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1. If the function k(x) with k(0) = 0 makes

dy

dx
=
y cosx+ 2xey + 3

k(x)− x2ey + 2x

an exact differential equation, then k(x) =

(a) − sinx− 2x (correct)

(b) sinx− 2x

(c) − sinx+ 3x

(d) − sinx+ 4x

(e) sinx+ 2x

2. A general solution of the exact differential equation

(y2 + 3x2 − 2xy3) dx− (1− 2xy + 3x2y2) dy = 0

is

(a) y − xy2 + x2y3 − x3 = c (correct)

(b) y + xy2 + x2y3 − x3 = c

(c) y − xy2 − x2y3 − x3 = c

(d) y − xy2 + x2y3 + x3 = c

(e) y − 2xy2 + x2y3 + x3 = c
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3. The solution of the initial-value problem

(1 + x cos2 y + x+ cos2 y) dx− x sin y dy = 0, y(1) = 0

is

(a) ln |x|+ x+ tan−1(cos y) = 1 +
π

4
(correct)

(b) ln |x|+ 2x+ tan−1(cos y) = 1 +
π

4

(c) ln |x|+ 3x+ tan−1(cos y) = 1 +
π

3

(d) ln |x|+ 4x+ tan−1(cos y) = 1 +
π

4

(e) ln |x|+ 5x+ tan−1(cos y) = 1 +
π

2

4. At 4:00 pm, a thermometer reading 20◦C is put into a freezer where the temperature
is −10◦C. If the reading is 5◦C at 4:02 pm, then the reading at 4:06 pm is

(a) −6.25◦C (correct)

(b) −4.25◦C

(c) 0◦C

(d) −8.25◦C

(e) −7.25◦C
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5. The general solution of the linear differential equation

(x2 + 1)
dy

dx
+ 3x3y = 6x e−

3
2x

2

is

(a) y(x) = [−2 + c(x2 + 1)
3
2 ] e−

3
2x

2

(correct)

(b) y(x) = [−3 + c(x2 + 1)
3
2 ] e−

3
2x

2

(c) y(x) = [−4 + c(x2 + 1)
3
2 ] e−

3
2x

2

(d) y(x) = [−6 + c(x2 + 1)
3
2 ] e−

3
2x

2

(e) y(x) = [1 + c(x2 + 1)
3
2 ] e−

3
2x

2

6. By using a suitable substitution, we can transform the differential equation

(2y cos2 x− 2
√
y) dx+ x cos2 x dy = 0

into the linear differential equation

(a) v′ +
1

x
v =

1

x
sec2 x (correct)

(b) v′ − 1

x
v =

1

x
sec2 x

(c) v′ +
2

x
v =

1

x
sec2 x

(d) v′ − 2

x
v =

1

x
sec2 x

(e) v′ +
2

x
v =

1

x
cos2 x
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7. The general solution of the differential equation

(2xy + 3y2) dx− (2xy + x2) dy = 0

is given by

(a) y2 + xy = cx3 (correct)

(b) y3 + xy = cx2

(c) y2 + 2xy = cx3

(d) y2 − xy = cx2

(e) y2 + xy = cx4

8. The general solution of the differential equation x2y′′ + 3xy′ = 2 is given by
(Note: A and B are constants, and x > 0)

(a) y(x) = ln x+
A

x2
+B (correct)

(b) y(x) = 2 lnx+
A

x2
+B

(c) y(x) = ln x+
A

x3
+B

(d) y(x) = 2 lnx+
A

x3
+B

(e) y(x) = ln x+
A

x2
+Bx
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9. By making a suitable substitution, the differential equation
dy

dx
= 1 + ey−x+5 can be transformed into a separable differential equation

(a) e−v dv = dx (correct)

(b) ev dv = dx

(c) e−v dv = 2 dx

(d) ev dv = 2 dx

(e) e−v dv = x dx

10. Let y = xm be a solution of the differential equation xy(4) + 6y′′′ = 0, then the sum
of all values of m is equal to

(a) 0 (correct)

(b) 1

(c) 2

(d) −1

(e) 3
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11. A particle is moving in a straight line with acceleration a(t) = t2 ln t and an initial
velocity v(1) = 0. The velocity at any time t > 1 is given by

(a)
t3

3
ln t− t3

9
+

1

9
(correct)

