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1. If the function k(z) with k£(0) = 0 makes

dy ycosx+ 2we’ + 3
dr — k(z) — 2%e¥ + 22

an exact differential equation, then k(x) =

| MASTER |

(correct)

2. A general solution of the exact differential equation
(2 + 32% — 22y®) dr — (1 — 2zy + 32%*) dy = 0
1s

a) y —ay? + 2%y —ad=c

(correct)

(a)
(b) y+ay* + 2%y — 23 =c
(c) y—ay? — 2%y — 23 =c
(d)
(e)

Yy
y—ay+atyt+adt=c
y—2zy? + 2ty +ad=c
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3. The solution of the initial-value problem
(1+zcos’y + x4 cos’y)dr — xsinydy =0, y(1) =0

1S

(a) In|z| + 2 + tan"t(cosy) = 1 + % fconsect)
(b) In|z| + 2z + tan (cosy) =1 + %
(c) In|z|+ 3z + tan Y(cosy) = 1 + g
(d) In|z|+ 4z + tan (cosy) =1 + %
(e) In|z| + 52 + tan"!(cosy) = 1 + g

4. At 4:00 pm, a thermometer reading 20°C' is put into a freezer where the temperature
is —10°C'. If the reading is 5°C" at 4:02 pm, then the reading at 4:06 pm is

(a) —6.25°C (correct)
(b) —4.25°C

(c) 0°C

(d) —8.25°C

(e) —=7.25°C
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5. The general solution of the linear differential equation

d
(z* + 1)d—y + 327y = 6re 7"
T

1S

[ V)

(a) y(z) = [<2+ c(a® + 1)2] e 2" (correct)
(b) y(z) = [-3+ c(a2 +1)2] e 2"’

(c) y(z) = [—4 + c(a? + 1)2] e 2"’

(d) y(z) = [-6 + c(a2 +1)2] e 2"’

(e) y(z) = [1 4 c(a? + 1)2] e 2’

6. By using a suitable substitution, we can transform the differential equation
(2y cos® x — 24/y) dx + x cos* x dy = 0

into the linear differential equation

1 1
(a) vVt —v=— sec? x (correct)
x x
1 1
(b) v/ — —v = = sec’x
x x
2 1
! P 2
(c) v+ U= sec'y
2 1
(d) v — Zv == sec’z
x x
2 1
(e) v+ v == cos’x
x
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7. The general solution of the differential equation
(2zy + 3y*) dx — (2zy + 2%) dy = 0

is given by

Yty =cx (correct)

8. The general solution of the differential equation 2%y” + 3zy’ = 2 is given by
(Note: A and B are constants, and x > 0)

A
(a) y(l’) =lnz+ P + B (correct)

A
(b) y(z) :2lnx+ﬁ+B

A
(d) y(x) =2lnx+$—|—B

A
(e) y(zr) =Inz + p) + Bx
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9. By making a suitable substitution, the differential equation

d
d_y = 1+ €Y~ can be transformed into a separable differential equation
x

(correct)

10. Let y = 2™ be a solution of the differential equation zy® + 6y" = 0, then the sum
of all values of m is equal to

(correct)
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11. A particle is moving in a straight line with acceleration a(t) = t*Int and an initial
velocity v(1) = 0. The velocity at any time ¢ > 1 is given by

@ P £ 4L t
a 3 n 9 9 (correct)
£3 31
b) —Int — — + -
(b) glnt =3 +3
¢ tt 1
lnt— — 4=
(c) glnt=g+3
4 tt o1
d —Int — —+ -
(@) plnt=g+3
t° 2 1
Zlnt— — 4=
() ght—g+g
12. Which one of the following subsets is not a subspace of R?
a) The set of all vectors (x1, x2, x3) such that x3 =1 (correct)

(
(b) The set of all vectors (z1, 2, x3) such that x3 =0

) ( )

) (21, 22, 23)
(¢) The set of all vectors (1, x2, x3) such that z1 + x9 =0
(d) The set of all vectors (z1,x2, x3) such that x5 = x1 + x9
) ( )

(e) The set of all vectors (1, x2, x3) such that 1 + x9 + x3 =0
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13. Let vi = (5,3,4), vo = (3,2,5) and w = (1,0, —7) be three vectors in R3.
If w=avy + bvy, then ab =

—6 (correct)

14. If the solution space of the system

$1—4$2—3ZE3—7$4:O
201 — 9+ 13+ T4 =0
$1+2$2+3$3+11$4:0

is the set of all linear combinations of the form su + tv where s,t are real numbers,

then
(a = (—o,—3,0, 1) and v = (—1, —1,1, O) (correct)
(b) u=(5,-3,0,1) and v =(—1,—1,1,0)

) u=(
) u= (
(¢c) u=(-5,-3,0,—1) and v=(-1,-1,1,0)
(d) u=(-5,-3,0,1) and v = (1,—1,1,0)
Ju=(-5,-3,0,—1) and v=(1,1,—1,0)



Term 251, MATH 208, Major Exam I Page 8 of 8 | MASTER |

15. If the vectors u = (5, —4,3), v = (—2,0,3) and w = (a, —8,1) are linearly depen-
dent, then 3a =

40 (correct)
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1. If the solution space of the system

