King Fahd University of Petroleum and Minerals Department of Mathematics

Math 208 Final Exam 243

07 August 2025

Net Time Allowed: 120 Minutes

USE THIS AS A TEMPLATE

Write your questions, once you are satisfied upload this file.

1. The general solution of the linear differential equation

$$(x^2+4)y'+3xy=x$$
 is given by

(a)
$$y(x) = \frac{1}{3} + c(x^2 + 4)^{-3/2}$$

(b)
$$y(x) = \frac{1}{3} + c(x^2 + 4)^{-1/2}$$

(c)
$$y(x) = \frac{1}{3} + c(x^2 + 4)^{-5/2}$$

(d)
$$y(x) = \frac{1}{3} + c(x^2 + 4)^2$$

(e)
$$y(x) = \frac{1}{3} + c(x^2 + 4)^{-2}$$

2. The solution of the exact differential equation

$$(3x^2y^3 + y^4) dx + (3x^3y^2 + y^4 + 4xy^3) dy = 0$$
 is given by

(a)
$$x^3y^3 + xy^4 + \frac{1}{5}y^5 = c$$

(b)
$$x^3y^2 + xy^4 + y^5 = c$$

(c)
$$x^3y^3 + 2xy^4 + \frac{1}{5}y^5 = c$$

(d)
$$x^3y^3 - 2xy^4 + y^5 = c$$

(e)
$$x^3y^3 + 3xy^4 + \frac{1}{5}y^5 = c$$

- 3. The general solution of the differential equation $yy'' + (y')^2 = 0$ is given by
 - (a) $x(y) = Ay^2 + B$
 - (b) $x(y) = Ay^3 + B$
 - (c) $x(y) = Ay^{-2} + B$
 - (d) $x(y) = Ay^{-3} + B$
 - (e) $x(y) = Ay^4 + B$

- 4. If $y(x) = \sum_{n=0}^{\infty} c_n x^n$ is a power series solution about the ordinary point x = 0 of the differential equation $(x^2 1)y'' 8xy' + 20y = 0$, then
 - (a) $c_0(1+10x^2+5x^4)+c_1\left(x+2x^3+\frac{1}{5}x^5\right)$
 - (b) $c_0(1-10x^2+5x^4)+c_1\left(x+2x^3+\frac{1}{5}x^5\right)$
 - (c) $c_0(1 10x^2 5x^4) + c_1\left(x + 2x^3 + \frac{1}{5}x^5\right)$
 - (d) $c_0(1+10x^2+5x^4)+c_1(x-2x^3-x^5)$
 - (e) $c_0(1-10x^2+5x^4)+c_1(x-2x^3-x^5)$

- 5. The largest indicial root at x = 0 for the differential equation $x^2(2-x^2)y'' + 6xy' 6y = 0$ is
 - (a) r = 1
 - (b) r = 2
 - (c) r = 3
 - (d) $r = \frac{1}{3}$
 - (e) $r = \frac{1}{2}$

- 6. The guaranteed radius of converges of the power series solution of the differential equation $(3-x^2)y'' xy' + 9y = 0$ about the ordinary point x = 0 is
 - (a) $\sqrt{3}$
 - (b) 3
 - (c) 9
 - (d) ∞
 - (e) 0

- 7. If the recurrence relation of the Frobenius Series solution of the differential equation 4xy'' + 2y' + y = 0 that corresponds to the indicial root $r = \frac{1}{2}$ is given by $c_n = \frac{-c_{n-1}}{4n^2 + 2n}$, $n = 1, 2, 3, \ldots$, then the first three terms in the solution are given by
 - (a) $x^{\frac{1}{2}} \frac{x^{3/2}}{6} + \frac{x^{5/2}}{120}$
 - (b) $x^{\frac{1}{2}} + \frac{x^{3/2}}{6} + \frac{x^{5/2}}{120}$
 - (c) $x^{\frac{1}{2}} + \frac{x^{3/2}}{3} + \frac{x^{5/2}}{120}$
 - (d) $x^{\frac{1}{2}} \frac{x^{3/2}}{6} \frac{x^{5/2}}{120}$
 - (e) $x^{\frac{1}{2}} \frac{x^{3/2}}{6} + \frac{x^{5/2}}{60}$