(b)
t3

3
ln t− t3

8
+

1

8

(c)
t4

4
ln t− t4

8
+

1

8

(d)
t4

4
ln t− t4

9
+

1

9

(e)
t2

2
ln t− t2

8
+

1

8

12. Which one of the following subsets is not a subspace of R3

(a) The set of all vectors (x1, x2, x3) such that x3 = 1 (correct)

(b) The set of all vectors (x1, x2, x3) such that x3 = 0

(c) The set of all vectors (x1, x2, x3) such that x1 + x2 = 0

(d) The set of all vectors (x1, x2, x3) such that x3 = x1 + x2

(e) The set of all vectors (x1, x2, x3) such that x1 + x2 + x3 = 0
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13. Let v1 = (5, 3, 4), v2 = (3, 2, 5) and w = (1, 0,−7) be three vectors in R3.
If w = av1 + bv2, then ab =

(a) −6 (correct)

(b) 6

(c) 0

(d) −8

(e) 10

14. If the solution space of the system

x1 − 4x2 − 3x3 − 7x4 = 0
2x1 − x2 + x3 + 7x4 = 0
x1 + 2x2 + 3x3 + 11x4 = 0

is the set of all linear combinations of the form su+ tv where s, t are real numbers,
then

(a) u = (−5,−3, 0, 1) and v = (−1,−1, 1, 0) (correct)

(b) u = (5,−3, 0, 1) and v = (−1,−1, 1, 0)

(c) u = (−5,−3, 0,−1) and v = (−1,−1, 1, 0)

(d) u = (−5,−3, 0, 1) and v = (1,−1, 1, 0)

(e) u = (−5,−3, 0,−1) and v = (1, 1,−1, 0)
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15. If the vectors u = (5,−4, 3), v = (−2, 0, 3) and w = (a,−8, 1) are linearly depen-
dent, then 3a =

(a) 40 (correct)

(b) −40

(c) 42

(d) 36

(e) −42
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1. If the solution space of the system

x1 − 4x2 − 3x3 − 7x4 = 0
2x1 − x2 + x3 + 7x4 = 0
x1 + 2x2 + 3x3 + 11x4 = 0

is the set of all linear combinations of the form su+ tv where s, t are real numbers,
then

(a) u = (5,−3, 0, 1) and v = (−1,−1, 1, 0)

(b) u = (−5,−3, 0, 1) and v = (−1,−1, 1, 0)

(c) u = (−5,−3, 0, 1) and v = (1,−1, 1, 0)

(d) u = (−5,−3, 0,−1) and v = (1, 1,−1, 0)

(e) u = (−5,−3, 0,−1) and v = (−1,−1, 1, 0)

2. The solution of the initial-value problem

(1 + x cos2 y + x+ cos2 y) dx− x sin y dy = 0, y(1) = 0

is

(a) ln |x|+ x+ tan−1(cos y) = 1 +
π

4

(b) ln |x|+ 4x+ tan−1(cos y) = 1 +
π

4

(c) ln |x|+ 5x+ tan−1(cos y) = 1 +
π

2

(d) ln |x|+ 3x+ tan−1(cos y) = 1 +
π

3

(e) ln |x|+ 2x+ tan−1(cos y) = 1 +
π

4
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3. At 4:00 pm, a thermometer reading 20◦C is put into a freezer where the temperature
is −10◦C. If the reading is 5◦C at 4:02 pm, then the reading at 4:06 pm is

(a) 0◦C

(b) −6.25◦C

(c) −4.25◦C

(d) −7.25◦C

(e) −8.25◦C

4. If the function k(x) with k(0) = 0 makes

dy

dx
=
y cosx+ 2xey + 3

k(x)− x2ey + 2x

an exact differential equation, then k(x) =

(a) − sinx− 2x

(b) sinx− 2x

(c) sinx+ 2x

(d) − sinx+ 4x

(e) − sinx+ 3x
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5. A particle is moving in a straight line with acceleration a(t) = t2 ln t and an initial
velocity v(1) = 0. The velocity at any time t > 1 is given by