5131—41’2—31133—7334:0
201 —r9ot+ 23+ 724 =0
1+ 229+ 3x3+ 11y =0

is the set of all linear combinations of the form su + tv where s,t are real numbers,

then

(a) u=(5,-3,0,1) and v = (—1,-1,1,0)

(b) u=(-5,-3,0,1) and v=(—1,-1,1,0)
(¢c) u=(-5,-3,0,1) and v = (1,-1,1,0)

(d) u=(-5,-3,0,—1) and v=(1,1,—1,0)
() u=(-5,-3,0,—1) and v=(—1,-1,1,0)

2. The solution of the initial-value problem
(1+zcos’y + 2+ cos’y) dr — xsinydy =0, y(1) =0

1S

(a) In|z| + 2 + tan"1(cosy) =1 + z

4
(b) In|z| + 4z + tan (cosy) = 1 + %
(c) Inl|z| + 52 + tan"!(cosy) = 1 + g
(d) In|z| + 3z + tan"!(cosy) = 1 + g

(e) In|z| + 22 + tan"!(cosy) = 1 + Z



Term 251, MATH 208, Major Exam I Page 2 of 8 CODE 1

3. At 4:00 pm, a thermometer reading 20°C' is put into a freezer where the temperature
is —10°C'. If the reading is 5°C' at 4:02 pm, then the reading at 4:06 pm is

(a) 0°C

(b) —6.25°C
(c) —4.25°C
(d) =7.25°C
(e) —8.25°C

4. If the function k(z) with £(0) = 0 makes

dy ycosx+ 2we’ + 3
dr  k(x) — 22e¥ + 22

an exact differential equation, then k(x) =

(a) —sinz — 2x
(b) sinz — 2z
(c) sinx + 2x
(d)
)

d

(e) —sinx + 3x

—sinz + 4x
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5. A particle is moving in a straight line with acceleration a(t) = t*Int and an initial
velocity v(1) = 0. The velocity at any time ¢ > 1 is given by

(a) glnt—g—ké
(b) §1nt—§+é
(c) glnt—g—l—%
(d) glnt—g—l-%
(e) glnt—g-l-%

6. By using a suitable substitution, we can transform the differential equation
(2y cos® x — 24/y) dx + x cos* x dy = 0

into the linear differential equation

2 1
(a) v + Zv == sec’x
T T
1 1
(b) v/ — —v == sec’x
T T
1 1
(c) v+ —v=—sec’x
T T
2 1
d ! = 2
( )U+xv —cos'w
2 1
(e) v/ — Zv == sec’x
T
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7. Let y = 2™ be a solution of the differential equation zy® + 6y = 0, then the sum
of all values of m is equal to

8. Which one of the following subsets is not a subspace of R?

(a) The set of all vectors (x1, x9, x3) such that x3 =1
(

b) The set of all vectors (x1, x9, x3) such that x1 + 29+ 23 =10

) ( )
) (21, w2, 73)

(¢) The set of all vectors (1,2, x3) such that x3 =0

(d) The set of all vectors (z1,x2, x3) such that x3 = x1 + x5
) ( )

(e) The set of all vectors (1, x2, x3) such that z1 + x5 =0
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9. By making a suitable substitution, the differential equation

d
d_y = 1+ €Y~ can be transformed into a separable differential equation
x

(a) €"dv = dx
(b) €"dv =2dx
(¢) e Vdv=2dx
(@)

)

(e) e Vdv =dx

e Vdv=uxdx

10. The general solution of the differential equation x%y” + 32y’ = 2 is given by
(Note: A and B are constants, and x > 0)

A
(c) y(z) :21nx+ﬁ+B
A
(d) y(z) :lnx—kﬁ%—Bx

A
(e) y(x) :2lnx+ﬁ+B
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11. If the vectors u = (5, —4,3), v = (—2,0,3) and w = (a, —8,1) are linearly depen-

dent, then 3a =

12. A general solution of the exact differential equation
(2 + 32% — 22y®) do — (1 — 22y + 32*y*) dy = 0

1S

(a) y —xy? + 2% + 23 = ¢

b — et + 2P+t =c

(b) v Y y

c)y—axy?— a2y —ad=c

(c) y —ay y

d) y—axy?+ 22— a3 =c
Yy Yy Yy

)

(e) y+ay?> + 2%y —2® =c
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13. Let vi = (5,3,4), vo = (3,2,5) and w = (1,0, —7) be three vectors in R3.
If w=avy + bvy, then ab =

14. The general solution of the linear differential equation

(2 + 1)% +32%y = 6 e 2"
(a) y(z) =1+ (a2 +1)2] e 2"’
(b) y(x) = [-3 4 c(22 4+ 1)2] e 2%
(¢) y(x) = [-2+4 c(a? 4+ 1)2] e 2*°
(d) y(x) = [-6 4 c(22 4+ 1)2] e 2%
(e) y(x) = [-4 4 c(a? 4+ 1)2] e 2*°
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15. The general solution of the differential equation
(2zy + 3y*) dx — (2zy + 2%) dy = 0

is given by
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1. If the solution space of the system

5131—41’2—31133—7334:0
201 —x9 + 23+ T4 =0
1+ 229+ 3x3+ 11y =0

is the set of all linear combinations of the form su + tv where s,t are real numbers,

then

(a) u=(-5,-3,0,—1) and v = (1,1,—1,0)

