Math 208 Exam II 243 20 July 2025

EXAM COVER

Number of versions: 4 Number of questions: 15

Math 208 Exam II 243 20 July 2025

Net Time Allowed: 90 Minutes

MASTER VERSION

- 1. The rank of the matrix $A = \begin{bmatrix} 3 & 2 & 4 & 1 \\ 2 & 1 & 3 & 2 \\ 2 & 2 & 2 & 3 \\ 2 & 1 & 3 & 4 \end{bmatrix}$ is
 - (a) 3 _____(correct)
 - (b) 4
 - (c) 2
 - (d) 1
 - (e) 5

- 2. Consider the subspace S of \mathbb{R}^4 defined by $S = \{(x, y, z, w) | x + 8z = y + 7w = 0\}$. A basis of S consists of the vectors
 - (a) $\mathbf{v}_1 = (-8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, 1)$ _____(correct)
 - (b) $\mathbf{v}_1 = (8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, 1)$
 - (c) $\mathbf{v}_1 = (-8, 0, -1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, 1)$
 - (d) $\mathbf{v}_1 = (-8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, 7, 0, 1)$
 - (e) $\mathbf{v}_1 = (-8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, -1)$

3. If the solution space of the system

$$x_1 + 3x_2 - 4x_3 - 8x_4 + 6x_5 = 0$$

$$x_1 + 2x_3 + x_4 + 3x_5 = 0$$

$$2x_1 + 7x_2 - 10x_3 - 19x_4 + 13x_5 = 0$$

consists of all linear combination of the three vectors $v_1 = (\alpha, \beta, 1, 0, 0)$ $v_2 = (a, b, 0, 1, 0)$ and $v_3 = (m, n, 0, 0, 1)$ then $\alpha + \beta + a + b + m + n =$

- (a) -2 _____ (correct)
- (b) 3
- (c) 1
- (d) 4
- (e) -3

4. If W(x) is the Wronskian of the functions $f(x) = x, g(x) = \cos(\ln x), h(x) = \sin(\ln x), x > 0, \text{ then } W(x) = 0$

(a) $\frac{2}{x^2}$ (correct)

- (b) $\frac{3}{x^2}$ (c) $\frac{2}{x}$ (d) $\frac{3}{x}$

- (e) $\frac{1}{x^3}$

- 5. If y(x) is the solution of the initial-value problem y'' 10y' + 25y = 0; y(0) = 3, y'(0) = 13, then y(1) = 1
 - (a) e^5 _____(correct)
 - (b) $2e^5$
 - (c) 0
 - (d) $3e^5$
 - (e) $4e^5$

- 6. The general solution of the differential equation $y^{(4)} + y^{(3)} 3y'' 5y' 2y = 0$ is
 - (a) $y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$ _____(correct)
 - (b) $y(x) = c_1 e^{2x} + c_2 e^x + (c_3 + c_4 x) e^{-x}$
 - (c) $y(x) = c_1 e^{-2x} + c_2 e^x + (c_3 + c_4 x) e^{-x}$
 - (d) $y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^x$
 - (e) $y(x) = c_1 e^{-2x} + (c_2 + c_3 x + c_4 x^2) e^x$

7. A linear homogeneous constant-coefficient differential equation which has the general solution

$$y(x) = (A + Bx + Cx^2)\cos 2x + (D + Ex + Fx^2)\sin(2x)$$

is

(a)
$$y^{(6)} + 12y^{(4)} + 48y'' + 64y = 0$$
 _____(correct)

(b)
$$y^{(6)} - 12y^{(4)} + 48y'' + 64y = 0$$

(c)
$$y^{(6)} + 12y^{(4)} - 48y'' + 64y = 0$$

(d)
$$y^{(6)} + 12y^{(4)} + 48y'' - 64y = 0$$

(e)
$$y^{(6)} - 12y^{(4)} - 48y'' + 64y = 0$$

8. If $y_p = A + Bxe^x + Cx^2e^x$ is a particular solution of the differential equation $y'' + 2y' - 3y = 1 + xe^x$, then 9A + 16B =

- (a) -4 _____(correct)
- (b) 4
- (c) 3
- (d) -3
- (e) 0

- 9. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y^{(5)} y' = (1 + 2x)e^{-x} + 3$ is given by $y_p(x) =$
 - (a) $Ax + (Bx + Cx^2) e^{-x}$ _____(correct)
 - (b) $A + (B + Cx) e^{-x}$
 - (c) $Ax^2 + (B + Cx)e^{-x}$
 - (d) $Ax + (Bx^2 + Cx^3)e^{-x}$
 - (e) $Ax^2 + (Bx^2 + Cx^3)e^{-x}$

- 10. A particular solution of the differential equation $y'' + 9y = 2\sec(3x)$ is given by $y_p(x) =$
 - (a) $\frac{2}{9} \left[3x \sin(3x) + \cos(3x) \ln|\cos(3x)| \right]$ (correct)
 - (b) $\frac{2}{9} [x \sin(3x) + \cos(3x) \ln|\cos(3x)|]$
 - (c) $\frac{2}{9} [3x \cos(3x) + x \sin(3x)]$
 - (d) $\frac{2}{9} [3x \sin(3x) + 3x \cos(3x)]$
 - (e) $\frac{2}{9} [3x^2 \sin(3x) + 2\cos(3x) \ln|\cos(3x)|]$

