King Fahd University of Petroleum and Minerals Department of Mathematics

Math 208
Major Exam I
243
03 July 2025

EXAM COVER

Number of versions: 4 Number of questions: 15

King Fahd University of Petroleum and Minerals Department of Mathematics

Math 208 Major Exam I 243 03 July 2025

Net Time Allowed: 90 Minutes

MASTER VERSION

1. If the differential equation

$$(5x^4 - 4x^3y^3) dx + (5 + kx^4y^2) dy = 0$$

is an exact differential equation, then k =

- (a) -3 _____(correct)
- (b) -4
- (c) -5
- (d) -6
- (e) -7

2. The sum of all values of r such that $y = x^r$ is a solution of the differential equation

$$3x^2y'' + 6xy' + y = 0$$

- (a) -1 _____(correct)
- (b) -2
- (c) -3
- (d) -4
- (e) -5

- 3. If the acceleration of a particle is $a(t) = 18\cos(3t)$, the initial velocity is $v_0 = 4$, and the initial position is $x_0 = -7$, then $x\left(\frac{\pi}{2}\right) =$
 - (a) $2\pi 5$ _____(correct)
 - (b) $2\pi 7$
 - (c) $2\pi + 5$
 - (d) $2\pi + 7$
 - (e) $7 2\pi$

- 4. A culture initially has P_0 number of bacteria. At t = 1 hour the number of bacteria is measured to be $\frac{3}{2}P_0$. If the rate of growth is proportional to the number of bacteria P(t) present at time t, the time necessary for the number of bacteria is triple is
 - (a) $\frac{\ln 3}{\ln 3 \ln 2}$ (correct)
 - (b) $\frac{\ln 3}{\ln 3 + \ln 2}$
 - (c) $\frac{\ln 3}{\ln 4 \ln 3}$
 - (d) $\frac{\ln 3}{\ln 7 \ln 5}$
 - (e) $\frac{\ln 2}{\ln 5 \ln 4}$

5. The general solution of the linear differential equation $xy' = 2y + x^3 \cos x$ is given by

(a)
$$y(x) = x^2(\sin x + c)$$
 _____(correct)

- (b) $y(x) = x^2(\cos x + c)$
- (c) $y(x) = x^3(\sin x + c)$
- (d) $y(x) = x^3(\cos x + c)$
- (e) $y(x) = x(\sin x + c)$

6. A general solution of the exact differential equation

$$(e^{2y} - y\cos(xy)) dx + (2xe^{2y} - x\cos(xy) + 2y) dy = 0$$

(a)
$$xe^{2y} - \sin(xy) + y^2 = c$$
 _____(correct)

- (b) $2xe^{2y} \sin(xy) + y^2 = c$
- (c) $xe^{2y} x\sin(xy) + y^2 = c$
- (d) $xe^{2y} + y\sin(xy) + y^2 = c$
- (e) $3xe^{2y} + y\sin(xy) + y^2 = c$

7. The solution of the initial-value problem

$$(x^2 - 9) \frac{dy}{dx} = 12y, \ y(0) = 4$$

is

(a)
$$y = 4\left(\frac{x-3}{x+3}\right)^2$$
 _____(correct)

(b)
$$y = -4\left(\frac{x-3}{x+3}\right)^3$$

(c)
$$y = 4\left(\frac{x-3}{x+3}\right)^4$$

(d)
$$y = 4\left(\frac{x-2}{x+2}\right)^2$$

(e)
$$y = -4\left(\frac{x-2}{x+2}\right)^3$$

8. By making a suitable substitution, the differential equation $xy' = y + \sqrt{x^2 + y^2}$ can be transformed into a separable differential equation

(a)
$$\frac{1}{\sqrt{1+v^2}} dv = \frac{1}{x} dx \qquad \text{(correct)}$$

(b)
$$\frac{1}{\sqrt{1+v^2}} dv = \frac{1}{x^2} dx$$

(c)
$$\sqrt{1+v^2} \, dv = \frac{1}{x} \, dx$$

$$(d) \sqrt{1+v^2} \, dv = x \, dx$$

(e)
$$\frac{1}{\sqrt{1+v^2}} dv = x^2 dx$$

9. By making a suitable substitution, the differential equation $x^2y' + 2xy = 5y^4$ can be transformed into a linear differential equation

(a)
$$v' - \frac{6}{x}v = -\frac{15}{x^2}$$
 ______(correct)

(b)
$$v' + \frac{6}{x}v = -\frac{14}{x^2}$$

(c)
$$v' - \frac{6}{x}v = -\frac{20}{x^2}$$

(d)
$$v' + \frac{6}{x}v = -\frac{10}{x^2}$$

(e)
$$v' - \frac{3}{x}v = -\frac{12}{x^2}$$

10. A general solution of the differential equation $y' = (9x + 4y)^2$ is given by

(a)
$$y = \frac{3}{8} [\tan(6x + c) - 6x]$$
 _____(correct)