(b) u=(=5,-3,0,1) and v = (—1,—1,1,0)
5

) u=(
) u=(
(¢) u=(-5,-3,0,1) and v=(1,—1,1,0)
) u=(
) u=(

2. The general solution of the linear differential equation

(z* + 1)% + 327y = 6re 2"
(a) y(x) = [-4 + c(2? + 1)%] P L
(b) y(z) = [-2+4 c(2? 4 1)2] e 2*°
(c) y(x) = [—6 + c(x® + 1)%] P L
(d) y(z) = [1 4 c(2? + 1)2] e 2*"
(e) y(x) = [-3 4 c(22 4+ 1)2] e 2%
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3. By making a suitable substitution, the differential equation

d
d_y = 1+ €Y~ can be transformed into a separable differential equation
x

(a) e Vdv =2dx
(b) €"dv =2dx
(c) e "dv=xdr
(d) edv =dx
() ¢’

4. The general solution of the differential equation z?y” + 3zy’ = 2 is given by
(Note: A and B are constants, and = > 0)

A
(a) y(z) :2lnx+ﬁ+B
A
(b) y(x) :2lnx+?+B
A
(c) y(x) :ln:L'—l—E—kB
A
(d) y(x) zlnx-l—ﬁ-i—Bx

A
(e) y(z) :lnerP—%B
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5. Let y = 2™ be a solution of the differential equation zy® + 6y = 0, then the sum
of all values of m is equal to

6. If the vectors u = (5,—4,3), v = (—2,0,3) and w = (a,—8, 1) are linearly depen-
dent, then 3a =
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7. The solution of the initial-value problem
(1+zcos’y + x4 cos’y)dr — xsinydy =0, y(1) =0

1S

(a) In|z| + 3z + tan1(cosy) = 1 + g
(b) In|z| + 5z + tan (cosy) = 1 + g
(c) In|z| + 2z + tan Y(cosy) = 1 + %
(d) In|z| + 2+ tan (cosy) = 1 + %

(e) In|z| + 42 + tan"!(cosy) = 1 + Z

8. A particle is moving in a straight line with acceleration a(t) = t*Int and an initial
velocity v(1) = 0. The velocity at any time ¢ > 1 is given by

12 21
(a);lnt—g—kg
13 31
t 1
(C)Zlnt_§+§
{3 31
t o1
9
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9. A general solution of the exact differential equation
(y? + 32% — 22y®) dr — (1 — 2zy + 32**) dy = 0

is
(a) y +ay* + 2%y’ —a’ =c
(b) y —ay? +2%y3 + a3 =c
(c) y— 2z + 2%y + 23 =¢
)y
)y

(d 3

—a? -2 -2t =c
(e

oyt -2t =

10. If the function k(z) with £(0) = 0 makes

dy ycosw+2we’ + 3
dr  k(z) — 2%y + 22

an exact differential equation, then k(x) =

(a) —sinz + 4x
(b) —sinz + 3z
(c) sinx — 2z
(d) —sinz — 2z
(e) sinx + 2x
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11. Which one of the following subsets is not a subspace of R?

a) The set of all vectors (x1, 9, x3) such that x3 = x1 + 29

(
(b) The set of all vectors (z1,x2, x3) such that x5 =0

) ( )

) (@1, w2, 3)
(¢) The set of all vectors (1,2, x3) such that z3 =1
(d) The set of all vectors (1, x2, x3) such that 1 + x9 + 23 =0
) ( )

(e) The set of all vectors (1, x2, x3) such that z1 + x9 =0

12. By using a suitable substitution, we can transform the differential equation
(2y cos® & — 24/y) dx + x cos’ v dy = 0

into the linear differential equation

1 1

(a) v — v = = sec’x
r T
2 1

(b) v/ + v =~ sec’z
r T
1 1

(c) v+ —v =~ sec’z
r T
2 1

(d) v' + Zv = = cos’x
T
1
T

sec T
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13. Let vi = (5,3,4), vo = (3,2,5) and w = (1,0, —7) be three vectors in R3.
If w=avy + bvy, then ab =

14. At 4:00 pm, a thermometer reading 20°C' is put into a freezer where the temperature
is —10°C'. If the reading is 5°C' at 4:02 pm, then the reading at 4:06 pm is
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15. The general solution of the differential equation
(2zy + 3y*) dx — (2zy + 2%) dy = 0

is given by
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1. A general solution of the exact differential equation
(y? + 32% — 22y®) dr — (1 — 2zy + 32**) dy = 0

1S

2. If the vectors u = (5,—4,3), v = (—2,0,3) and w = (a,—8,1) are linearly depen-
dent, then 3a =
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3. The general solution of the differential equation x%y” + 3xy’ = 2 is given by
(Note: A and B are constants, and = > 0)

A
(a) y(z) :2lnx+ﬁ+B

A

(b) y(:z:):lnerﬁJer
A
A

A
(e) y(z) :2lnx—|—ﬁ—i—B

4. The general solution of the linear differential equation

d 2
(2% + 1)_y +32%y = 6re 2"

dx
(a) y(x) = [1+ c(z® + 1)2] e 2"
(b) y(z) = [-3+ c(22 +1)2] e 2"
(¢) y(x) = [-2+4 c(a? + 1)2] e 2*°
(d) y(z) = [~4+ (22 +1)2] e 2"
(e) y(z) = [—6 + c(a? + 1)2] e 2"’
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5. If the function k(x) with £(0) = 0 makes

dy ycosx+ 2we’ + 3
dr — k(z) — 2%e¥ + 22

an exact differential equation, then k(x) =

6. A particle is moving in a straight line with acceleration a(t) = t*Int and an initial
velocity v(1) = 0. The velocity at any time ¢ > 1 is given by