- 11. The characteristic polynomial of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ -2 & 3 & -1 \\ -6 & 6 & 0 \end{bmatrix}$ is $p(\lambda) =$
 - (a) $-\lambda^3 + 4\lambda^2 3\lambda$ _____(correct)
 - (b) $-\lambda^3 + 6\lambda^2 3\lambda$
 - (c) $-\lambda^3 + 8\lambda^2 3\lambda$
 - (d) $-\lambda^3 + 4\lambda^2 + 3\lambda$
 - (e) $-\lambda^3 + 4\lambda^2 2\lambda$

- 12. An eigenvector associated with the eigenvalue $\lambda = 5$ of the matrix $A = \begin{bmatrix} 9 & -10 \\ 2 & 0 \end{bmatrix}$ is $\begin{bmatrix} a \\ 2 \end{bmatrix}$ where a =
 - (a) 5 _____(correct)
 - (b) -5
 - (c) 4
 - (d) -4
 - (e) 0

13. If the characteristic polynomial of the matrix

$$A = \begin{bmatrix} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ is } p(\lambda) = -(\lambda - 1)^2(\lambda - 3),$$

then a basis for the eigenspace of $\lambda = 1$ is

$$V_1 = \begin{bmatrix} \alpha \\ 1 \\ 0 \end{bmatrix}, V_2 = \begin{bmatrix} \beta \\ 0 \\ 1 \end{bmatrix}, \text{ where } \alpha + \beta =$$

- (a) -2 _____(correct)
- (b) -3
- (c) -4
- (d) 3
- (e) 5

14. Given that $y = \cos(2x)$ is a solution of the differential equation $6y^{(4)} + 5y^{(3)} + 25y'' + 20y' + 4y = 0$. The general solution of the differential equation is

(a)
$$y(x) = c_1 e^{-x/2} + c_2 e^{-x/3} + c_3 \cos(2x) + c_4 \sin(2x)$$
 _____(correct)

(b)
$$y(x) = c_1 e^{-x/2} + c_2 e^{-x/4} + c_3 \cos(2x) + c_4 \sin(2x)$$

(c)
$$y(x) = c_1 e^{-x} + c_2 e^{-2x} + c_3 \cos(2x) + c_4 \sin(2x)$$

(d)
$$y(x) = c_1 e^{2x} + c_2 e^{-x} + c_3 \cos(2x) + c_4 \sin(2x)$$

(e)
$$y(x) = c_1 e^{-x/2} + c_2 e^x + c_3 \cos(2x) + c_4 \sin(2x)$$

15. If the matrix $A = \begin{bmatrix} 5 & -4 \\ 3 & -2 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ _____(correct)

(b)
$$P = \begin{bmatrix} 4 & 1 \\ 3 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(c)
$$P = \begin{bmatrix} 1 & 4 \\ -1 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(d)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 0 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(e)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$

CODE01 CODE01

Math 208 Exam II 243 20 July 2025

Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. If y(x) is the solution of the initial-value problem y'' 10y' + 25y = 0; y(0) = 3, y'(0) = 13, then y(1) =
 - (a) $3e^5$
 - (b) e^{5}
 - (c) $2e^5$
 - (d) 0
 - (e) $4e^5$

- 2. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y^{(5)} y' = (1 + 2x)e^{-x} + 3$ is given by $y_p(x) =$
 - (a) $Ax + (Bx + Cx^2)e^{-x}$
 - (b) $Ax + (Bx^2 + Cx^3)e^{-x}$
 - (c) $A + (B + Cx) e^{-x}$
 - (d) $Ax^2 + (B + Cx)e^{-x}$
 - (e) $Ax^2 + (Bx^2 + Cx^3)e^{-x}$

- 3. Consider the subspace S of \mathbb{R}^4 defined by $S = \{(x, y, z, w) | x + 8z = y + 7w = 0\}$. A basis of S consists of the vectors
 - (a) $\mathbf{v}_1 = (-8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, -1)$
 - (b) $\mathbf{v}_1 = (-8, 0, -1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, 1)$
 - (c) $\mathbf{v}_1 = (-8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, 7, 0, 1)$
 - (d) $\mathbf{v}_1 = (8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, 1)$
 - (e) $\mathbf{v}_1 = (-8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, 1)$

4. If the solution space of the system

$$x_1 + 3x_2 - 4x_3 - 8x_4 + 6x_5 = 0$$
$$x_1 + 2x_3 + x_4 + 3x_5 = 0$$
$$2x_1 + 7x_2 - 10x_3 - 19x_4 + 13x_5 = 0$$

consists of all linear combination of the three vectors $v_1 = (\alpha, \beta, 1, 0, 0)$ $v_2 = (a, b, 0, 1, 0)$ and $v_3 = (m, n, 0, 0, 1)$ then $\alpha + \beta + a + b + m + n =$