- 8. If $A = \begin{bmatrix} 2 & 5 \\ 0 & 2 \end{bmatrix}$, then $e^{At} =$
 - (a) $\begin{bmatrix} e^{2t} & 5te^{2t} \\ 0 & e^{2t} \end{bmatrix}$
 - (b) $\begin{bmatrix} e^{2t} & e^{5t} \\ 1 & e^{2t} \end{bmatrix}$
 - (c) $\begin{bmatrix} e^{2t} & 5e^{2t} \\ 0 & e^{2t} \end{bmatrix}$
 - (d) $\begin{bmatrix} e^{2t} & (1+5t)e^{2t} \\ 0 & e^{2t} \end{bmatrix}$
 - (e) $\begin{bmatrix} e^{2t} & e^{5t} \\ 0 & te^{2t} \end{bmatrix}$

- 9. A possible fundamental matrix of the system $X' = \begin{bmatrix} -4 & 2 \\ -3 & 1 \end{bmatrix} X$ is
 - (a) $\begin{bmatrix} e^{-2t} & 2e^{-t} \\ e^{-2t} & 3e^{-t} \end{bmatrix}$
 - (b) $\begin{bmatrix} e^{-2t} & 3e^{-t} \\ e^{-2t} & 3e^{-t} \end{bmatrix}$
 - (c) $\begin{bmatrix} e^{-2t} & 2e^{-t} \\ 2e^{-2t} & e^{-t} \end{bmatrix}$
 - (d) $\begin{bmatrix} 3e^{-2t} & 2e^{-t} \\ e^{-2t} & 3e^{-t} \end{bmatrix}$
 - (e) $\begin{bmatrix} 2e^{-t} & e^{-2t} \\ 3e^{-t} & 2e^{-2t} \end{bmatrix}$

- 10. Consider the system X' = AX, $X(0) = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$ where A is a 2×2 matrix with real entries. If A has an eigenvalue $\lambda = 5 + 2i$ with corresponding eigenvector $K = \begin{bmatrix} 1 \\ 1 2i \end{bmatrix}$, then $x(\pi) = 1$
 - (a) $\begin{bmatrix} 0 \\ -2 \end{bmatrix} e^{5\pi}$
 - (b) $\begin{bmatrix} 0 \\ -3 \end{bmatrix} e^{5\pi}$
 - (c) $\begin{bmatrix} 0 \\ 2 \end{bmatrix} e^{5\pi}$
 - (d) $\begin{bmatrix} 2 \\ 3 \end{bmatrix} e^{5\pi}$
 - (e) $\begin{bmatrix} -2 \\ 3 \end{bmatrix} e^{5\pi}$

11. The general solution of $X' = \begin{bmatrix} 4 & -1 & -1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} X$ can be written as

$$X = c_1 \begin{bmatrix} \alpha \\ 1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1 \\ \beta \\ 0 \end{bmatrix} e^{3t} + c_3 \begin{bmatrix} 1 \\ 0 \\ \gamma \end{bmatrix} e^{3t}.$$

Then $\alpha - \beta + 2\gamma =$

- (a) 2
- (b) 0
- (c) -1
- (d) -2
- (e) 1

- 12. If $y_p = Ax^2 + Bx + C$ is a particular solution of the differential equation $y'' 2y' + y = x^2 + x$, then A + B + C =
 - (a) 14
 - (b) 0
 - (c) 2
 - (d) -2
 - (e) 12

- 13. For $A = \begin{bmatrix} 5 & -4 \\ 3 & -2 \end{bmatrix}$, if P is a diagonalizing matrix such that $P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, then
 - (a) $P = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$
 - (b) $P = \begin{bmatrix} 4 & 1 \\ 3 & 1 \end{bmatrix}$
 - (c) $P = \begin{bmatrix} -1 & 4 \\ 1 & 2 \end{bmatrix}$
 - (d) $P = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
 - (e) $P = \begin{bmatrix} 1 & 4 \\ 1 & 5 \end{bmatrix}$