(a) glnt—g%—é
(b) glnt—g—ké
(c) glnt—ng%
(d) glnt—§+%
(e) glnt—g—l—é
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7. By making a suitable substitution, the differential equation

d
d_y = 1+ €Y~ can be transformed into a separable differential equation
x

8. If the solution space of the system

5131—41’2—31133—7ZE4=0
25(31—.1!2+$3+7334:0
1+ 229+ 3x3+ 112y =0

is the set of all linear combinations of the form su + tv where s,t are real numbers,
then

)u=(-5,-3,0,1) and v=(—1,—-1,1,0)
)u=(-5,-3,0,—1) and v=(—1,—-1,1,0)
Ju=(5-3,0,1) and v=(—-1,—-1,1,0)

) u= (-

) u=(

5,—-3,0,1) and v =(1,—1,1,0)
~5,-3,0,—1) and v = (1,1, —1,0)
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9. Which one of the following subsets is not a subspace of R?

(a) The set of all vectors (x1, xo, z3) such that 1 + 29 =0
(

b) The set of all vectors (x1, x2, x3) such that x3 =0

) ( )

) (@1, w2, 3)
(¢) The set of all vectors (1, s, x3) such that x3 = x1 + x9
(d) The set of all vectors (1, x2, x3) such that 1 + x9 + 23 =0
) ( )

(e) The set of all vectors (1,2, x3) such that z3 =1

10. At 4:00 pm, a thermometer reading 20°C' is put into a freezer where the temperature
is —10°C'. If the reading is 5°C" at 4:02 pm, then the reading at 4:06 pm is

(a) —6.25°C
(b) —4.25°C
(c) 0°C

(d) —7.25°C
(e) —8.25°C
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11. By using a suitable substitution, we can transform the differential equation
(2y cos® & — 24/y) dx + x cos* x dy = 0

into the linear differential equation

1 1
(a) v — —v = = sec’x
T T
1 1
(b) v/ 4+ —v = — sec’x
T T
2 1
(c) v+ v == sec’x
T T
2 1
d) v+ =v == cos’ &
(d) v+ —v =~
2 1
(e) v/ — Zv = = sec’x
T T

12. Let y = 2™ be a solution of the differential equation zy™® + 6y"” = 0, then the sum
of all values of m is equal to
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13. Let vi = (5,3,4), vo = (3,2,5) and w = (1,0, —7) be three vectors in R3.
If w=avy + bvy, then ab =

14. The solution of the initial-value problem
(14 zcos?y + x 4 cos?y) dr — xsinydy = 0, y(1) =0
1S

(a) In |:I:| + bx + tan_l(cos y) =1+ g

(b) In|z| + 2 + tan~Y(cosy) = 1 + —

4
(c) In|z|+ 3z + tan"Y(cosy) = 1 + %
(d) In|z| + 4z + tan"Y(cosy) = 1 + g

(e) In|z|+ 2z + tan Y(cosy) = 1 + %
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15. The general solution of the differential equation
(2zy + 3y*) dx — (2zy + 2%) dy = 0

is given by

3
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1. If the solution space of the system

5131—41’2—31133—7334:0
201 —x9 + 23+ T4 =0
1+ 229+ 3x3+ 11y =0

is the set of all linear combinations of the form su + tv where s,t are real numbers,
then

) u=(—5-3,01) and v = (-1,-1,1,0)
) u=(-5-30—1)and v=(1,1,-1,0)
(¢c) u=(5,-3,0,1) and v = (—1,-1,1,0)
) u= (-

) u=(

,—3,0,1) and v = (1,—-1,1,0)
—5,-3,0,—1) and v = (—1,—1,1,0)

2. Let y = 2™ be a solution of the differential equation zy® + 6y = 0, then the sum
of all values of m is equal to



Term 251, MATH 208, Major Exam I Page 2 of 8 CODE 4

3. A particle is moving in a straight line with acceleration a(t) = t*Int and an initial
velocity v(1) = 0. The velocity at any time ¢ > 1 is given by

(a) glnt—g—ké
(b) §1nt—§+é
(c) glnt—g—l—%
(d) %lnt—%—l—%
(e) glnt—g-l-%

4. By using a suitable substitution, we can transform the differential equation
(2y cos® x — 24/y) dx + x cos* x dy = 0

into the linear differential equation

2 1
(a) v + Zv == sec’x
T T
2 1
b ! = 2
( )v—l—xv —cos'w
1 1
I ., — 2
(c) v V= sec’y
2 1
(d) v/ — Zv == sec’z
T T
1 1
(e) v+ —v == sec’x
T
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5. Which one of the following subsets is not a subspace of R?

a) The set of all vectors (x1, 9, x3) such that x3 = x1 + 29

b) The set of all vectors (x1, x2, x3) such that 3 =0

(
(

(d) The set of all vectors (z1, 2, x3) such that x5 =1

) ( )
) (w1, 22, 73)
(¢) The set of all vectors (1, x2, x3) such that z1 + x9 =0
) (1, w2, 73)
(e) The set of all vectors (1, x2, x3) such that 1 + x9 + x3 =0