- (a) -2
- (b) 1
- (c) 4
- (d) -3
- (e) 3

- 5. If $y_p = A + Bxe^x + Cx^2e^x$ is a particular solution of the differential equation $y'' + 2y' 3y = 1 + xe^x$, then 9A + 16B =
 - (a) 4
 - (b) 0
 - (c) 3
 - (d) -4
 - (e) -3

6. If the characteristic polynomial of the matrix

$$A = \begin{bmatrix} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ is } p(\lambda) = -(\lambda - 1)^2 (\lambda - 3),$$

then a basis for the eigenspace of $\lambda = 1$ is

$$V_1 = \begin{bmatrix} \alpha \\ 1 \\ 0 \end{bmatrix}, V_2 = \begin{bmatrix} \beta \\ 0 \\ 1 \end{bmatrix}, \text{ where } \alpha + \beta =$$

- (a) -2
- (b) -3
- (c) -4
- (d) 3
- (e) 5

- 7. A particular solution of the differential equation $y'' + 9y = 2\sec(3x)$ is given by $y_p(x) =$
 - (a) $\frac{2}{9} [x \sin(3x) + \cos(3x) \ln|\cos(3x)|]$
 - (b) $\frac{2}{9} [3x \cos(3x) + x \sin(3x)]$
 - (c) $\frac{2}{9} [3x \sin(3x) + \cos(3x) \ln|\cos(3x)|]$
 - (d) $\frac{2}{9} [3x \sin(3x) + 3x \cos(3x)]$
 - (e) $\frac{2}{9} [3x^2 \sin(3x) + 2\cos(3x) \ln|\cos(3x)|]$

- 8. The rank of the matrix $A = \begin{bmatrix} 3 & 2 & 4 & 1 \\ 2 & 1 & 3 & 2 \\ 2 & 2 & 2 & 3 \\ 2 & 1 & 3 & 4 \end{bmatrix}$ is
 - (a) 5
 - (b) 4
 - (c) 1
 - (d) 3
 - (e) 2

9. A linear homogeneous constant-coefficient differential equation which has the general solution

$$y(x) = (A + Bx + Cx^{2})\cos 2x + (D + Ex + Fx^{2})\sin(2x)$$

is

(a)
$$y^{(6)} + 12y^{(4)} + 48y'' - 64y = 0$$

(b)
$$y^{(6)} + 12y^{(4)} + 48y'' + 64y = 0$$

(c)
$$y^{(6)} - 12y^{(4)} + 48y'' + 64y = 0$$

(d)
$$y^{(6)} + 12y^{(4)} - 48y'' + 64y = 0$$

(e)
$$y^{(6)} - 12y^{(4)} - 48y'' + 64y = 0$$

10. If the matrix $A = \begin{bmatrix} 5 & -4 \\ 3 & -2 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 1 & 4 \\ -1 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(b)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(c)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 0 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(d)
$$P = \begin{bmatrix} 4 & 1 \\ 3 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(e)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$

11. If W(x) is the Wronskian of the functions

$$f(x) = x, g(x) = \cos(\ln x), h(x) = \sin(\ln x), x > 0, \text{ then } W(x) = 0$$

- (a) $\frac{3}{x^2}$
- $\begin{array}{c} x^2 \\ \text{(b)} \ \frac{3}{x} \\ \text{(c)} \ \frac{2}{x} \end{array}$
- (d) $\frac{1}{x^3}$
- (e) $\frac{2}{r^2}$

- 12. The general solution of the differential equation $y^{(4)} + y^{(3)} 3y'' 5y' 2y = 0$ is
 - (a) $y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$
 - (b) $y(x) = c_1 e^{2x} + c_2 e^x + (c_3 + c_4 x) e^{-x}$
 - (c) $y(x) = c_1 e^{-2x} + (c_2 + c_3 x + c_4 x^2) e^x$
 - (d) $y(x) = c_1 e^{-2x} + c_2 e^x + (c_3 + c_4 x) e^{-x}$
 - (e) $y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^x$

- 13. An eigenvector associated with the eigenvalue $\lambda = 5$ of the matrix $A = \begin{bmatrix} 9 & -10 \\ 2 & 0 \end{bmatrix}$ is $\begin{bmatrix} a \\ 2 \end{bmatrix}$ where a =
 - (a) 0
 - (b) 5
 - (c) -4
 - (d) -5
 - (e) 4

- 14. Given that $y = \cos(2x)$ is a solution of the differential equation $6y^{(4)} + 5y^{(3)} + 25y'' + 20y' + 4y = 0$. The general solution of the differential equation is
 - (a) $y(x) = c_1 e^{-x/2} + c_2 e^x + c_3 \cos(2x) + c_4 \sin(2x)$
 - (b) $y(x) = c_1 e^{-x} + c_2 e^{-2x} + c_3 \cos(2x) + c_4 \sin(2x)$
 - (c) $y(x) = c_1 e^{-x/2} + c_2 e^{-x/4} + c_3 \cos(2x) + c_4 \sin(2x)$
 - (d) $y(x) = c_1 e^{-x/2} + c_2 e^{-x/3} + c_3 \cos(2x) + c_4 \sin(2x)$
 - (e) $y(x) = c_1 e^{2x} + c_2 e^{-x} + c_3 \cos(2x) + c_4 \sin(2x)$