(b)
$$y = \frac{1}{8} [\tan(6x + c) - 6x]$$

(c)
$$y = \frac{1}{8} [\tan(6x + c) + 6x]$$

(d)
$$y = \frac{1}{5} [\tan(6x + c) - 6x]$$

(e)
$$y = \frac{3}{5} [\tan(6x + c) + 6x]$$

11. Which one of the following subset is a subspace of \mathbb{R}^4 ?

- (a) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 = 0$ $_(correct)$
- (b) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 x_2 = 0$
- (c) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 x_3 = 0$
- (d) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 = 1$
- (e) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 + x_2 = 1$

12. The value of k for which the vector $\mathbf{u} = (1,0,2)$, $\mathbf{v} = (-1,2,k)$ and $\mathbf{w} = (0,9,3)$ of \mathbb{R}^3 are linearly dependent is

- (correct)
- (b) $-\frac{2}{3}$ (c) $\frac{2}{3}$ (d) $\frac{4}{5}$ (e) $\frac{3}{4}$

13. The solution space of the system

$$x_1 - 2x_2 + 2x_3 + x_4 = 0$$

$$x_1 - x_2 + 2x_3 + 5x_4 = 0$$

$$x_1 - 4x_2 + 2x_3 - 7x_4 = 0$$

is the set of all linear combinations of the form $s\mathbf{u}+t\mathbf{v}$, where s and t are real numbers and

- (a) $\mathbf{u} = (-2, 0, 1, 0)$ and $\mathbf{v} = (-9, -4, 0, 1)$ _____(correct)
- (b) $\mathbf{u} = (2, 0, 1, 0)$ and $\mathbf{v} = (9, -4, 0, 1)$
- (c) $\mathbf{u} = (-2, 0, -1, 0)$ and $\mathbf{v} = (9, -4, 0, 1)$
- (d) $\mathbf{u} = (-2, 0, 1, 0)$ and $\mathbf{v} = (-9, -4, 0, -1)$
- (e) $\mathbf{u} = (-2, 0, 1, 0)$ and $\mathbf{v} = (9, 4, 0, 1)$

14. Let $\mathbf{v} = (2, 5, -4)$ and $\mathbf{w} = (1, -2, -3)$ be two vectors in \mathbb{R}^3 . Find $|\mathbf{v} - 2\mathbf{w}|$

- (a) $\sqrt{85}$ _____(correct)
- (b) $\sqrt{83}$
- (c) $\sqrt{87}$
- (d) 9
- (e) $\sqrt{17}$

15. Let $\mathbf{u}=\langle 2,3\rangle,\,\mathbf{v}=\langle -4,5\rangle,\,\mathbf{w}=\langle -16,42\rangle$ be vectors in \mathbb{R}^2 . If $\mathbf{w}=a\mathbf{u}+b\mathbf{v}$, then a+b=

- (a) 10 _____(correct)
- (b) 8
- (c) 9
- (d) 4
- (e) 6

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01 CODE01

Math 208 Major Exam I 243 03 July 2025

Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. A general solution of the differential equation $y' = (9x + 4y)^2$ is given by
 - (a) $y = \frac{3}{8} [\tan(6x + c) 6x]$
 - (b) $y = \frac{1}{8} [\tan(6x + c) + 6x]$
 - (c) $y = \frac{1}{8} [\tan(6x + c) 6x]$
 - (d) $y = \frac{3}{5} [\tan(6x + c) + 6x]$
 - (e) $y = \frac{1}{5} [\tan(6x + c) 6x]$

2. If the differential equation

$$(5x^4 - 4x^3y^3) dx + (5 + kx^4y^2) dy = 0$$

is an exact differential equation, then k =

- (a) -3
- (b) -6
- (c) -7
- (d) -5
- (e) -4

3. The solution space of the system

$$x_1 - 2x_2 + 2x_3 + x_4 = 0$$

$$x_1 - x_2 + 2x_3 + 5x_4 = 0$$

$$x_1 - 4x_2 + 2x_3 - 7x_4 = 0$$

is the set of all linear combinations of the form $s\mathbf{u}+t\mathbf{v}$, where s and t are real numbers and

- (a) $\mathbf{u} = (-2, 0, -1, 0)$ and $\mathbf{v} = (9, -4, 0, 1)$
- (b) $\mathbf{u} = (2, 0, 1, 0)$ and $\mathbf{v} = (9, -4, 0, 1)$
- (c) $\mathbf{u} = (-2, 0, 1, 0)$ and $\mathbf{v} = (-9, -4, 0, -1)$
- (d) $\mathbf{u} = (-2, 0, 1, 0)$ and $\mathbf{v} = (9, 4, 0, 1)$
- (e) $\mathbf{u} = (-2, 0, 1, 0)$ and $\mathbf{v} = (-9, -4, 0, 1)$