6. The solution of the initial-value problem
(1+zcos’y + x4 cos’y)dr — xsinydy =0, y(1) =0

1S

(a) In|z| + 42 + tan!(cosy) = 1 + %

(b) In |x| +x+ tanfl(cosy) =1+ %
(c) In|z| + 22 + tan"!(cosy) = 1 + Z
T

(d) In|z| + 3z + tan"!(cosy) = 1 + 3
(e) In |:I:| + bx + tan_l(cos y) =1+ g



Term 251, MATH 208, Major Exam I Page 4 of 8 CODE 4

7. At 4:00 pm, a thermometer reading 20°C' is put into a freezer where the temperature
is —10°C'. If the reading is 5°C' at 4:02 pm, then the reading at 4:06 pm is

(a) 0°C

(b) —8.25°C
(c) =7.25°C
(d) —4.25°C
(e) —6.25°C

8. By making a suitable substitution, the differential equation
dy

i 1 + €Y~ can be transformed into a separable differential equation
x
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9. If the vectors u = (5,—4,3), v = (—2,0,3) and w = (a,—8,1) are linearly depen-
dent, then 3a =

10. The general solution of the differential equation x%y” + 32y’ = 2 is given by
(Note: A and B are constants, and x > 0)

A
(e) y(x) :2lnx+E+B
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11. The general solution of the linear differential equation

d
(z* + 1)_y + 327y = 6re 7"

dx
(a) y(x) = [-4 + c(a® + 1)2] e2""
(b) y(z) = [-2 + c(a? + 1)5] e2*"
(c) y(x) = [-3 4 c(a2 4+ 1)2] e 2%
(d) y(z) = [-6 4 c(2? 4 1)2] e 2*°
(e) y(z) = [1 4 c(a? + 1)2] e 2’

12. If the function k(x) with k£(0) = 0 makes

dy ycosx+ 2we’ + 3
dr  k(x) — x2e¥ + 22

an exact differential equation, then k(x) =

(a) —sinx + 4z
(b) —sinx — 2z
(c) sinz + 2x
(d)
)

d

(e) —sinz + 3z

sinx — 2x
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13. Let vi = (5,3,4), vo = (3,2,5) and w = (1,0, —7) be three vectors in R3.
If w=avy + bvy, then ab =

14. A general solution of the exact differential equation
(2 + 32% — 22y®) do — (1 — 22y + 32%y*) dy = 0

1S

y—ay? + a2y + a2 =c
y— 2z + 2%y +a° =c
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15. The general solution of the differential equation
(2zy + 3y*) dx — (2zy + 2%) dy = 0

is given by

)
)
(c) ¥’ +ay=cx
)
)
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1. The solution of the initial-value problem
(1+zcos’y + x4 cos’y)dr — xsinydy =0, y(1) =0

1S

(a) In |x| 4+ bz + tan_l(cos y) =1+ g
(b) In|z| + 2z + tan (cosy) = 1 + %

(c) In|z| + 2+ tan"(cosy) = 1 + %

(d) In|z|+ 3z + tan (cosy) =1 + %

(e) In|z| + 42 + tan"!(cosy) = 1 + Z

2. The general solution of the differential equation z%y” + 32y’ = 2 is given by
(Note: A and B are constants, and x > 0)

A
(8) y(x) =Inz + = + Ba

A
(e) y(x) =2z + 5+ B
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3. A general solution of the exact differential equation
(y? + 32% — 22y®) dr — (1 — 2zy + 32**) dy = 0

1S

(a) y — 2z + 2% + 23 = ¢
(b) y+ oy + a2y — o = c
() y—zy*+ 2%y + 23 =c
o4 228 — 2% = ¢
)y —ayt + %y
)y

Y- S B

(d
(e

4. Let y = 2™ be a solution of the differential equation zy® + 6y = 0, then the sum
of all values of m is equal to
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5. If the vectors u = (5,—4,3), v = (—2,0,3) and w = (a,—8,1) are linearly depen-
dent, then 3a =

6. By using a suitable substitution, we can transform the differential equation
(2y cos® & — 24/y) dx + x cos* x dy = 0

into the linear differential equation

2 1
(a) v + Zv = = sec’x
T T
2 1
b) v/ — Zv = = sec”
(b) v —v = x
2 1
(c) v+ v == cos*x
T T
1 1
(d) v/ + —v == sec’x
T T
1 1
(e) v — —v = = sec’x
T
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7. A particle is moving in a straight line with acceleration a(t) = t*Int and an initial
velocity v(1) = 0. The velocity at any time ¢ > 1 is given by

(a) glnt—g—ké
(b) §1nt—§+é
(c) glnt—§—l—%
(d) glnt—g—l-%
(e) glnt—g-l-é

8. At 4:00 pm, a thermometer reading 20°C' is put into a freezer where the temperature
is —10°C'. If the reading is 5°C" at 4:02 pm, then the reading at 4:06 pm is

(a) —4.25°C
(b) —8.25°C
(c) —7.25°C
(d) 0

)

(e) —6.25°C
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9. By making a suitable substitution, the differential equation

d
d_y = 1+ €Y~ can be transformed into a separable differential equation
x

10. If the solution space of the system

$1—4$2—3I3—7$4:O
201 — 9+ 13+ T4 =0
$1+2$2+33}3+11$4:0

is the set of all linear combinations of the form su + tv where s, t are real numbers,
then
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11. Which one of the following subsets is not a subspace of R?