15. The characteristic polynomial of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ -2 & 3 & -1 \\ -6 & 6 & 0 \end{bmatrix}$ is $p(\lambda) =$

(a)
$$-\lambda^3 + 4\lambda^2 - 2\lambda$$

(b)
$$-\lambda^3 + 4\lambda^2 - 3\lambda$$

(c)
$$-\lambda^3 + 8\lambda^2 - 3\lambda$$

(d)
$$-\lambda^3 + 4\lambda^2 + 3\lambda$$

(e)
$$-\lambda^3 + 6\lambda^2 - 3\lambda$$

CODE02 CODE02

Math 208 Exam II 243 20 July 2025

Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The rank of the matrix $A = \begin{bmatrix} 3 & 2 & 4 & 1 \\ 2 & 1 & 3 & 2 \\ 2 & 2 & 2 & 3 \\ 2 & 1 & 3 & 4 \end{bmatrix}$ is
 - (a) 3
 - (b) 4
 - (c) 1
 - (d) 5
 - (e) 2

2. The general solution of the differential equation $y^{(4)} + y^{(3)} - 3y'' - 5y' - 2y = 0$ is

(a)
$$y(x) = c_1 e^{-2x} + c_2 e^x + (c_3 + c_4 x) e^{-x}$$

(b)
$$y(x) = c_1 e^{2x} + c_2 e^x + (c_3 + c_4 x) e^{-x}$$

(c)
$$y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$$

(d)
$$y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^x$$

(e)
$$y(x) = c_1 e^{-2x} + (c_2 + c_3 x + c_4 x^2) e^x$$

- 3. A particular solution of the differential equation $y'' + 9y = 2\sec(3x)$ is given by $y_p(x) =$
 - (a) $\frac{2}{9} [3x \sin(3x) + \cos(3x) \ln|\cos(3x)|]$
 - (b) $\frac{2}{9} [3x \cos(3x) + x \sin(3x)]$
 - (c) $\frac{2}{9} [3x \sin(3x) + 3x \cos(3x)]$
 - (d) $\frac{2}{9} \left[x \sin(3x) + \cos(3x) \ln|\cos(3x)| \right]$
 - (e) $\frac{2}{9} \left[3x^2 \sin(3x) + 2\cos(3x) \ln|\cos(3x)| \right]$

4. A linear homogeneous constant-coefficient differential equation which has the general solution

$$y(x) = (A + Bx + Cx^{2})\cos 2x + (D + Ex + Fx^{2})\sin(2x)$$

is

(a)
$$y^{(6)} - 12y^{(4)} - 48y'' + 64y = 0$$

(b)
$$y^{(6)} + 12y^{(4)} + 48y'' - 64y = 0$$

(c)
$$y^{(6)} + 12y^{(4)} - 48y'' + 64y = 0$$

(d)
$$y^{(6)} - 12y^{(4)} + 48y'' + 64y = 0$$

(e)
$$y^{(6)} + 12y^{(4)} + 48y'' + 64y = 0$$

5. An eigenvector associated with the eigenvalue $\lambda = 5$ of the

matrix
$$A = \begin{bmatrix} 9 & -10 \\ 2 & 0 \end{bmatrix}$$
 is $\begin{bmatrix} a \\ 2 \end{bmatrix}$ where $a =$

- (a) 5
- (b) 4
- (c) 0
- (d) -5
- (e) -4

6. If the solution space of the system

$$x_1 + 3x_2 - 4x_3 - 8x_4 + 6x_5 = 0$$
$$x_1 + 2x_3 + x_4 + 3x_5 = 0$$
$$2x_1 + 7x_2 - 10x_3 - 19x_4 + 13x_5 = 0$$

consists of all linear combination of the three vectors $v_1 = (\alpha, \beta, 1, 0, 0)$ $v_2 = (a, b, 0, 1, 0)$ and $v_3 = (m, n, 0, 0, 1)$ then $\alpha + \beta + a + b + m + n =$

- (a) -3
- (b) 4
- (c) 3
- (d) 1
- (e) -2

- 7. If $y_p = A + Bxe^x + Cx^2e^x$ is a particular solution of the differential equation $y'' + 2y' 3y = 1 + xe^x$, then 9A + 16B =
 - (a) -3
 - (b) 0
 - (c) 3
 - (d) 4
 - (e) -4

- 8. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y^{(5)} y' = (1 + 2x)e^{-x} + 3$ is given by $y_p(x) =$
 - (a) $A + (B + Cx) e^{-x}$
 - (b) $Ax^2 + (B + Cx)e^{-x}$
 - (c) $Ax^2 + (Bx^2 + Cx^3)e^{-x}$
 - (d) $Ax + (Bx^2 + Cx^3)e^{-x}$
 - (e) $Ax + (Bx + Cx^2)e^{-x}$

- 9. If W(x) is the Wronskian of the functions $f(x) = x, g(x) = \cos(\ln x), h(x) = \sin(\ln x), x > 0, \text{ then } W(x) = 0$
 - (a) $\frac{1}{x^3}$
 - (b) $\frac{3}{x^2}$ (c) $\frac{3}{x}$ (d) $\frac{2}{x}$ (e) $\frac{2}{x^2}$