14. The general solution of $y^{(4)} + 18y'' + 81y = 0$ is given by

(a)
$$y(x) = (c_1 + c_2 x) \cos(3x) + (c_3 + c_4 x) \sin(3x)$$

(b)
$$y(x) = c_1 e^{3x} + c_2 e^{-3x} + c_3 \cos(3x) + c_4 \sin(3x)$$

(c)
$$y(x) = (c_1 + c_2 x)e^{3x} + c_3\cos(3x) + c_4\sin(3x)$$

(d)
$$y(x) = (c_1 + c_2 x) e^x \cos(3x) + (c_3 + c_4 x) e^x \sin(3x)$$

(e)
$$y(x) = c_1 e^x + c_2 e^{-x} + c_3 \cos(3x) + c_4 \sin(3x)$$

15. If the rank of the matrix $\begin{bmatrix} 1 & 3 & 2 & 4 \\ -1 & -3 & 5 & 3 \\ 2 & 6 & 5 & 9 \\ 3 & 9 & 6 & m \end{bmatrix}$ is 2, then m =

- (a) 12
- (b) 13
- (c) 14
- (d) 11
- (e) 10

16. The three vectors $\mathbf{v}_1 = (0, 3, 0)$, $\mathbf{v}_2 = (A, 2, 1)$ and $\mathbf{v}_3 = (B, 1, 3)$ do not form a basis for \mathbb{R}^3 if

- (a) B = 3A
- (b) B = A
- (c) B = 2A
- (d) B = 4A
- (e) B = 5A

- 17. If $y_p(x) = u_1(x)\cos(3x) + u_2(x)\sin(3x)$ is a particular solution of the differential equation $y'' + 9y = \frac{1}{4}\csc 3x$, then $u_1(\pi) =$
 - (a) $-\frac{\pi}{12}$
 - (b) $\frac{\pi}{6}$
 - (c) $\frac{\pi}{4}$
 - (d) 0
 - (e) $\frac{\pi}{3}$

- 18. The general solution of the system $X' = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix} X$ is given by
 - (a) $X = c_1 \begin{bmatrix} 1 \\ -3 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{5t}$
 - (b) $X = c_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{5t}$
 - (c) $X = c_1 \begin{bmatrix} 2 \\ 3 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{5t}$
 - (d) $X = c_1 \begin{bmatrix} 1 \\ -3 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{5t}$
 - (e) $X = c_1 \begin{bmatrix} 1 \\ -3 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^t$

- 19. Consider the nonhomogeneous system $X' = AX + \begin{bmatrix} 4 \\ -1 \end{bmatrix}$. If the general solution of the associated homogeneous system is $X_c = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 2 \end{bmatrix} e^t$, then the particular solution $X_p(t)$ at t = 1 equals to
 - (a) $\begin{bmatrix} -26 \\ -21 \end{bmatrix}$
 - (b) $\begin{bmatrix} 13 \\ 12 \end{bmatrix}$
 - (c) $\begin{bmatrix} 11 \\ 13 \end{bmatrix}$
 - $(d) \left[\begin{array}{c} -21 \\ -3 \end{array} \right]$
 - (e) $\begin{bmatrix} 3 \\ 12 \end{bmatrix}$
- 20. The matrix $A = \begin{bmatrix} 3 & -1 & -1 \\ 1 & 1 & -2 \\ 0 & 0 & 2 \end{bmatrix}$ has an eigenvalue $\lambda = 2$ of defect 2. If we choose $V_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ such that $(A 2I)^3V_3 = 0$ and $(A 2I)^2V_3 \neq 0$, then the general solution of the system X' = AX is
 - (a) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} t 1 \\ t 2 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} t \\ \frac{t^2}{2} 2t \\ 1 \end{bmatrix} e^{2t}$
 - (b) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} t+1 \\ t-2 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} t \\ -\frac{t^2}{2} 2t \\ 1 \end{bmatrix} e^{2t}$
 - (c) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} t 2 \\ t \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} t \\ t^2 \\ 1 \end{bmatrix} e^{2t}$
 - (d) $X = \begin{pmatrix} c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} t 1 \\ t 2 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} \frac{t^2}{2} + t \\ \frac{t^2}{2} + 2t \\ 1 \end{bmatrix} e^{2t}$

(e)
$$X = \left(c_1 \begin{bmatrix} 1\\2\\0 \end{bmatrix} + c_2 \begin{bmatrix} t\\t\\1 \end{bmatrix} + c_3 \begin{bmatrix} t^2\\1+t^2\\0 \end{bmatrix}\right) e^t$$