a) The set of all vectors (x1, x2, x3) such that x3 =0

(
(b) The set of all vectors (z1,x2, x3) such that x5 = x1 + x9

) ( )

) (@1, w2, 3)
(¢) The set of all vectors (1, x2, x3) such that z1 + x9 =0
(d) The set of all vectors (1, x2, x3) such that 1 + x9 + 23 =0
) ( )

(e) The set of all vectors (1,2, x3) such that z3 =1

12. The general solution of the linear differential equation

(z* + 1)% + 327y = 6re 2"
(a) y(z) = [-3 + c(a® +1)2] e 2"
(b) y(z) = [-4 4 c(2? 4 1)2] e 2*°
(c) y(x) = [1 + c(a® + 1)%] P L
(d) y(z) = [-6 4 c(2? 4+ 1)2] e 2*°
(e) y(x) = [=-2 + c(2?® + 1)%] P L
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13. Let vi = (5,3,4), vo = (3,2,5) and w = (1,0, —7) be three vectors in R3.
If w=avy + bvy, then ab =

14. If the function k(x) with k(0) = 0 makes

dy ycosx+ 2we’ + 3
dr  k(x) — 22e¥ + 22

an exact differential equation, then k(x) =

a) —sinx + 3x

(a)

(b) —sinz — 2z

(c) sinx + 2x

(d)
)

d

(e) sinx — 2z

—sinz + 4x
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15. The general solution of the differential equation
(2zy + 3y*) dx — (2zy + 2%) dy = 0

is given by

3
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1. Let y = 2™ be a solution of the differential equation zy¥ + 6y"” = 0, then the sum
of all values of m is equal to

2. If the function k(x) with £(0) = 0 makes

dy ycosx+ 2we’ + 3
dr  k(z) — 2%e¥ + 22

an exact differential equation, then k(x) =

—sinx + 3x

)

)
(¢) —sinz + 4z
(d)

)
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3. Which one of the following subsets is not a subspace of R?

(a) The set of all vectors (x1, xo, z3) such that 1 + 29 =0
(

b) The set of all vectors (x1, x9, x3) such that x5 = 1 + 29

) ( )
) (@1, w2, 3)
(¢) The set of all vectors (1, s, x3) such that z3 =1
(d) The set of all vectors (z1,x2, x3) such that x5 =0
) ( )

(e) The set of all vectors (1, x2, x3) such that 1 + x9 + x3 =0

4. By using a suitable substitution, we can transform the differential equation
(2y cos® & — 24/%) dx + x cos’ x dy = 0

into the linear differential equation

2 1
(a) v+ v =~ cos’x
T T
1 1
(b) v/ + —v = — sec’z
T T
2 1
/ = 2
(c)v+xv —sec’w
2 1
d r_ 2, — 2
(d) v —v=_sec’y
1 1
(e) v/ — —v == sec’x
T
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5. If the vectors u = (5,—4,3), v = (—2,0,3) and w = (a,—8,1) are linearly depen-
dent, then 3a =

6. The solution of the initial-value problem
(14 zcos?y + x 4 cos?y) dr — xsinydy = 0, y(1) = 0
1S

(a) In |:I:| + 3x + tan_l(cos y) =1+ g

(b) In|z| + 2 + tan~Y(cosy) = 1 + —

4
(c) In|z|+ 2z + tan"Y(cosy) = 1 + %
(d) In|z|+ 5z + tan"!(cosy) = 1 + g

(e) In|z|+ 4z + tan Y(cosy) = 1 + %
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7. A particle is moving in a straight line with acceleration a(t) = t*Int and an initial
velocity v(1) = 0. The velocity at any time ¢ > 1 is given by

(a) glnt—g—ké
(b) §1nt_§+é
(c) glnt—g—l—%
(d) glnt—g—l-%
(e) glnt—g-l-é

8. The general solution of the differential equation z?y” + 3zy’ = 2 is given by
(Note: A and B are constants, and = > 0)

A
(a) y(z) :2lnx+E+B

A
(b) y(x) :21nx+ﬁ+B
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9. A general solution of the exact differential equation
(y? + 32% — 22y®) dr — (1 — 2zy + 32**) dy = 0

1S

() y—ay* + 2%y —2® =c¢

10. At 4:00 pm, a thermometer reading 20°C' is put into a freezer where the temperature
is —10°C'. If the reading is 5°C" at 4:02 pm, then the reading at 4:06 pm is

(a) —7.25°C
(b) —8.25°C
(c) —6.25°C
(d) —4.25°C
(e) 0



Term 251, MATH 208, Major Exam I

11. The general solution of the linear differential equation

d
(z* + 1)_y + 327y = 6re 7"

dx
(a) y(x) = [-4 + c(a® + 1)2] e2""
(b) y(z) = [-2+4 c(2? 4 1)2] e 2*°
(c) y(x) = [—6 + c(x? + 1)%] P
(d) y(z) =[1 4 c(2? + 1)2] e 2*"
() y(x) = [-3 + c(a® + 1)2] e72""