- 10. The characteristic polynomial of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ -2 & 3 & -1 \\ -6 & 6 & 0 \end{bmatrix}$ is $p(\lambda) =$
 - (a) $-\lambda^3 + 4\lambda^2 2\lambda$
 - (b) $-\lambda^3 + 4\lambda^2 3\lambda$
 - (c) $-\lambda^3 + 4\lambda^2 + 3\lambda$
 - (d) $-\lambda^3 + 6\lambda^2 3\lambda$
 - (e) $-\lambda^3 + 8\lambda^2 3\lambda$

- 11. If the matrix $A = \begin{bmatrix} 5 & -4 \\ 3 & -2 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then
 - (a) $P = \begin{bmatrix} 4 & 1 \\ 3 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
 - (b) $P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
 - (c) $P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$, $D = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$
 - (d) $P = \begin{bmatrix} 1 & 4 \\ 1 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
 - (e) $P = \begin{bmatrix} 1 & 4 \\ -1 & 3 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
- 12. If the characteristic polynomial of the matrix

$$A = \begin{bmatrix} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ is } p(\lambda) = -(\lambda - 1)^2 (\lambda - 3),$$

then a basis for the eigenspace of $\lambda = 1$ is

$$V_1 = \begin{bmatrix} \alpha \\ 1 \\ 0 \end{bmatrix}, V_2 = \begin{bmatrix} \beta \\ 0 \\ 1 \end{bmatrix}, \text{ where } \alpha + \beta = \beta$$

- (a) 5
- (b) -3
- (c) -2
- (d) -4
- (e) 3

13. Given that $y = \cos(2x)$ is a solution of the differential equation $6y^{(4)} + 5y^{(3)} + 25y'' + 20y' + 4y = 0$. The general solution of the differential equation is

(a)
$$y(x) = c_1 e^{2x} + c_2 e^{-x} + c_3 \cos(2x) + c_4 \sin(2x)$$

(b)
$$y(x) = c_1 e^{-x/2} + c_2 e^{-x/3} + c_3 \cos(2x) + c_4 \sin(2x)$$

(c)
$$y(x) = c_1 e^{-x/2} + c_2 e^x + c_3 \cos(2x) + c_4 \sin(2x)$$

(d)
$$y(x) = c_1 e^{-x} + c_2 e^{-2x} + c_3 \cos(2x) + c_4 \sin(2x)$$

(e)
$$y(x) = c_1 e^{-x/2} + c_2 e^{-x/4} + c_3 \cos(2x) + c_4 \sin(2x)$$

14. Consider the subspace S of \mathbb{R}^4 defined by $S = \{(x, y, z, w) | x + 8z = y + 7w = 0\}$. A basis of S consists of the vectors

(a)
$$\mathbf{v}_1 = (8, 0, 1, 0)$$
 and $\mathbf{v}_2 = (0, -7, 0, 1)$

(b)
$$\mathbf{v}_1 = (-8, 0, -1, 0)$$
 and $\mathbf{v}_2 = (0, -7, 0, 1)$

(c)
$$\mathbf{v}_1 = (-8, 0, 1, 0)$$
 and $\mathbf{v}_2 = (0, -7, 0, 1)$

(d)
$$\mathbf{v}_1 = (-8, 0, 1, 0)$$
 and $\mathbf{v}_2 = (0, 7, 0, 1)$

(e)
$$\mathbf{v}_1 = (-8, 0, 1, 0)$$
 and $\mathbf{v}_2 = (0, -7, 0, -1)$

- 15. If y(x) is the solution of the initial-value problem y'' 10y' + 25y = 0; y(0) = 3, y'(0) = 13, then y(1) =
 - (a) $2e^5$
 - (b) $3e^5$
 - (c) $4e^5$
 - (d) e^{5}
 - (e) 0

CODE03 CODE03

Math 208 Exam II 243 20 July 2025

Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. If W(x) is the Wronskian of the functions $f(x) = x, g(x) = \cos(\ln x), h(x) = \sin(\ln x), x > 0, \text{ then } W(x) = 0$

 - (a) $\frac{3}{x}$ (b) $\frac{2}{x}$ (c) $\frac{2}{x^2}$
 - (d) $\frac{1}{x^3}$
 - (e) $\frac{3}{x^2}$

- 2. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y^{(5)} - y' = (1 + 2x)e^{-x} + 3$ is given by $y_p(x) =$
 - (a) $Ax^2 + (Bx^2 + Cx^3)e^{-x}$
 - (b) $A + (B + Cx) e^{-x}$
 - (c) $Ax^2 + (B + Cx)e^{-x}$
 - (d) $Ax + (Bx + Cx^2)e^{-x}$
 - (e) $Ax + (Bx^2 + Cx^3)e^{-x}$

- 3. The rank of the matrix $A = \begin{bmatrix} 3 & 2 & 4 & 1 \\ 2 & 1 & 3 & 2 \\ 2 & 2 & 2 & 3 \\ 2 & 1 & 3 & 4 \end{bmatrix}$ is
 - (a) 1
 - (b) 3
 - (c) 2
 - (d) 4
 - (e) 5

