = \begin{bmatrix} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end{bmatrix}$ is $p(\lambda) = \begin{pmatrix} -2 & 12 & 6 \end{pmatrix}$

(a)
$$-\lambda^3 + 7\lambda^2 + 10\lambda$$

(b) $-\lambda^3 + 7\lambda^2 - 10\lambda$
(c) $-\lambda^3 - 7\lambda^2 - 10\lambda$
(d) $-\lambda^3 + 7\lambda^2 - 8\lambda + 4$
(e) $-\lambda^3 - 7\lambda^2 - 8\lambda + 2$

- 5. A **particular solution** of the differential equation $y'' + y = \sec x$ is given by $y_p(x) =$
 - (a) $x \sin x + \cos x \ln |\cos x|$
 - (b) $\sin x + \cos x \ln |\cos x|$
 - (c) $x^2 \sin x + \sin x \ln |\cos x|$
 - (d) $2x\sin x + \cos x\ln|\sin x|$
 - (e) $x^2 \sin x + \cos x \ln |\sec x|$

6. The eigenvector associated with the eigenvalue $\lambda = 0$ of the matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & -2 & -1 \\ -2 & 6 & 3 \end{bmatrix} \text{ is } \begin{bmatrix} \alpha \\ -1 \\ \beta \end{bmatrix}, \text{ then } \alpha + \beta =$$

(a)
$$0$$

- (b) 2
- (c) -4
- (d) 4
- (e) -3

CODE03

- 7. If the characteristic polynomial of the matrix $A = \begin{bmatrix} 7 & -3 & 1 \\ 8 & -3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ is $p(\lambda) = -(\lambda 1)(\lambda 3)^2$, then a basis for the eigenspace of $\lambda = 3$ is $\mathbf{v}_1 = \begin{bmatrix} 3 \\ \beta \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ \alpha \end{bmatrix}$, then $\alpha \beta =$
 - (a) 6
 - (b) -8
 - (c) 0
 - (d) -4
 - (e) 2

8. Consider the subspace S of \mathbb{R}^3 defined by

$$S = \{(x, y, z) | x - 4y + 7z = 0\}$$

A basis of S consists of the vectors

(a)
$$\mathbf{v}_1 = (4, 1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$$

(b) $\mathbf{v}_1 = (4, 2, 0), \ \mathbf{v}_2 = (7, 0, 1)$
(c) $\mathbf{v}_1 = (4, -1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$
(d) $\mathbf{v}_1 = (-4, 2, 0), \ \mathbf{v}_2 = (-7, 0, 1)$
(e) $\mathbf{v}_1 = (1, 1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$

- 9. A linear homogeneous constant-coefficient differential equation which has the general solution $y(x) = Ae^{2x} + B\cos(2x) + C\sin(2x)$ is
 - (a) y''' 2y'' + 4y' + 8y = 0(b) y''' - 2y'' - 4y' - 8y = 0(c) y''' - 3y'' + 4y' + 8y = 0(d) y''' - 2y'' + 4y' - 8y = 0(e) y''' + 2y'' + 4y' - 8y = 0

- 10. If y(x) is the solution of the initial-value problem y'' + 2y' + y = 0; y(0) = 2, y'(0) = -1, then y(1) =
 - (a) $\frac{4}{e}$ (b) $\frac{2}{e}$ (c) $\frac{3}{e}$ (d) $\frac{1}{e}$ (e) 0

- (a) 2
- (b) e^{3x}
- (c) e^{4x}
- (d) $-e^{-3x}$
- (e) $-e^{2x}$

- 12. If $y_p = Ae^x \cos(x) + Be^x \sin(x)$, is a **particular solution** of the differential equation $y'' + 2y' + 5y = e^x \sin x$, then 65A + 65B =
 - (a) 11
 - (b) 5
 - (c) 4
 - (d) 3
 - (e) -4

13. The general solution of the differential equation y'' + 2y' + 5y = 0 is

(a)
$$y(x) = c_1 e^{-2x} \sin(x) + c_2 e^{-2x} \cos(x)$$

(b) $y(x) = c_1 e^{2x} \sin(x) + c_2 e^{2x} \cos(x)$
(c) $y(x) = c_1 e^x \sin(2x) + c_2 e^x \cos(2x)$
(d) $y(x) = c_1 e^{-2x} \sin(2x) + c_2 e^{2x}$
(e) $y(x) = c_1 e^{-x} \sin(2x) + c_2 e^{-x} \cos(2x)$