(a)
t2

2
ln t− t2

8
+

1

8

(b)
t4

4
ln t− t4

8
+

1

8

(c)
t3

3
ln t− t3

8
+

1

8

(d)
t3

3
ln t− t3

9
+

1

9

(e)
t4

4
ln t− t4

9
+

1

9

6. By using a suitable substitution, we can transform the differential equation

(2y cos2 x− 2
√
y) dx+ x cos2 x dy = 0

into the linear differential equation

(a) v′ +
2

x
v =

1

x
sec2 x

(b) v′ − 1

x
v =

1

x
sec2 x

(c) v′ +
1

x
v =

1

x
sec2 x

(d) v′ +
2

x
v =

1

x
cos2 x

(e) v′ − 2

x
v =

1

x
sec2 x



Term 251, MATH 208, Major Exam I Page 4 of 8 CODE 1

7. Let y = xm be a solution of the differential equation xy(4) + 6y′′′ = 0, then the sum
of all values of m is equal to

(a) 3

(b) −1

(c) 1

(d) 0

(e) 2

8. Which one of the following subsets is not a subspace of R3

(a) The set of all vectors (x1, x2, x3) such that x3 = 1

(b) The set of all vectors (x1, x2, x3) such that x1 + x2 + x3 = 0

(c) The set of all vectors (x1, x2, x3) such that x3 = 0

(d) The set of all vectors (x1, x2, x3) such that x3 = x1 + x2

(e) The set of all vectors (x1, x2, x3) such that x1 + x2 = 0
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9. By making a suitable substitution, the differential equation
dy

dx
= 1 + ey−x+5 can be transformed into a separable differential equation

(a) ev dv = dx

(b) ev dv = 2 dx

(c) e−v dv = 2 dx

(d) e−v dv = x dx

(e) e−v dv = dx

10. The general solution of the differential equation x2y′′ + 3xy′ = 2 is given by
(Note: A and B are constants, and x > 0)

(a) y(x) = ln x+
A

x2
+B

(b) y(x) = ln x+
A

x3
+B

(c) y(x) = 2 lnx+
A

x3
+B

(d) y(x) = ln x+
A

x2
+Bx

(e) y(x) = 2 lnx+
A

x2
+B
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11. If the vectors u = (5,−4, 3), v = (−2, 0, 3) and w = (a,−8, 1) are linearly depen-
dent, then 3a =

(a) 40

(b) 42

(c) 36

(d) −42

(e) −40

12. A general solution of the exact differential equation

(y2 + 3x2 − 2xy3) dx− (1− 2xy + 3x2y2) dy = 0

is

(a) y − xy2 + x2y3 + x3 = c

(b) y − 2xy2 + x2y3 + x3 = c

(c) y − xy2 − x2y3 − x3 = c

(d) y − xy2 + x2y3 − x3 = c

(e) y + xy2 + x2y3 − x3 = c
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13. Let v1 = (5, 3, 4), v2 = (3, 2, 5) and w = (1, 0,−7) be three vectors in R3.
If w = av1 + bv2, then ab =

(a) −6

(b) 6

(c) 0

(d) −8

(e) 10

14. The general solution of the linear differential equation

(x2 + 1)
dy

dx
+ 3x3y = 6x e−

3
2x

2

is

(a) y(x) = [1 + c(x2 + 1)
3
2 ] e−

3
2x

2

(b) y(x) = [−3 + c(x2 + 1)
3
2 ] e−

3
2x

2

(c) y(x) = [−2 + c(x2 + 1)
3
2 ] e−

3
2x

2

(d) y(x) = [−6 + c(x2 + 1)
3
2 ] e−

3
2x

2

(e) y(x) = [−4 + c(x2 + 1)
3
2 ] e−

3
2x

2
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15. The general solution of the differential equation

(2xy + 3y2) dx− (2xy + x2) dy = 0

is given by

(a) y3 + xy = cx2

(b) y2 + 2xy = cx3

(c) y2 − xy = cx2

(d) y2 + xy = cx3

(e) y2 + xy = cx4
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1. If the solution space of the system

x1 − 4x2 − 3x3 − 7x4 = 0
2x1 − x2 + x3 + 7x4 = 0
x1 + 2x2 + 3x3 + 11x4 = 0

is the set of all linear combinations of the form su+ tv where s, t are real numbers,
then

(a) u = (−5,−3, 0,−1) and v = (1, 1,−1, 0)

(b) u = (−5,−3, 0, 1) and v = (−1,−1, 1, 0)

(c) u = (−5,−3, 0, 1) and v = (1,−1, 1, 0)

(d) u = (5,−3, 0, 1) and v = (−1,−1, 1, 0)

(e) u = (−5,−3, 0,−1) and v = (−1,−1, 1, 0)