- 4. Let $\mathbf{u} = \langle 2, 3 \rangle$, $\mathbf{v} = \langle -4, 5 \rangle$, $\mathbf{w} = \langle -16, 42 \rangle$ be vectors in \mathbb{R}^2 . If $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then a + b =
 - (a) 6
 - (b) 10
 - (c) 4
 - (d) 9
 - (e) 8

5. A general solution of the exact differential equation

$$(e^{2y} - y\cos(xy)) dx + (2xe^{2y} - x\cos(xy) + 2y) dy = 0$$

- (a) $3xe^{2y} + y\sin(xy) + y^2 = c$
- (b) $xe^{2y} + y\sin(xy) + y^2 = c$
- (c) $xe^{2y} x\sin(xy) + y^2 = c$
- (d) $2xe^{2y} \sin(xy) + y^2 = c$
- (e) $xe^{2y} \sin(xy) + y^2 = c$

- 6. If the acceleration of a particle is $a(t) = 18\cos(3t)$, the initial velocity is $v_0 = 4$, and the initial position is $x_0 = -7$, then $x\left(\frac{\pi}{2}\right) =$
 - (a) $2\pi + 5$
 - (b) $7 2\pi$
 - (c) $2\pi + 7$
 - (d) $2\pi 7$
 - (e) $2\pi 5$

- 7. The value of k for which the vector $\mathbf{u} = (1,0,2)$, $\mathbf{v} = (-1,2,k)$ and $\mathbf{w} = (0,9,3)$ of \mathbb{R}^3 are linearly dependent is

 - (a) $\frac{3}{4}$ (b) $\frac{4}{5}$
 - (c) $-\frac{4}{3}$
 - (d) $\frac{2}{3}$
 - (e) $-\frac{2}{3}$

- 8. Which one of the following subset is a subspace of \mathbb{R}^4 ?
 - (a) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 x_2 = 0$
 - (b) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 + x_2 = 1$
 - (c) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 = 0$
 - (d) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 = 1$
 - (e) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 x_3 = 0$

9. Let $\mathbf{v}=(2,5,-4)$ and $\mathbf{w}=(1,-2,-3)$ be two vectors in \mathbb{R}^3 . Find $|\mathbf{v}-2\mathbf{w}|$

- (a) $\sqrt{85}$
- (b) 9
- (c) $\sqrt{17}$
- (d) $\sqrt{83}$
- (e) $\sqrt{87}$

10. A culture initially has P_0 number of bacteria. At t = 1 hour the number of bacteria is measured to be $\frac{3}{2}P_0$. If the rate of growth is proportional to the number of bacteria P(t) present at time t, the time necessary for the number of bacteria is triple is

- (a) $\frac{\ln 3}{\ln 7 \ln 5}$
- (b) $\frac{\ln 2}{\ln 5 \ln 4}$
- (c) $\frac{\ln 3}{\ln 3 + \ln 2}$
- (d) $\frac{\ln 3}{\ln 3 \ln 2}$
- (e) $\frac{\ln 3}{\ln 4 \ln 3}$

11. The general solution of the linear differential equation $xy' = 2y + x^3 \cos x$ is given by

(a)
$$y(x) = x^2(\sin x + c)$$

(b)
$$y(x) = x^3(\cos x + c)$$

(c)
$$y(x) = x^2(\cos x + c)$$

(d)
$$y(x) = x(\sin x + c)$$

(e)
$$y(x) = x^3(\sin x + c)$$

12. By making a suitable substitution, the differential equation $xy' = y + \sqrt{x^2 + y^2}$ can be transformed into a separable differential equation