- 4. Consider the subspace S of \mathbb{R}^4 defined by $S = \{(x, y, z, w) | x + 8z = y + 7w = 0\}$. A basis of S consists of the vectors
 - (a) $\mathbf{v}_1 = (-8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, -1)$
 - (b) $\mathbf{v}_1 = (-8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, 7, 0, 1)$
 - (c) $\mathbf{v}_1 = (-8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, 1)$
 - (d) $\mathbf{v}_1 = (8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, 1)$
 - (e) $\mathbf{v}_1 = (-8, 0, -1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, 1)$

- 5. An eigenvector associated with the eigenvalue $\lambda=5$ of the matrix $A=\begin{bmatrix} 9 & -10 \\ 2 & 0 \end{bmatrix}$ is $\begin{bmatrix} a \\ 2 \end{bmatrix}$ where a=
 - (a) -4
 - (b) 5
 - (c) -5
 - (d) 0
 - (e) 4

- 6. If $y_p = A + Bxe^x + Cx^2e^x$ is a particular solution of the differential equation $y'' + 2y' 3y = 1 + xe^x$, then 9A + 16B =
 - (a) 0
 - (b) -3
 - (c) 3
 - (d) 4
 - (e) -4

7. The general solution of the differential equation $y^{(4)} + y^{(3)} - 3y'' - 5y' - 2y = 0$ is

(a)
$$y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^x$$

(b)
$$y(x) = c_1 e^{2x} + c_2 e^x + (c_3 + c_4 x) e^{-x}$$

(c)
$$y(x) = c_1 e^{-2x} + (c_2 + c_3 x + c_4 x^2) e^x$$

(d)
$$y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$$

(e)
$$y(x) = c_1 e^{-2x} + c_2 e^x + (c_3 + c_4 x) e^{-x}$$

8. A particular solution of the differential equation $y'' + 9y = 2\sec(3x)$ is given by $y_p(x) =$

(a)
$$\frac{2}{9} \left[x \sin(3x) + \cos(3x) \ln|\cos(3x)| \right]$$

(b)
$$\frac{2}{9} [3x \sin(3x) + 3x \cos(3x)]$$

(c)
$$\frac{2}{9} [3x \cos(3x) + x \sin(3x)]$$

(d)
$$\frac{2}{9} [3x^2 \sin(3x) + 2\cos(3x) \ln|\cos(3x)|]$$

(e)
$$\frac{2}{9} [3x \sin(3x) + \cos(3x) \ln|\cos(3x)|]$$

- 9. The characteristic polynomial of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ -2 & 3 & -1 \\ -6 & 6 & 0 \end{bmatrix}$ is $p(\lambda) =$
 - (a) $-\lambda^3 + 6\lambda^2 3\lambda$
 - (b) $-\lambda^3 + 4\lambda^2 3\lambda$
 - (c) $-\lambda^3 + 8\lambda^2 3\lambda$
 - (d) $-\lambda^3 + 4\lambda^2 2\lambda$
 - (e) $-\lambda^3 + 4\lambda^2 + 3\lambda$

10. A linear homogeneous constant-coefficient differential equation which has the general solution

$$y(x) = (A + Bx + Cx^{2})\cos 2x + (D + Ex + Fx^{2})\sin(2x)$$

is

- (a) $y^{(6)} 12y^{(4)} 48y'' + 64y = 0$
- (b) $y^{(6)} + 12y^{(4)} 48y'' + 64y = 0$
- (c) $y^{(6)} 12y^{(4)} + 48y'' + 64y = 0$
- (d) $y^{(6)} + 12y^{(4)} + 48y'' 64y = 0$
- (e) $y^{(6)} + 12y^{(4)} + 48y'' + 64y = 0$

11. If the characteristic polynomial of the matrix

$$A = \begin{bmatrix} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ is } p(\lambda) = -(\lambda - 1)^2(\lambda - 3),$$

then a basis for the eigenspace of $\lambda = 1$ is

$$V_1 = \begin{bmatrix} \alpha \\ 1 \\ 0 \end{bmatrix}, V_2 = \begin{bmatrix} \beta \\ 0 \\ 1 \end{bmatrix}, \text{ where } \alpha + \beta =$$

- (a) -2
- (b) -4
- (c) -3
- (d) 5
- (e) 3

12. If y(x) is the solution of the initial-value problem y'' - 10y' + 25y = 0; y(0) = 3, y'(0) = 13, then y(1) = 1

- (a) $2e^5$
- (b) e^{5}
- (c) $3e^5$
- (d) 0
- (e) $4e^5$

13. If the solution space of the system

$$x_1 + 3x_2 - 4x_3 - 8x_4 + 6x_5 = 0$$

$$x_1 + 2x_3 + x_4 + 3x_5 = 0$$

$$2x_1 + 7x_2 - 10x_3 - 19x_4 + 13x_5 = 0$$

consists of all linear combination of the three vectors $v_1 = (\alpha, \beta, 1, 0, 0)$ $v_2 = (a, b, 0, 1, 0)$ and $v_3 = (m, n, 0, 0, 1)$ then $\alpha + \beta + a + b + m + n =$

- (a) 4
- (b) -3
- (c) -2
- (d) 1
- (e) 3

14. If the matrix $A = \begin{bmatrix} 5 & -4 \\ 3 & -2 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(b)
$$P = \begin{bmatrix} 1 & 4 \\ -1 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(c)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$