2. The general solution of the linear differential equation

(x2 + 1)
dy

dx
+ 3x3y = 6x e−

3
2x

2

is

(a) y(x) = [−4 + c(x2 + 1)
3
2 ] e−

3
2x

2

(b) y(x) = [−2 + c(x2 + 1)
3
2 ] e−

3
2x

2

(c) y(x) = [−6 + c(x2 + 1)
3
2 ] e−

3
2x

2

(d) y(x) = [1 + c(x2 + 1)
3
2 ] e−

3
2x

2

(e) y(x) = [−3 + c(x2 + 1)
3
2 ] e−

3
2x

2
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3. By making a suitable substitution, the differential equation
dy

dx
= 1 + ey−x+5 can be transformed into a separable differential equation

(a) e−v dv = 2 dx

(b) ev dv = 2 dx

(c) e−v dv = x dx

(d) e−v dv = dx

(e) ev dv = dx

4. The general solution of the differential equation x2y′′ + 3xy′ = 2 is given by
(Note: A and B are constants, and x > 0)

(a) y(x) = 2 lnx+
A

x3
+B

(b) y(x) = 2 lnx+
A

x2
+B

(c) y(x) = ln x+
A

x3
+B

(d) y(x) = ln x+
A

x2
+Bx

(e) y(x) = ln x+
A

x2
+B
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5. Let y = xm be a solution of the differential equation xy(4) + 6y′′′ = 0, then the sum
of all values of m is equal to

(a) 2

(b) −1

(c) 3

(d) 1

(e) 0

6. If the vectors u = (5,−4, 3), v = (−2, 0, 3) and w = (a,−8, 1) are linearly depen-
dent, then 3a =

(a) 42

(b) 36

(c) −42

(d) −40

(e) 40
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7. The solution of the initial-value problem

(1 + x cos2 y + x+ cos2 y) dx− x sin y dy = 0, y(1) = 0

is

(a) ln |x|+ 3x+ tan−1(cos y) = 1 +
π

3

(b) ln |x|+ 5x+ tan−1(cos y) = 1 +
π

2

(c) ln |x|+ 2x+ tan−1(cos y) = 1 +
π

4

(d) ln |x|+ x+ tan−1(cos y) = 1 +
π

4

(e) ln |x|+ 4x+ tan−1(cos y) = 1 +
π

4

8. A particle is moving in a straight line with acceleration a(t) = t2 ln t and an initial
velocity v(1) = 0. The velocity at any time t > 1 is given by

(a)
t2

2
ln t− t2

8
+

1

8

(b)
t3

3
ln t− t3

9
+

1

9

(c)
t4

4
ln t− t4

8
+

1

8

(d)
t3

3
ln t− t3

8
+

1

8

(e)
t4

4
ln t− t4

9
+

1

9
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9. A general solution of the exact differential equation

(y2 + 3x2 − 2xy3) dx− (1− 2xy + 3x2y2) dy = 0

is

(a) y + xy2 + x2y3 − x3 = c

(b) y − xy2 + x2y3 + x3 = c

(c) y − 2xy2 + x2y3 + x3 = c

(d) y − xy2 − x2y3 − x3 = c

(e) y − xy2 + x2y3 − x3 = c

10. If the function k(x) with k(0) = 0 makes

dy

dx
=
y cosx+ 2xey + 3

k(x)− x2ey + 2x

an exact differential equation, then k(x) =

(a) − sinx+ 4x

(b) − sinx+ 3x

(c) sinx− 2x

(d) − sinx− 2x

(e) sinx+ 2x
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11. Which one of the following subsets is not a subspace of R3

(a) The set of all vectors (x1, x2, x3) such that x3 = x1 + x2

(b) The set of all vectors (x1, x2, x3) such that x3 = 0

(c) The set of all vectors (x1, x2, x3) such that x3 = 1

(d) The set of all vectors (x1, x2, x3) such that x1 + x2 + x3 = 0

(e) The set of all vectors (x1, x2, x3) such that x1 + x2 = 0

12. By using a suitable substitution, we can transform the differential equation

(2y cos2 x− 2
√
y) dx+ x cos2 x dy = 0

into the linear differential equation

(a) v′ − 1

x
v =

1

x
sec2 x

(b) v′ +
2

x
v =

1

x
sec2 x

(c) v′ +
1

x
v =

1

x
sec2 x

(d) v′ +
2

x
v =

1

x
cos2 x

(e) v′ − 2

x
v =

1

x
sec2 x
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13. Let v1 = (5, 3, 4), v2 = (3, 2, 5) and w = (1, 0,−7) be three vectors in R3.
If w = av1 + bv2, then ab =