(a)
$$\sqrt{1 + v^2} \, dv = x \, dx$$

(b)
$$\frac{1}{\sqrt{1+v^2}} dv = x^2 dx$$

(c)
$$\frac{1}{\sqrt{1+v^2}} dv = \frac{1}{x} dx$$

(d)
$$\frac{1}{\sqrt{1+v^2}} dv = \frac{1}{x^2} dx$$

(e)
$$\sqrt{1+v^2} \, dv = \frac{1}{x} \, dx$$

13. The sum of all values of r such that $y = x^r$ is a solution of the differential equation

$$3x^2y'' + 6xy' + y = 0$$

is

- (a) -4
- (b) -1
- (c) -3
- (d) -2
- (e) -5

14. The solution of the initial-value problem

$$(x^2 - 9) \frac{dy}{dx} = 12y, y(0) = 4$$

(a)
$$y = 4\left(\frac{x-3}{x+3}\right)^2$$

(b)
$$y = 4\left(\frac{x-3}{x+3}\right)^4$$

(c)
$$y = -4\left(\frac{x-3}{x+3}\right)^3$$

(d)
$$y = 4\left(\frac{x-2}{x+2}\right)^2$$

(e)
$$y = -4\left(\frac{x-2}{x+2}\right)^3$$

- 15. By making a suitable substitution, the differential equation $x^2y' + 2xy = 5y^4$ can be transformed into a linear differential equation
 - (a) $v' \frac{6}{x}v = -\frac{20}{x^2}$
 - (b) $v' + \frac{6}{x}v = -\frac{14}{x^2}$
 - (c) $v' \frac{3}{x}v = -\frac{12}{x^2}$
 - (d) $v' \frac{6}{x}v = -\frac{15}{x^2}$ (e) $v' + \frac{6}{x}v = -\frac{10}{x^2}$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02 CODE02

Math 208 Major Exam I 243 03 July 2025

Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. By making a suitable substitution, the differential equation $x^2y' + 2xy = 5y^4$ can be transformed into a linear differential equation
 - (a) $v' \frac{6}{x}v = -\frac{15}{x^2}$
 - (b) $v' \frac{3}{x}v = -\frac{12}{x^2}$
 - (c) $v' + \frac{6}{x}v = -\frac{14}{x^2}$
 - (d) $v' + \frac{6}{x}v = -\frac{10}{x^2}$
 - (e) $v' \frac{6}{x}v = -\frac{20}{x^2}$

2. The solution of the initial-value problem

$$(x^2-9)\frac{dy}{dx}=12y, y(0)=4$$

(a)
$$y = 4\left(\frac{x-2}{x+2}\right)^2$$

(b)
$$y = 4\left(\frac{x-3}{x+3}\right)^2$$

(c)
$$y = -4\left(\frac{x-2}{x+2}\right)^3$$

(d)
$$y = 4\left(\frac{x-3}{x+3}\right)^4$$

(e)
$$y = -4\left(\frac{x-3}{x+3}\right)^3$$

- 3. If the acceleration of a particle is $a(t) = 18\cos(3t)$, the initial velocity is $v_0 = 4$, and the initial position is $x_0 = -7$, then $x\left(\frac{\pi}{2}\right) =$
 - (a) $2\pi 5$
 - (b) $2\pi 7$
 - (c) $2\pi + 7$
 - (d) $7 2\pi$
 - (e) $2\pi + 5$

- 4. The general solution of the linear differential equation $xy' = 2y + x^3 \cos x$ is given by
 - (a) $y(x) = x(\sin x + c)$
 - (b) $y(x) = x^2(\cos x + c)$
 - (c) $y(x) = x^2(\sin x + c)$
 - (d) $y(x) = x^3(\sin x + c)$
 - (e) $y(x) = x^3(\cos x + c)$

5. The sum of all values of r such that $y = x^r$ is a solution of the differential equation

$$3x^2y'' + 6xy' + y = 0$$

is

- (a) -3
- (b) -1
- (c) -5
- (d) -2
- (e) -4

6. A general solution of the exact differential equation

$$(e^{2y} - y\cos(xy)) dx + (2xe^{2y} - x\cos(xy) + 2y) dy = 0$$

- (a) $3xe^{2y} + y\sin(xy) + y^2 = c$
- (b) $xe^{2y} x\sin(xy) + y^2 = c$
- (c) $2xe^{2y} \sin(xy) + y^2 = c$
- (d) $xe^{2y} \sin(xy) + y^2 = c$
- (e) $xe^{2y} + y\sin(xy) + y^2 = c$

7. A general solution of the differential equation $y' = (9x + 4y)^2$ is given by

(a)
$$y = \frac{1}{8} [\tan(6x + c) - 6x]$$

(b)
$$y = \frac{3}{5} [\tan(6x + c) + 6x]$$

(c)
$$y = \frac{3}{8} [\tan(6x + c) - 6x]$$

(d)
$$y = \frac{1}{8} [\tan(6x + c) + 6x]$$

(e)
$$y = \frac{1}{5} [\tan(6x + c) - 6x]$$

8. The solution space of the system

$$x_1 - 2x_2 + 2x_3 + x_4 = 0$$

$$x_1 - x_2 + 2x_3 + 5x_4 = 0$$

$$x_1 - 4x_2 + 2x_3 - 7x_4 = 0$$

is the set of all linear combinations of the form $s\mathbf{u} + t\mathbf{v}$, where s and t are real numbers and