(d)
$$P = \begin{bmatrix} 4 & 1 \\ 3 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(e)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 0 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

15. Given that $y = \cos(2x)$ is a solution of the differential equation $6y^{(4)} + 5y^{(3)} + 25y'' + 20y' + 4y = 0$. The general solution of the differential equation is

(a)
$$y(x) = c_1 e^{2x} + c_2 e^{-x} + c_3 \cos(2x) + c_4 \sin(2x)$$

(b)
$$y(x) = c_1 e^{-x/2} + c_2 e^x + c_3 \cos(2x) + c_4 \sin(2x)$$

(c)
$$y(x) = c_1 e^{-x} + c_2 e^{-2x} + c_3 \cos(2x) + c_4 \sin(2x)$$

(d)
$$y(x) = c_1 e^{-x/2} + c_2 e^{-x/4} + c_3 \cos(2x) + c_4 \sin(2x)$$

(e)
$$y(x) = c_1 e^{-x/2} + c_2 e^{-x/3} + c_3 \cos(2x) + c_4 \sin(2x)$$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04 CODE04

Math 208 Exam II 243 20 July 2025

Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. A particular solution of the differential equation $y'' + 9y = 2\sec(3x)$ is given by $y_p(x) =$
 - (a) $\frac{2}{9} [3x^2 \sin(3x) + 2\cos(3x) \ln|\cos(3x)|]$
 - (b) $\frac{2}{9} [x \sin(3x) + \cos(3x) \ln|\cos(3x)|]$
 - (c) $\frac{2}{9} [3x \sin(3x) + \cos(3x) \ln|\cos(3x)|]$
 - (d) $\frac{2}{9} [3x \sin(3x) + 3x \cos(3x)]$
 - (e) $\frac{2}{9} [3x \cos(3x) + x \sin(3x)]$

- 2. An appropriate form of a particular solution y_p for the non-homogeneous differential equation $y^{(5)} y' = (1 + 2x)e^{-x} + 3$ is given by $y_p(x) =$
 - (a) $A + (B + Cx) e^{-x}$
 - (b) $Ax + (Bx + Cx^2)e^{-x}$
 - (c) $Ax + (Bx^2 + Cx^3)e^{-x}$
 - (d) $Ax^2 + (B + Cx)e^{-x}$
 - (e) $Ax^2 + (Bx^2 + Cx^3)e^{-x}$

3. A linear homogeneous constant-coefficient differential equation which has the general solution

$$y(x) = (A + Bx + Cx^{2})\cos 2x + (D + Ex + Fx^{2})\sin(2x)$$

is

(a)
$$y^{(6)} - 12y^{(4)} + 48y'' + 64y = 0$$

(b)
$$y^{(6)} + 12y^{(4)} + 48y'' + 64y = 0$$

(c)
$$y^{(6)} + 12y^{(4)} - 48y'' + 64y = 0$$

(d)
$$y^{(6)} + 12y^{(4)} + 48y'' - 64y = 0$$

(e)
$$y^{(6)} - 12y^{(4)} - 48y'' + 64y = 0$$

4. The general solution of the differential equation $y^{(4)} + y^{(3)} - 3y'' - 5y' - 2y = 0$ is

(a)
$$y(x) = c_1 e^{2x} + c_2 e^x + (c_3 + c_4 x) e^{-x}$$

(b)
$$y(x) = c_1 e^{-2x} + c_2 e^x + (c_3 + c_4 x) e^{-x}$$

(c)
$$y(x) = c_1 e^{-2x} + (c_2 + c_3 x + c_4 x^2) e^x$$

(d)
$$y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^x$$

(e)
$$y(x) = c_1 e^{2x} + (c_2 + c_3 x + c_4 x^2) e^{-x}$$

5. Given that $y = \cos(2x)$ is a solution of the differential equation $6y^{(4)} + 5y^{(3)} + 25y'' + 20y' + 4y = 0$. The general solution of the differential equation is

(a)
$$y(x) = c_1 e^{-x/2} + c_2 e^{-x/4} + c_3 \cos(2x) + c_4 \sin(2x)$$

(b)
$$y(x) = c_1 e^{2x} + c_2 e^{-x} + c_3 \cos(2x) + c_4 \sin(2x)$$

(c)
$$y(x) = c_1 e^{-x/2} + c_2 e^{-x/3} + c_3 \cos(2x) + c_4 \sin(2x)$$

(d)
$$y(x) = c_1 e^{-x} + c_2 e^{-2x} + c_3 \cos(2x) + c_4 \sin(2x)$$

(e) $y(x) = c_1 e^{-x/2} + c_2 e^x + c_3 \cos(2x) + c_4 \sin(2x)$

6. If the solution space of the system

$$x_1 + 3x_2 - 4x_3 - 8x_4 + 6x_5 = 0$$
$$x_1 + 2x_3 + x_4 + 3x_5 = 0$$
$$2x_1 + 7x_2 - 10x_3 - 19x_4 + 13x_5 = 0$$

consists of all linear combination of the three vectors $v_1 = (\alpha, \beta, 1, 0, 0)$ $v_2 = (a, b, 0, 1, 0)$ and $v_3 = (m, n, 0, 0, 1)$ then $\alpha + \beta + a + b + m + n =$