(a) −6

(b) 6

(c) 0

(d) −8

(e) 10

14. At 4:00 pm, a thermometer reading 20◦C is put into a freezer where the temperature
is −10◦C. If the reading is 5◦C at 4:02 pm, then the reading at 4:06 pm is

(a) −4.25◦C

(b) −6.25◦C

(c) 0◦C

(d) −8.25◦C

(e) −7.25◦C
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15. The general solution of the differential equation

(2xy + 3y2) dx− (2xy + x2) dy = 0

is given by

(a) y2 − xy = cx2

(b) y2 + 2xy = cx3

(c) y2 + xy = cx4

(d) y3 + xy = cx2

(e) y2 + xy = cx3
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1. A general solution of the exact differential equation

(y2 + 3x2 − 2xy3) dx− (1− 2xy + 3x2y2) dy = 0

is

(a) y − 2xy2 + x2y3 + x3 = c

(b) y + xy2 + x2y3 − x3 = c

(c) y − xy2 + x2y3 + x3 = c

(d) y − xy2 + x2y3 − x3 = c

(e) y − xy2 − x2y3 − x3 = c

2. If the vectors u = (5,−4, 3), v = (−2, 0, 3) and w = (a,−8, 1) are linearly depen-
dent, then 3a =

(a) 42

(b) 36

(c) −42

(d) 40

(e) −40
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3. The general solution of the differential equation x2y′′ + 3xy′ = 2 is given by
(Note: A and B are constants, and x > 0)

(a) y(x) = 2 lnx+
A

x2
+B

(b) y(x) = ln x+
A

x2
+Bx

(c) y(x) = ln x+
A

x2
+B

(d) y(x) = ln x+
A

x3
+B

(e) y(x) = 2 lnx+
A

x3
+B

4. The general solution of the linear differential equation

(x2 + 1)
dy

dx
+ 3x3y = 6x e−

3
2x

2

is

(a) y(x) = [1 + c(x2 + 1)
3
2 ] e−

3
2x

2

(b) y(x) = [−3 + c(x2 + 1)
3
2 ] e−

3
2x

2

(c) y(x) = [−2 + c(x2 + 1)
3
2 ] e−

3
2x

2

(d) y(x) = [−4 + c(x2 + 1)
3
2 ] e−

3
2x

2

(e) y(x) = [−6 + c(x2 + 1)
3
2 ] e−

3
2x

2
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5. If the function k(x) with k(0) = 0 makes

dy

dx
=
y cosx+ 2xey + 3

k(x)− x2ey + 2x

an exact differential equation, then k(x) =

(a) sinx+ 2x

(b) sinx− 2x

(c) − sinx− 2x

(d) − sinx+ 4x

(e) − sinx+ 3x

6. A particle is moving in a straight line with acceleration a(t) = t2 ln t and an initial
velocity v(1) = 0. The velocity at any time t > 1 is given by

(a)
t2

2
ln t− t2

8
+

1

8

(b)
t3

3
ln t− t3

8
+

1

8

(c)
t4

4
ln t− t4

9
+

1

9

(d)
t3

3
ln t− t3

9
+

1

9

(e)
t4

4
ln t− t4

8
+

1

8
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7. By making a suitable substitution, the differential equation
dy

dx
= 1 + ey−x+5 can be transformed into a separable differential equation

(a) e−v dv = 2 dx

(b) ev dv = dx

(c) ev dv = 2 dx

(d) e−v dv = dx

(e) e−v dv = x dx

8. If the solution space of the system

x1 − 4x2 − 3x3 − 7x4 = 0
2x1 − x2 + x3 + 7x4 = 0
x1 + 2x2 + 3x3 + 11x4 = 0

is the set of all linear combinations of the form su+ tv where s, t are real numbers,
then

(a) u = (−5,−3, 0, 1) and v = (−1,−1, 1, 0)

(b) u = (−5,−3, 0,−1) and v = (−1,−1, 1, 0)

(c) u = (5,−3, 0, 1) and v = (−1,−1, 1, 0)

(d) u = (−5,−3, 0, 1) and v = (1,−1, 1, 0)

(e) u = (−5,−3, 0,−1) and v = (1, 1,−1, 0)
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9. Which one of the following subsets is not a subspace of R3