12. By making a suitable substitution, the differential equation

dy
dx

Page 6 of 8

—Z =1+ €Y7 can be transformed into a separable differential equation
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13. Let vi = (5,3,4), vo = (3,2,5) and w = (1,0, —7) be three vectors in R3.
If w=avy + bvy, then ab =

14. If the solution space of the system

$1—4$2—3ZE3—7$4:O
201 — 9o+ 13+ T4 =0
$1+2$2+3$3+11$4:0

is the set of all linear combinations of the form su + tv where s, t are real numbers,
then

(5,—3,0,1) and v = (—1,—1,1,0)
(—=5,-3,0,—1) and v = (—1,—1,1,0)
(—=5,-3,0,1) and v=(—1,—1,1,0)
(=5,-3,0,—1) and v = (1,1,—1,0)
(—=5,—3,0,1) and v = (1,—1,1,0)
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15. The general solution of the differential equation
(2zy + 3y*) dx — (2zy + 2%) dy = 0

is given by

3
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1. By making a suitable substitution, the differential equation

d
d_y = 1+ €Y~ can be transformed into a separable differential equation
x

2. Which one of the following subsets is not a subspace of R?

(a) The set of all vectors (x1, o, x3) such that 1 + 29 =0
(

b) The set of all vectors (x1, x9, x3) such that x1 + 29+ 23 =10

d) The set of all vectors (x1, 9, x3) such that x3 = x1 + 29

) ( )

) (1, 22, 73)
(c¢) The set of all vectors (z1,x2, x3) such that z3 =1
(d) (21, 2, 3)
(e) The set of all vectors (1, x2, x3) such that x5 =0
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3. The solution of the initial-value problem
(1+zcos’y + x4 cos’y)dr — xsinydy =0, y(1) =0

1S

(a) In |x| 4+ bz + tan_l(cos y) =1+ g
(b) In|z| + 2z + tan (cosy) = 1 + %

(c) In|z| + 2+ tan"(cosy) = 1 + %
(d) In|z|+ 4z + tan (cosy) =1 + %

(e) In|z| + 3z + tan"!(cosy) = 1 + %

4. A general solution of the exact differential equation
(2 + 32% — 22y®) dr — (1 — 2zy + 32**) dy = 0

1S

a) y —ay’ -2y’ —at =c

(a)

(b) y+ay?+ 2%y — a3 =c

(C) - $y2 + I'2y3 —+ x3 =cC

(d)
)

(e

y
y -y’ +atyt -2t =c
y—2ay* +aty’ +ad=c
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5. Let y = 2™ be a solution of the differential equation zy® + 6y = 0, then the sum
of all values of m is equal to

6. If the vectors u = (5,—4,3), v = (—2,0,3) and w = (a,—8, 1) are linearly depen-
dent, then 3a =
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7. By using a suitable substitution, we can transform the differential equation
(2y cos® & — 24/y) dx + x cos* x dy = 0

into the linear differential equation

1 1

(a) v + —v = = sec’x
T T
1 1

b) v — —v = — sec”

(b) v V= x
2 1

(c) v+ v == cos*x
T T
2 1

(d) v/ +=v == sec’x
T T
2 1

(e) v/ — Zv == sec’x
T T

8. The general solution of the linear differential equation

(2 + 1)% +32%y = 6 e 2"
(a) y(z) = 1+ c(a2+1)2] e 2"’
(b) y(x) = [<6 4+ c(22 4+ 1)2] e 2%
(¢) y(x) = [-24 c(a? 4+ 1)2] e 2*°
(d) y(x) = [-4 4 c(22 +1)2] e 2%
(e) y(x) = [-3 4 c(a2 4+ 1)2] e 2*°
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9. If the solution space of the system

5131—41’2—31133—7334:0
201 —x9 + 23+ T4 =0
1+ 229+ 3x3+ 11y =0

is the set of all linear combinations of the form su + tv where s,t are real numbers,
then

) u=(-5,-3,0,—1) and v=(1,1,-1,0)
) u=(-5,-3,0,1) and v=(1,—-1,1,0)
(¢c) u=(5,-3,0,1) and v = (—1,-1,1,0)
) u= (-

) u=(

5,—3,0,—1) and v =(—1,—-1,1,0)
—5,-3,0,1) and v = (—1,—1,1,0)

10. The general solution of the differential equation z%y” + 3xy’ = 2 is given by
(Note: A and B are constants, and = > 0)

A
(a) y(z) :21nx+E+B

A
(c) y(z) :2lnx—|—ﬁ—|—B

A
(d) y(x) =lnz + ) + Bx
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11. At 4:00 pm, a thermometer reading 20°C' is put into a freezer where the temperature
is —10°C'. If the reading is 5°C' at 4:02 pm, then the reading at 4:06 pm is

(a) —4.25°C
(b) —8.25°C
(¢) —6.25°C
(d) =7.25°C
(e) 0°C

12. If the function k(x) with k(0) = 0 makes

dy ycosx+ 2we’ + 3
dr  k(x) — 22e¥ + 22

an exact differential equation, then k(x) =

a) —sinx + 4x

(a)

(b) —sinz — 2z

(c) —sinx + 3x

(d)
)

d

(e) sinx + 2x

sinx — 2x
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13. Let vi = (5,3,4), vo = (3,2,5) and w = (1,0, —7) be three vectors in R3.
If w=avy + bvy, then ab =