- (a) 4
- (b) 1
- (c) 3
- (d) -2
- (e) -3

- 7. If $y_p = A + Bxe^x + Cx^2e^x$ is a particular solution of the differential equation $y'' + 2y' 3y = 1 + xe^x$, then 9A + 16B =
 - (a) 3
 - (b) -3
 - (c) 4
 - (d) -4
 - (e) 0

8. The characteristic polynomial of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ -2 & 3 & -1 \\ -6 & 6 & 0 \end{bmatrix}$ is $p(\lambda) =$

(a)
$$-\lambda^3 + 4\lambda^2 + 3\lambda$$

(b)
$$-\lambda^3 + 4\lambda^2 - 3\lambda$$

(c)
$$-\lambda^3 + 8\lambda^2 - 3\lambda$$

(d)
$$-\lambda^3 + 6\lambda^2 - 3\lambda$$

(e)
$$-\lambda^3 + 4\lambda^2 - 2\lambda$$

- 9. The rank of the matrix $A = \begin{bmatrix} 3 & 2 & 4 & 1 \\ 2 & 1 & 3 & 2 \\ 2 & 2 & 2 & 3 \\ 2 & 1 & 3 & 4 \end{bmatrix}$ is
 - (a) 2
 - (b) 1
 - (c) 5
 - (d) 3
 - (e) 4

- 10. If W(x) is the Wronskian of the functions $f(x) = x, g(x) = \cos(\ln x), h(x) = \sin(\ln x), x > 0, \text{ then } W(x) =$

 - (a) $\frac{2}{x}$ (b) $\frac{3}{x^2}$

 - (c) $\frac{1}{x^3}$ (d) $\frac{2}{x^2}$ (e) $\frac{3}{x}$

- 11. An eigenvector associated with the eigenvalue $\lambda=5$ of the matrix $A=\begin{bmatrix} 9 & -10 \\ 2 & 0 \end{bmatrix}$ is $\begin{bmatrix} a \\ 2 \end{bmatrix}$ where a=
 - (a) -5
 - (b) 5
 - (c) 4
 - (d) 0
 - (e) -4

- 12. If y(x) is the solution of the initial-value problem y'' 10y' + 25y = 0; y(0) = 3, y'(0) = 13, then y(1) =
 - (a) $2e^5$
 - (b) $3e^5$
 - (c) 0
 - (d) $4e^5$
 - (e) e^{5}

13. Consider the subspace S of \mathbb{R}^4 defined by

 $S = \{(x, y, z, w) | x + 8z = y + 7w = 0\}$. A basis of S consists of the vectors

- (a) $\mathbf{v}_1 = (8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, 1)$
- (b) $\mathbf{v}_1 = (-8, 0, -1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, 1)$
- (c) $\mathbf{v}_1 = (-8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, 1)$
- (d) $\mathbf{v}_1 = (-8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, -7, 0, -1)$
- (e) $\mathbf{v}_1 = (-8, 0, 1, 0)$ and $\mathbf{v}_2 = (0, 7, 0, 1)$

14. If the characteristic polynomial of the matrix

$$A = \begin{bmatrix} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ is } p(\lambda) = -(\lambda - 1)^2 (\lambda - 3),$$

then a basis for the eigenspace of $\lambda = 1$ is

$$V_1 = \begin{bmatrix} \alpha \\ 1 \\ 0 \end{bmatrix}, V_2 = \begin{bmatrix} \beta \\ 0 \\ 1 \end{bmatrix}, \text{ where } \alpha + \beta = \beta$$

- (a) 5
- (b) -3
- (c) 3
- (d) -4
- (e) -2

15. If the matrix $A = \begin{bmatrix} 5 & -4 \\ 3 & -2 \end{bmatrix}$ is diagonalizable with a diagonalizing matrix P and a diagonal matrix D such that $P^{-1}AP = D$, then

(a)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 0 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(b)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(c)
$$P = \begin{bmatrix} 4 & 1 \\ 3 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(d)
$$P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$

(e)
$$P = \begin{bmatrix} 1 & 4 \\ -1 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	A	В 5	A 1	C 4	C 10
2	A	A 9	С 6	D 9	В 9
3	A	E 2	A 10	В 1	В 7
4	A	А 3	E 7	C 2	Е 6
5	A	D 8	A 12	В 12	C 14
6	A	A 13	Е 3	E 8	D 3
7	A	C 10	E 8	D 6	D 8
8	A	D_{1}	E 9	E 10	В 11
9	A	В 7	E 4	В 11	D 1
10	A	В 15	В 11	E 7	D 4
11	A	E 4	В 15	A 13	В 12
12	A	A 6	C 13	В 5	E 5
13	A	В 12	В 14	С 3	C 2
14	A	D 14	C 2	A 15	E 13
15	A	В 11	D 5	E 14	В 15

Answer Counts

V	A	В	С	D	Е
1	4	5	1	3	2
2	3	3	3	1	5
3	2	4	3	2	4
4	0	5	3	4	3