(a) The set of all vectors (x1, x2, x3) such that x1 + x2 = 0

(b) The set of all vectors (x1, x2, x3) such that x3 = 0

(c) The set of all vectors (x1, x2, x3) such that x3 = x1 + x2

(d) The set of all vectors (x1, x2, x3) such that x1 + x2 + x3 = 0

(e) The set of all vectors (x1, x2, x3) such that x3 = 1

10. At 4:00 pm, a thermometer reading 20◦C is put into a freezer where the temperature
is −10◦C. If the reading is 5◦C at 4:02 pm, then the reading at 4:06 pm is

(a) −6.25◦C

(b) −4.25◦C

(c) 0◦C

(d) −7.25◦C

(e) −8.25◦C
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11. By using a suitable substitution, we can transform the differential equation

(2y cos2 x− 2
√
y) dx+ x cos2 x dy = 0

into the linear differential equation

(a) v′ − 1

x
v =

1

x
sec2 x

(b) v′ +
1

x
v =

1

x
sec2 x

(c) v′ +
2

x
v =

1

x
sec2 x

(d) v′ +
2

x
v =

1

x
cos2 x

(e) v′ − 2

x
v =

1

x
sec2 x

12. Let y = xm be a solution of the differential equation xy(4) + 6y′′′ = 0, then the sum
of all values of m is equal to

(a) 3

(b) −1

(c) 1

(d) 2

(e) 0
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13. Let v1 = (5, 3, 4), v2 = (3, 2, 5) and w = (1, 0,−7) be three vectors in R3.
If w = av1 + bv2, then ab =

(a) −6

(b) 6

(c) 0

(d) −8

(e) 10

14. The solution of the initial-value problem

(1 + x cos2 y + x+ cos2 y) dx− x sin y dy = 0, y(1) = 0

is

(a) ln |x|+ 5x+ tan−1(cos y) = 1 +
π

2

(b) ln |x|+ x+ tan−1(cos y) = 1 +
π

4

(c) ln |x|+ 3x+ tan−1(cos y) = 1 +
π

3

(d) ln |x|+ 4x+ tan−1(cos y) = 1 +
π

4

(e) ln |x|+ 2x+ tan−1(cos y) = 1 +
π

4
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15. The general solution of the differential equation

(2xy + 3y2) dx− (2xy + x2) dy = 0

is given by

(a) y2 + xy = cx3

(b) y3 + xy = cx2

(c) y2 − xy = cx2

(d) y2 + xy = cx4

(e) y2 + 2xy = cx3
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1. If the solution space of the system

x1 − 4x2 − 3x3 − 7x4 = 0
2x1 − x2 + x3 + 7x4 = 0
x1 + 2x2 + 3x3 + 11x4 = 0

is the set of all linear combinations of the form su+ tv where s, t are real numbers,
then

(a) u = (−5,−3, 0, 1) and v = (−1,−1, 1, 0)

(b) u = (−5,−3, 0,−1) and v = (1, 1,−1, 0)

(c) u = (5,−3, 0, 1) and v = (−1,−1, 1, 0)

(d) u = (−5,−3, 0, 1) and v = (1,−1, 1, 0)

(e) u = (−5,−3, 0,−1) and v = (−1,−1, 1, 0)

2. Let y = xm be a solution of the differential equation xy(4) + 6y′′′ = 0, then the sum
of all values of m is equal to

(a) 0

(b) 3

(c) 2

(d) −1

(e) 1
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3. A particle is moving in a straight line with acceleration a(t) = t2 ln t and an initial
velocity v(1) = 0. The velocity at any time t > 1 is given by

(a)
t3

3
ln t− t3

8
+

1

8

(b)
t4

4
ln t− t4

8
+

1

8

(c)
t2

2
ln t− t2

8
+

1

8

(d)
t4

4
ln t− t4

9
+

1

9

(e)
t3

3
ln t− t3

9
+

1

9

4. By using a suitable substitution, we can transform the differential equation

(2y cos2 x− 2
√
y) dx+ x cos2 x dy = 0

into the linear differential equation

(a) v′ +
2

x
v =

1

x
sec2 x

(b) v′ +
2

x
v =

1

x
cos2 x

(c) v′ − 1

x
v =

1

x
sec2 x

(d) v′ − 2

x
v =

1

x
sec2 x

(e) v′ +
1

x
v =

1

x
sec2 x
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5. Which one of the following subsets is not a subspace of R3