- 14. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y^{(5)} y' = (1 + 2x)e^{-x} + 3$ is given by $y_p(x) =$
 - (a) $Ax^2 + (Bx + Cx^2)e^{-x}$
 - (b) $A + (Bx + Cx^2) e^{-x}$
 - (c) $Ax + (Bx + Cx^2) e^{-x}$
 - (d) $Ax + (B + Cx) e^{-x}$
 - (e) $A + (B + Cx) e^{-x}$

(a)
$$P = \begin{bmatrix} 5 & 2 \\ 1 & 2 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(b) $P = \begin{bmatrix} 2 & 5 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(c) $P = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$
(d) $P = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(e) $P = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04

CODE04

Math 208 Major Exam II 241 November 05, 2024 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

Page 1 of 8

CODE04

1. The general solution of the differential equation $y^{(4)} + y^{(3)} - 3y'' - 5y' - 2y = 0$ is

(a)
$$y(x) = c_1 e^{-2x} + c_2 e^{3x} + (c_3 + c_4 x) e^{-x}$$

(b) $y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$
(c) $y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{x}$
(d) $y(x) = c_1 e^{-2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$
(e) $y(x) = c_1 e^{2x} + c_2 e^{-2x} + (c_3 + c_4 x) e^{-x}$

2. If the matrix $A = \begin{bmatrix} 6 & -10 \\ 2 & -3 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 2 & 5 \\ 2 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(b) $P = \begin{bmatrix} 5 & 2 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(c) $P = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$
(d) $P = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
(e) $P = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

3. A linear homogeneous constant-coefficient differential equation which has the general solution $y(x) = Ae^{2x} + B\cos(2x) + C\sin(2x)$ is

(a)
$$y''' + 2y'' + 4y' - 8y = 0$$

(b) $y''' - 2y'' + 4y' - 8y = 0$
(c) $y''' - 3y'' + 4y' + 8y = 0$
(d) $y''' - 2y'' - 4y' - 8y = 0$
(e) $y''' - 2y'' + 4y' + 8y = 0$

4. The characteristics polynomial of the matrix $A = \begin{bmatrix} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end{bmatrix}$ is $p(\lambda) =$

(a)
$$-\lambda^3 - 7\lambda^2 - 10\lambda$$

(b) $-\lambda^3 + 7\lambda^2 + 10\lambda$
(c) $-\lambda^3 + 7\lambda^2 - 8\lambda + 4$
(d) $-\lambda^3 - 7\lambda^2 - 8\lambda + 2$
(e) $-\lambda^3 + 7\lambda^2 - 10\lambda$

CODE04

- 5. If $y_p = Ae^x \cos(x) + Be^x \sin(x)$, is a **particular solution** of the differential equation $y'' + 2y' + 5y = e^x \sin x$, then 65A + 65B =
 - (a) 5
 - (b) 3
 - (c) -4
 - (d) 11
 - (e) 4

- 6. If y(x) is the solution of the initial-value problem y'' + 2y' + y = 0; y(0) = 2, y'(0) = -1, then y(1) =
 - (a) $\frac{1}{e}$ (b) $\frac{2}{e}$ (c) $\frac{3}{e}$ (d) $\frac{4}{e}$ (e) 0

Page 4 of 8

7. The general solution of the differential equation y'' + 2y' + 5y = 0 is

(a)
$$y(x) = c_1 e^{-2x} \sin(2x) + c_2 e^{2x}$$

(b) $y(x) = c_1 e^{-x} \sin(2x) + c_2 e^{-x} \cos(2x)$
(c) $y(x) = c_1 e^{2x} \sin(x) + c_2 e^{2x} \cos(x)$
(d) $y(x) = c_1 e^x \sin(2x) + c_2 e^x \cos(2x)$
(e) $y(x) = c_1 e^{-2x} \sin(x) + c_2 e^{-2x} \cos(x)$

8. If the characteristic polynomial of the matrix $A = \begin{bmatrix} 7 & -3 & 1 \\ 8 & -3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ is $p(\lambda) = -(\lambda - 1)(\lambda - 3)^2$, then a basis for the eigenspace of $\lambda = 3$ is $\mathbf{v}_1 = \begin{bmatrix} 3 \\ \beta \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ \alpha \end{bmatrix}$, then $\alpha - \beta =$