(a)
$$\mathbf{u} = (-2, 0, 1, 0)$$
 and $\mathbf{v} = (-9, -4, 0, 1)$

(b)
$$\mathbf{u} = (2, 0, 1, 0)$$
 and $\mathbf{v} = (9, -4, 0, 1)$

(c)
$$\mathbf{u} = (-2, 0, 1, 0)$$
 and $\mathbf{v} = (-9, -4, 0, -1)$

(d)
$$\mathbf{u} = (-2, 0, -1, 0)$$
 and $\mathbf{v} = (9, -4, 0, 1)$

(e)
$$\mathbf{u} = (-2, 0, 1, 0)$$
 and $\mathbf{v} = (9, 4, 0, 1)$

- 9. Let $\mathbf{v}=(2,5,-4)$ and $\mathbf{w}=(1,-2,-3)$ be two vectors in \mathbb{R}^3 . Find $|\mathbf{v}-2\mathbf{w}|$
 - (a) 9
 - (b) $\sqrt{87}$
 - (c) $\sqrt{17}$
 - (d) $\sqrt{85}$
 - (e) $\sqrt{83}$

- 10. By making a suitable substitution, the differential equation $xy' = y + \sqrt{x^2 + y^2}$ can be transformed into a separable differential equation
 - (a) $\sqrt{1+v^2} \, dv = x \, dx$
 - (b) $\frac{1}{\sqrt{1+v^2}} dv = \frac{1}{x} dx$
 - (c) $\frac{1}{\sqrt{1+v^2}} dv = x^2 dx$
 - $(d) \sqrt{1+v^2} \, dv = \frac{1}{x} \, dx$
 - (e) $\frac{1}{\sqrt{1+v^2}} dv = \frac{1}{x^2} dx$

- 11. The value of k for which the vector $\mathbf{u} = (1, 0, 2)$, $\mathbf{v} = (-1, 2, k)$ and $\mathbf{w} = (0, 9, 3)$ of \mathbb{R}^3 are linearly dependent is
 - (a) $\frac{2}{3}$
 - (b) $-\frac{2}{3}$
 - (c) $\frac{3}{4}$
 - (d) $-\frac{4}{3}$
 - (e) $\frac{4}{5}$

- 12. A culture initially has P_0 number of bacteria. At t = 1 hour the number of bacteria is measured to be $\frac{3}{2}P_0$. If the rate of growth is proportional to the number of bacteria P(t) present at time t, the time necessary for the number of bacteria is triple is
 - (a) $\frac{\ln 3}{\ln 3 + \ln 2}$
 - (b) $\frac{\ln 2}{\ln 5 \ln 4}$
 - (c) $\frac{\ln 3}{\ln 7 \ln 5}$
 - (d) $\frac{\ln 3}{\ln 4 \ln 3}$
 - (e) $\frac{\ln 3}{\ln 3 \ln 2}$

13. If the differential equation

$$(5x^4 - 4x^3y^3) dx + (5 + kx^4y^2) dy = 0$$

is an exact differential equation, then k =

- (a) -4
- (b) -6
- (c) -3
- (d) -7
- (e) -5

14. Let $\mathbf{u}=\langle 2,3\rangle,\,\mathbf{v}=\langle -4,5\rangle,\,\mathbf{w}=\langle -16,42\rangle$ be vectors in \mathbb{R}^2 . If $\mathbf{w}=a\mathbf{u}+b\mathbf{v}$, then a+b=

- (a) 6
- (b) 9
- (c) 8
- (d) 4
- (e) 10

- 15. Which one of the following subset is a subspace of \mathbb{R}^4 ?
 - (a) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 x_3 = 0$
 - (b) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 = 1$
 - (c) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 + x_2 = 1$
 - (d) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 = 0$
 - (e) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 x_2 = 0$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE03 CODE03

Math 208 Major Exam I 243 03 July 2025

Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The solution space of the system

$$x_1 - 2x_2 + 2x_3 + x_4 = 0$$

$$x_1 - x_2 + 2x_3 + 5x_4 = 0$$

$$x_1 - 4x_2 + 2x_3 - 7x_4 = 0$$

is the set of all linear combinations of the form $s\mathbf{u} + t\mathbf{v}$, where s and t are real numbers and

- (a) $\mathbf{u} = (-2, 0, 1, 0)$ and $\mathbf{v} = (-9, -4, 0, -1)$
- (b) $\mathbf{u} = (-2, 0, 1, 0)$ and $\mathbf{v} = (9, 4, 0, 1)$
- (c) $\mathbf{u} = (-2, 0, -1, 0)$ and $\mathbf{v} = (9, -4, 0, 1)$
- (d) $\mathbf{u} = (-2, 0, 1, 0)$ and $\mathbf{v} = (-9, -4, 0, 1)$
- (e) $\mathbf{u} = (2, 0, 1, 0)$ and $\mathbf{v} = (9, -4, 0, 1)$

2. A culture initially has P_0 number of bacteria. At t = 1 hour the number of bacteria is measured to be $\frac{3}{2}P_0$. If the rate of growth is proportional to the number of bacteria P(t) present at time t, the time necessary for the number of bacteria is triple is