(a) The set of all vectors (x1, x2, x3) such that x3 = x1 + x2

(b) The set of all vectors (x1, x2, x3) such that x3 = 0

(c) The set of all vectors (x1, x2, x3) such that x1 + x2 = 0

(d) The set of all vectors (x1, x2, x3) such that x3 = 1

(e) The set of all vectors (x1, x2, x3) such that x1 + x2 + x3 = 0

6. The solution of the initial-value problem

(1 + x cos2 y + x+ cos2 y) dx− x sin y dy = 0, y(1) = 0

is

(a) ln |x|+ 4x+ tan−1(cos y) = 1 +
π

4

(b) ln |x|+ x+ tan−1(cos y) = 1 +
π

4

(c) ln |x|+ 2x+ tan−1(cos y) = 1 +
π

4

(d) ln |x|+ 3x+ tan−1(cos y) = 1 +
π

3

(e) ln |x|+ 5x+ tan−1(cos y) = 1 +
π

2
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7. At 4:00 pm, a thermometer reading 20◦C is put into a freezer where the temperature
is −10◦C. If the reading is 5◦C at 4:02 pm, then the reading at 4:06 pm is

(a) 0◦C

(b) −8.25◦C

(c) −7.25◦C

(d) −4.25◦C

(e) −6.25◦C

8. By making a suitable substitution, the differential equation
dy

dx
= 1 + ey−x+5 can be transformed into a separable differential equation

(a) ev dv = 2 dx

(b) e−v dv = dx

(c) e−v dv = 2 dx

(d) ev dv = dx

(e) e−v dv = x dx
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9. If the vectors u = (5,−4, 3), v = (−2, 0, 3) and w = (a,−8, 1) are linearly depen-
dent, then 3a =

(a) 42

(b) −42

(c) −40

(d) 36

(e) 40

10. The general solution of the differential equation x2y′′ + 3xy′ = 2 is given by
(Note: A and B are constants, and x > 0)

(a) y(x) = ln x+
A

x2
+B

(b) y(x) = ln x+
A

x2
+Bx

(c) y(x) = 2 lnx+
A

x3
+B

(d) y(x) = ln x+
A

x3
+B

(e) y(x) = 2 lnx+
A

x2
+B
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11. The general solution of the linear differential equation

(x2 + 1)
dy

dx
+ 3x3y = 6x e−

3
2x

2

is

(a) y(x) = [−4 + c(x2 + 1)
3
2 ] e−

3
2x

2

(b) y(x) = [−2 + c(x2 + 1)
3
2 ] e−

3
2x

2

(c) y(x) = [−3 + c(x2 + 1)
3
2 ] e−

3
2x

2

(d) y(x) = [−6 + c(x2 + 1)
3
2 ] e−

3
2x

2

(e) y(x) = [1 + c(x2 + 1)
3
2 ] e−

3
2x

2

12. If the function k(x) with k(0) = 0 makes

dy

dx
=
y cosx+ 2xey + 3

k(x)− x2ey + 2x

an exact differential equation, then k(x) =

(a) − sinx+ 4x

(b) − sinx− 2x

(c) sinx+ 2x

(d) sinx− 2x

(e) − sinx+ 3x
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13. Let v1 = (5, 3, 4), v2 = (3, 2, 5) and w = (1, 0,−7) be three vectors in R3.
If w = av1 + bv2, then ab =

(a) −6

(b) 6

(c) 0

(d) −8

(e) 10

14. A general solution of the exact differential equation

(y2 + 3x2 − 2xy3) dx− (1− 2xy + 3x2y2) dy = 0

is

(a) y − xy2 + x2y3 − x3 = c

(b) y − xy2 − x2y3 − x3 = c

(c) y + xy2 + x2y3 − x3 = c

(d) y − xy2 + x2y3 + x3 = c

(e) y − 2xy2 + x2y3 + x3 = c
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15. The general solution of the differential equation

(2xy + 3y2) dx− (2xy + x2) dy = 0

is given by

(a) y2 + xy = cx3

(b) y2 + 2xy = cx3

(c) y3 + xy = cx2

(d) y2 − xy = cx2

(e) y2 + xy = cx4
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1. The solution of the initial-value problem