(a)
$$0$$

(b)
$$-4$$

- (c) 2
- (d) -8
- (e) 6

241, Math 208, Major Exam II

9. The rank of the matrix
$$A = \begin{bmatrix} 1 & -3 & -8 & -5 \\ 2 & 1 & -4 & 11 \\ 1 & 3 & 3 & 13 \end{bmatrix}$$
 is

- (a) 3
- (b) 0
- (c) 4
- (d) 1
- (e) 2

- 10. If W(x) is the wronskian of the functions $f(x) = e^x \sin x$ and $g(x) = e^x \cos x$, then W(x) =
 - (a) 2
 - (b) e^{3x}
 - (c) e^{4x}
 - (d) $-e^{2x}$
 - (e) $-e^{-3x}$

CODE04

11. The eigenvector associated with the eigenvalue $\lambda = 0$ of the matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & -2 & -1 \\ -2 & 6 & 3 \end{bmatrix} \text{ is } \begin{bmatrix} \alpha \\ -1 \\ \beta \end{bmatrix}, \text{ then } \alpha + \beta =$$

(b)
$$-4$$

- (c) 0
- (d) 4
- (e) -3

- 12. A **particular solution** of the differential equation $y'' + y = \sec x$ is given by $y_p(x) =$
 - (a) $x^2 \sin x + \cos x \ln |\sec x|$
 - (b) $x^2 \sin x + \sin x \ln |\cos x|$
 - (c) $x \sin x + \cos x \ln |\cos x|$
 - (d) $\sin x + \cos x \ln |\cos x|$
 - (e) $2x\sin x + \cos x\ln|\sin x|$

13. Consider the subspace S of \mathbb{R}^3 defined by

$$S = \{(x, y, z) | x - 4y + 7z = 0\}.$$

A basis of S consists of the vectors

(a) $\mathbf{v}_1 = (4, 1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$ (b) $\mathbf{v}_1 = (1, 1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$ (c) $\mathbf{v}_1 = (4, 2, 0), \ \mathbf{v}_2 = (7, 0, 1)$ (d) $\mathbf{v}_1 = (4, -1, 0), \ \mathbf{v}_2 = (-7, 0, 1)$ (e) $\mathbf{v}_1 = (-4, 2, 0), \ \mathbf{v}_2 = (-7, 0, 1)$

14. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y^{(5)} - y' = (1 + 2x)e^{-x} + 3$ is given by $y_p(x) =$

(a)
$$A + (B + Cx) e^{-x}$$

(b) $A + (Bx + Cx^2) e^{-x}$

- (c) $Ax^2 + (Bx + Cx^2)e^{-x}$
- (d) $Ax + (Bx + Cx^2) e^{-x}$
- (e) $Ax + (B + Cx) e^{-x}$

15. If the solution space of the system

$$x_1 + 2x_2 + 7x_3 - 9x_4 + 31x_5 = 0$$

$$2x_1 + 4x_2 + 7x_3 - 11x_4 + 34x_5 = 0$$

$$3x_1 + 6x_2 + 5x_3 - 11x_4 + 29x_5 = 0$$

has all linear combination of the three vectors $\mathbf{u} = (\alpha, 1, 0, 0, 0), \mathbf{v} = (2, 0, 1, \beta, 0)$ and $\mathbf{w} = (-3, 0, \gamma, 0, 1)$; then $\alpha + \beta + \gamma =$

- (a) 6
- (b) 0
- (c) -5
- (d) -4
- (e) 4

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	А	Вз	D 13	D 6	В 6
2	А	D 15	A 10	B 2	D 12
3	А	С 14	A 14	С 1	В 7
4	А	B 4	E 1	В 14	Е 14
5	А	В 10	E 4	A 10	В 9
6	А	D 1	С 8	В 13	С 4
7	А	E 2	B 5	С 15	B 5
8	A	С 6	Ез	Аз	A 15
9	А	В 11	E ₇	D ₇	A 1
10	A	С 12	E 9	С 4	D 11
11	A	С 13	Е 12	Е 11	A 13
12	А	A 5	A 6	D 9	С 10
13	А	A ₈	D 2	E 5	A ₃
14	А	A 9	В 15	С 8	D 8
15	A	B ₇	Е 11	Е 12	С 2

Answer Counts

V	A	В	С	D	Е
1	3	5	4	2	1
2	3	2	1	2	7
3	2	3	4	3	3
4	4	4	3	3	1