(a)
$$\frac{\ln 3}{\ln 4 - \ln 3}$$

- (b) $\frac{\ln 2}{\ln 5 \ln 4}$
- (c) $\frac{\ln 3}{\ln 3 + \ln 2}$
- $(d) \frac{\ln 3}{\ln 3 \ln 2}$
- (e) $\frac{\ln 3}{\ln 7 \ln 5}$

- 3. A general solution of the differential equation $y' = (9x + 4y)^2$ is given by
 - (a) $y = \frac{1}{8} [\tan(6x + c) 6x]$
 - (b) $y = \frac{3}{5}[\tan(6x+c) + 6x]$
 - (c) $y = \frac{1}{8} [\tan(6x + c) + 6x]$
 - (d) $y = \frac{1}{5} [\tan(6x + c) 6x]$
 - (e) $y = \frac{3}{8} [\tan(6x + c) 6x]$

- 4. Which one of the following subset is a subspace of \mathbb{R}^4 ?
 - (a) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 = 0$
 - (b) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 x_3 = 0$
 - (c) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 = 1$
 - (d) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 + x_2 = 1$
 - (e) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 x_2 = 0$

- 5. Let $\mathbf{v} = (2, 5, -4)$ and $\mathbf{w} = (1, -2, -3)$ be two vectors in \mathbb{R}^3 . Find $|\mathbf{v} 2\mathbf{w}|$
 - (a) $\sqrt{85}$
 - (b) 9
 - (c) $\sqrt{17}$
 - (d) $\sqrt{83}$
 - (e) $\sqrt{87}$

6. By making a suitable substitution, the differential equation $x^2y' + 2xy = 5y^4$ can be transformed into a linear differential equation

(a)
$$v' - \frac{6}{x}v = -\frac{15}{x^2}$$

(b)
$$v' - \frac{6}{x}v = -\frac{20}{x^2}$$

(c)
$$v' + \frac{6}{r}v = -\frac{14}{r^2}$$

(c)
$$v' + \frac{6}{x}v = -\frac{14}{x^2}$$

(d) $v' - \frac{3}{x}v = -\frac{12}{x^2}$

(e)
$$v' + \frac{6}{x}v = -\frac{10}{x^2}$$

7. If the differential equation

$$(5x^4 - 4x^3y^3) dx + (5 + kx^4y^2) dy = 0$$

is an exact differential equation, then k =

- (a) -6
- (b) -4
- (c) -5
- (d) -7
- (e) -3

8. The general solution of the linear differential equation $xy' = 2y + x^3 \cos x$ is given by

- (a) $y(x) = x^2(\sin x + c)$
- (b) $y(x) = x(\sin x + c)$
- (c) $y(x) = x^3(\cos x + c)$
- (d) $y(x) = x^2(\cos x + c)$
- (e) $y(x) = x^3(\sin x + c)$

- 9. Let $\mathbf{u} = \langle 2, 3 \rangle$, $\mathbf{v} = \langle -4, 5 \rangle$, $\mathbf{w} = \langle -16, 42 \rangle$ be vectors in \mathbb{R}^2 . If $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then a + b =
 - (a) 9
 - (b) 6
 - (c) 10
 - (d) 4
 - (e) 8

- 10. If the acceleration of a particle is $a(t) = 18\cos(3t)$, the initial velocity is $v_0 = 4$, and the initial position is $x_0 = -7$, then $x\left(\frac{\pi}{2}\right) =$
 - (a) $7 2\pi$
 - (b) $2\pi 5$
 - (c) $2\pi + 5$
 - (d) $2\pi 7$
 - (e) $2\pi + 7$

11. The solution of the initial-value problem

$$(x^2-9)\frac{dy}{dx}=12y, y(0)=4$$

is

- (a) $y = -4\left(\frac{x-3}{x+3}\right)^3$
- (b) $y = 4\left(\frac{x-2}{x+2}\right)^2$
- (c) $y = 4\left(\frac{x-3}{x+3}\right)^2$
- (d) $y = 4\left(\frac{x-3}{x+3}\right)^4$
- (e) $y = -4\left(\frac{x-2}{x+2}\right)^3$

12. The sum of all values of r such that $y = x^r$ is a solution of the differential equation

$$3x^2y'' + 6xy' + y = 0$$

is

- (a) -3
- (b) -1
- (c) -5
- (d) -2
- (e) -4

- 13. By making a suitable substitution, the differential equation $xy' = y + \sqrt{x^2 + y^2}$ can be transformed into a separable differential equation
 - (a) $\sqrt{1+v^2} \, dv = \frac{1}{x} \, dx$
 - (b) $\frac{1}{\sqrt{1+v^2}} dv = \frac{1}{x^2} dx$
 - $(c) \sqrt{1 + v^2} \, dv = x \, dx$
 - (d) $\frac{1}{\sqrt{1+v^2}} dv = x^2 dx$
 - (e) $\frac{1}{\sqrt{1+v^2}} dv = \frac{1}{x} dx$