14. A particle is moving in a straight line with acceleration a(t) = t?Int and an initial
velocity v(1) = 0. The velocity at any time ¢ > 1 is given by

(a) glnt—g—ké
(b) glnt—§+%
(c) glnt—g—i—é
(d) glnt—g—ké
(e) fhqt—ﬁJr%
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15. The general solution of the differential equation
(2zy + 3y*) dx — (2zy + 2%) dy = 0

is given by
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1. A general solution of the exact differential equation
(y? + 32% — 22y®) dr — (1 — 2zy + 32**) dy = 0

1S

(a) y+ay? +2%y° — 23 =c

b) vy — xy? + 223 — 23 = ¢
Yy Yy Y

c)y—ay?—a*yt—ad=c

(c) y —ay y

d) y— 2z + 223 + 23 = ¢

(d) y —2zy y

)y

(e

Y. S R g

2. By using a suitable substitution, we can transform the differential equation

(2y cos® & — 24/y) dx + x cos* x dy = 0

into the linear differential equation

11,

(a) v/ — —v =—sec*x
T T
2 1

(b) v/ — Zv == sec’z
T T
2 1

(c) v+ v == cos’x
T T
2 1

(d) o' 4+ Zv == sec’z
T T
1 1

(e) v+ ~v == sec’x

i T
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3. The general solution of the differential equation x%y” + 3xy’ = 2 is given by
(Note: A and B are constants, and = > 0)

A
(a) y(z) :2lnx+ﬁ+B

A
(b) y(z) :21nx+ﬁ+B

(e) y(zr) =Inz + ) + Bz

4. A particle is moving in a straight line with acceleration a(t) = t*Int and an initial
velocity v(1) = 0. The velocity at any time ¢ > 1 is given by

(a) glnt—g—l-%
(b) glnt—g-l-%
(c) glnt—ng%
(d) glnt—g—ké
(e) glnt—g—l—%
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5. Which one of the following subsets is not a subspace of R?

a) The set of all vectors (x1, 2, x3) such that x1 + 29 =0

b) The set of all vectors (x1, x9, x3) such that x1 + a9 + 23 =10

(
(
(d) The set of all vectors (z1,x2, x3) such that x5 = x1 + 22

) ( )
) (21, 22, 23)
(¢) The set of all vectors (1, s, x3) such that z3 =1
) (@1, w2, 3)
) ( )

(e) The set of all vectors (1, xs, x3) such that x3 =0

6. The solution of the initial-value problem
(1+zcos’y + x4 cos’y)dr — xsinydy =0, y(1) =0

1S

(a) In|z| + 42 + tan!(cosy) = 1 + %
(b) In|z| + 2z + tan Y(cosy) =1 + %
T

(¢) In|z| + 5z + tan~'(cosy) =1 + 5

(d) In|z| + 2 + tan"(cosy) = 1 + %

(e) In |:I:| + 3x + tan_l(cos y) =1+ g
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7. By making a suitable substitution, the differential equation

Z—z = 1+ €Y~ can be transformed into a separable differential equation
(a) eVdv =dx

(b) e™Vdv = 2dx

(c) e’ dv =dx

(d) e"dv =2dx

(e) e Vdv =xdx

8. If the solution space of the system

—41’2—311;‘3—7564:0
25(31—.1!2+$3+7334:0
1+ 229+ 3x3+ 112y =0

is the set of all linear combinations of the form su + tv where s,t are real numbers,
then

—5,-3,0,1) and v = (1,—1,1,0)
—5,-3,0,—1) and v = (—1,—-1,1,0)
—5,-3,0,—1) and v = (1,1, —1,0)
—5,-3,0,1) and v = (—1,—-1,1,0)
5,-3,0,1) and v = (—1,~1,1,0)
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9. If the vectors u = (5,—4,3), v = (—2,0,3) and w = (a,—8,1) are linearly depen-

dent, then 3a =

10. If the function k(x) with k(0) = 0 makes

dy ycosx+ 2we’ + 3
dr  k(x) — 22e¥ + 22

an exact differential equation, then k(x) =

(a) —sinz — 2x

(b) —sinz + 3z

(c) sinx — 2z

(d) —sinz + 4z
)

(e) sinx + 2x
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11. At 4:00 pm, a thermometer reading 20°C' is put into a freezer where the temperature
is —10°C'. If the reading is 5°C' at 4:02 pm, then the reading at 4:06 pm is

(a) —4.25°C
(b) —6.25°C
(c) 0°C

(d) —=7.25°C
(e) —8.25°C

12. The general solution of the linear differential equation

d 5.2
(2 + 1)d—y +32% = 6z e 2"
T

1S

(a) y(z) =1+ (a2 +1)2] e 2"’

(b) y(x) = [-4 4 c(22 + 1)2] e 2%
(¢) y(x) = [-6 4 c(2? 4 1)2] e 2*°
(d) y(x) = [-24 c(22 + 1)2] e 2%
(e) y(x) = [-3 4 c(a2 4+ 1)2] e 2*°
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13. Let vi = (5,3,4), vo = (3,2,5) and w = (1,0, —7) be three vectors in R3.
If w=avy + bvy, then ab =

14. Let y = 2™ be a solution of the differential equation zy® + 6y"” = 0, then the sum
of all values of m is equal to
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15. The general solution of the differential equation
(2zy + 3y*) dx — (2zy + 2%) dy = 0

is given by
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