- 14. The value of k for which the vector $\mathbf{u} = (1, 0, 2)$, $\mathbf{v} = (-1, 2, k)$ and $\mathbf{w} = (0, 9, 3)$ of \mathbb{R}^3 are linearly dependent is
 - (a) $-\frac{2}{3}$
 - (b) $\frac{2}{3}$
 - (c) $\frac{4}{5}$
 - (d) $-\frac{4}{3}$
 - (e) $\frac{3}{4}$

15. A general solution of the exact differential equation

$$(e^{2y} - y\cos(xy)) dx + (2xe^{2y} - x\cos(xy) + 2y) dy = 0$$

is

(a)
$$2xe^{2y} - \sin(xy) + y^2 = c$$

(b)
$$xe^{2y} - \sin(xy) + y^2 = c$$

(c)
$$xe^{2y} + y\sin(xy) + y^2 = c$$

(d)
$$3xe^{2y} + y\sin(xy) + y^2 = c$$

(e)
$$xe^{2y} - x\sin(xy) + y^2 = c$$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04 CODE04

Math 208 Major Exam I 243 03 July 2025

Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The solution of the initial-value problem

$$(x^2-9)\frac{dy}{dx}=12y, y(0)=4$$

is

(a)
$$y = -4\left(\frac{x-3}{x+3}\right)^3$$

(b)
$$y = 4\left(\frac{x-2}{x+2}\right)^2$$

(c)
$$y = 4\left(\frac{x-3}{x+3}\right)^4$$

(d)
$$y = -4\left(\frac{x-2}{x+2}\right)^3$$

(e)
$$y = 4\left(\frac{x-3}{x+3}\right)^2$$

2. The solution space of the system

$$x_1 - 2x_2 + 2x_3 + x_4 = 0$$

$$x_1 - x_2 + 2x_3 + 5x_4 = 0$$

$$x_1 - 4x_2 + 2x_3 - 7x_4 = 0$$

is the set of all linear combinations of the form $s\mathbf{u} + t\mathbf{v}$, where s and t are real numbers and

(a)
$$\mathbf{u} = (-2, 0, 1, 0)$$
 and $\mathbf{v} = (-9, -4, 0, -1)$

(b)
$$\mathbf{u} = (-2, 0, 1, 0)$$
 and $\mathbf{v} = (9, 4, 0, 1)$

(c)
$$\mathbf{u} = (2, 0, 1, 0)$$
 and $\mathbf{v} = (9, -4, 0, 1)$

(d)
$$\mathbf{u} = (-2, 0, 1, 0)$$
 and $\mathbf{v} = (-9, -4, 0, 1)$

(e)
$$\mathbf{u} = (-2, 0, -1, 0)$$
 and $\mathbf{v} = (9, -4, 0, 1)$

3. If the differential equation

$$(5x^4 - 4x^3y^3) dx + (5 + kx^4y^2) dy = 0$$

is an exact differential equation, then k =

- (a) -6
- (b) -4
- (c) -5
- (d) -7
- (e) -3

- 4. A culture initially has P_0 number of bacteria. At t = 1 hour the number of bacteria is measured to be $\frac{3}{2}P_0$. If the rate of growth is proportional to the number of bacteria P(t) present at time t, the time necessary for the number of bacteria is triple is
 - (a) $\frac{\ln 3}{\ln 7 \ln 5}$
 - (b) $\frac{\ln 2}{\ln 5 \ln 4}$
 - (c) $\frac{\ln 3}{\ln 3 \ln 2}$
 - (d) $\frac{\ln 3}{\ln 4 \ln 3}$
 - (e) $\frac{\ln 3}{\ln 3 + \ln 2}$

- 5. A general solution of the differential equation $y' = (9x + 4y)^2$ is given by
 - (a) $y = \frac{1}{8} [\tan(6x + c) 6x]$
 - (b) $y = \frac{3}{8} [\tan(6x + c) 6x]$
 - (c) $y = \frac{1}{5} [\tan(6x + c) 6x]$
 - (d) $y = \frac{3}{5} [\tan(6x + c) + 6x]$
 - (e) $y = \frac{1}{8} [\tan(6x + c) + 6x]$

- 6. Let $\mathbf{u} = \langle 2, 3 \rangle$, $\mathbf{v} = \langle -4, 5 \rangle$, $\mathbf{w} = \langle -16, 42 \rangle$ be vectors in \mathbb{R}^2 . If $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then a + b =
 - (a) 6
 - (b) 10
 - (c) 9
 - (d) 8
 - (e) 4

7. By making a suitable substitution, the differential equation $xy' = y + \sqrt{x^2 + y^2}$ can be transformed into a separable differential equation

(a)
$$\frac{1}{\sqrt{1+v^2}} dv = x^2 dx$$

(b)
$$\frac{1}{\sqrt{1+v^2}} dv = \frac{1}{x} dx$$

(c)
$$\frac{1}{\sqrt{1+v^2}} dv = \frac{1}{x^2} dx$$

(d)
$$\sqrt{1+v^2} \, dv = \frac{1}{x} \, dx$$

(e)
$$\sqrt{1+v^2} \, dv = x \, dx$$

- 8. Let $\mathbf{v} = (2, 5, -4)$ and $\mathbf{w} = (1, -2, -3)$ be two vectors in \mathbb{R}^3 . Find $|\mathbf{v} 2\mathbf{w}|$
 - (a) $\sqrt{83}$
 - (b) $\sqrt{87}$
 - (c) $\sqrt{17}$
 - (d) $\sqrt{85}$
 - (e) 9

- 9. The value of k for which the vector $\mathbf{u} = (1,0,2)$, $\mathbf{v} = (-1,2,k)$ and $\mathbf{w} = (0,9,3)$ of \mathbb{R}^3 are linearly dependent is
 - (a) $-\frac{2}{3}$
 - (b) $\frac{3}{4}$ (c) $\frac{4}{5}$

 - (d) $-\frac{4}{3}$
 - (e) $\frac{2}{3}$

- 10. Which one of the following subset is a subspace of \mathbb{R}^4 ?
 - (a) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 x_3 = 0$
 - (b) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 = 0$
 - (c) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 x_2 = 0$
 - (d) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 = 1$
 - (e) The set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 + x_2 = 1$

- 11. By making a suitable substitution, the differential equation $x^2y' + 2xy = 5y^4$ can be transformed into a linear differential equation
 - (a) $v' \frac{3}{x}v = -\frac{12}{x^2}$
 - (b) $v' + \frac{6}{x}v = -\frac{10}{x^2}$
 - (c) $v' + \frac{6}{x}v = -\frac{14}{x^2}$
 - (d) $v' \frac{6}{x}v = -\frac{20}{x^2}$
 - (e) $v' \frac{6}{x}v = -\frac{15}{x^2}$

- 12. The general solution of the linear differential equation $xy' = 2y + x^3 \cos x$ is given by
 - (a) $y(x) = x^3(\sin x + c)$
 - (b) $y(x) = x^3(\cos x + c)$
 - (c) $y(x) = x^2(\sin x + c)$
 - (d) $y(x) = x^2(\cos x + c)$
 - (e) $y(x) = x(\sin x + c)$

- 13. If the acceleration of a particle is $a(t) = 18\cos(3t)$, the initial velocity is $v_0 = 4$, and the initial position is $x_0 = -7$, then $x\left(\frac{\pi}{2}\right) =$
 - (a) $7 2\pi$
 - (b) $2\pi 5$
 - (c) $2\pi + 5$
 - (d) $2\pi 7$
 - (e) $2\pi + 7$

14. A general solution of the exact differential equation

$$(e^{2y} - y\cos(xy)) dx + (2xe^{2y} - x\cos(xy) + 2y) dy = 0$$

is

- (a) $xe^{2y} x\sin(xy) + y^2 = c$
- (b) $2xe^{2y} \sin(xy) + y^2 = c$
- (c) $xe^{2y} \sin(xy) + y^2 = c$
- (d) $xe^{2y} + y\sin(xy) + y^2 = c$
- (e) $3xe^{2y} + y\sin(xy) + y^2 = c$

15. The sum of all values of r such that $y = x^r$ is a solution of the differential equation

$$3x^2y'' + 6xy' + y = 0$$

is

- (a) -5
- (b) -4
- (c) -1
- (d) -2
- (e) -3

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	A	A 10	A 9	D 13	E 7
2	A	A 1	В 7	D 4	D 13
3	A	Е 13	А 3	E 10	E 1
4	A	В 15	C 5	A 11	C 4
5	A	E 6	В 2	A 14	В 10
6	A	Е 3	D 6	A 9	В 15
7	A	C 12	C 10	E ,	В 8
8	A	C 11	A 13	A 5	D 14
9	A	A 14	D 14	C 15	D 12
10	A	D 4	В 8	Вз	В 11
11	A	A 5	D 12	С 7	Е 9
12	A	C 8	E 4	В 2	C 5
13	A	В 2	С 1	E 8	Вз
14	A	A 7	E 15	D 12	C 6
15	A	D 9	D 11	В 6	C 2

Answer Counts

V	A	В	С	D	Ε
1	5	2	3	2	3
2	3	3	3	4	2
3	4	3	2	3	3
4	0	5	4	3	3