(1 + x cos2 y + x+ cos2 y) dx− x sin y dy = 0, y(1) = 0

is

(a) ln |x|+ 5x+ tan−1(cos y) = 1 +
π

2

(b) ln |x|+ 2x+ tan−1(cos y) = 1 +
π

4

(c) ln |x|+ x+ tan−1(cos y) = 1 +
π

4

(d) ln |x|+ 3x+ tan−1(cos y) = 1 +
π

3

(e) ln |x|+ 4x+ tan−1(cos y) = 1 +
π

4

2. The general solution of the differential equation x2y′′ + 3xy′ = 2 is given by
(Note: A and B are constants, and x > 0)

(a) y(x) = ln x+
A

x2
+Bx

(b) y(x) = ln x+
A

x2
+B

(c) y(x) = 2 lnx+
A

x3
+B

(d) y(x) = ln x+
A

x3
+B

(e) y(x) = 2 lnx+
A

x2
+B
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3. A general solution of the exact differential equation

(y2 + 3x2 − 2xy3) dx− (1− 2xy + 3x2y2) dy = 0

is

(a) y − 2xy2 + x2y3 + x3 = c

(b) y + xy2 + x2y3 − x3 = c

(c) y − xy2 + x2y3 + x3 = c

(d) y − xy2 + x2y3 − x3 = c

(e) y − xy2 − x2y3 − x3 = c

4. Let y = xm be a solution of the differential equation xy(4) + 6y′′′ = 0, then the sum
of all values of m is equal to

(a) 3

(b) 0

(c) 2

(d) 1

(e) −1
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5. If the vectors u = (5,−4, 3), v = (−2, 0, 3) and w = (a,−8, 1) are linearly depen-
dent, then 3a =

(a) 40

(b) −42

(c) 36

(d) 42

(e) −40

6. By using a suitable substitution, we can transform the differential equation

(2y cos2 x− 2
√
y) dx+ x cos2 x dy = 0

into the linear differential equation

(a) v′ +
2

x
v =

1

x
sec2 x

(b) v′ − 2

x
v =

1

x
sec2 x

(c) v′ +
2

x
v =

1

x
cos2 x

(d) v′ +
1

x
v =

1

x
sec2 x

(e) v′ − 1

x
v =

1

x
sec2 x
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7. A particle is moving in a straight line with acceleration a(t) = t2 ln t and an initial
velocity v(1) = 0. The velocity at any time t > 1 is given by

(a)
t4

4
ln t− t4

9
+

1

9

(b)
t4

4
ln t− t4

8
+

1

8

(c)
t3

3
ln t− t3

9
+

1

9

(d)
t2

2
ln t− t2

8
+

1

8

(e)
t3

3
ln t− t3

8
+

1

8

8. At 4:00 pm, a thermometer reading 20◦C is put into a freezer where the temperature
is −10◦C. If the reading is 5◦C at 4:02 pm, then the reading at 4:06 pm is

(a) −4.25◦C

(b) −8.25◦C

(c) −7.25◦C

(d) 0◦C

(e) −6.25◦C
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9. By making a suitable substitution, the differential equation
dy

dx
= 1 + ey−x+5 can be transformed into a separable differential equation

(a) ev dv = 2 dx

(b) e−v dv = x dx

(c) e−v dv = 2 dx

(d) ev dv = dx

(e) e−v dv = dx

10. If the solution space of the system

x1 − 4x2 − 3x3 − 7x4 = 0
2x1 − x2 + x3 + 7x4 = 0
x1 + 2x2 + 3x3 + 11x4 = 0

is the set of all linear combinations of the form su+ tv where s, t are real numbers,
then

(a) u = (−5,−3, 0,−1) and v = (−1,−1, 1, 0)

(b) u = (−5,−3, 0, 1) and v = (1,−1, 1, 0)

(c) u = (−5,−3, 0, 1) and v = (−1,−1, 1, 0)

(d) u = (5,−3, 0, 1) and v = (−1,−1, 1, 0)

(e) u = (−5,−3, 0,−1) and v = (1, 1,−1, 0)
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11. Which one of the following subsets is not a subspace of R3

(a) The set of all vectors (x1, x2, x3) such that x3 = 0

(b) The set of all vectors (x1, x2, x3) such that x3 = x1 + x2

(c) The set of all vectors (x1, x2, x3) such that x1 + x2 = 0

(d) The set of all vectors (x1, x2, x3) such that x1 + x2 + x3 = 0

(e) The set of all vectors (x1, x2, x3) such that x3 = 1

12. The general solution of the linear differential equation

(x2 + 1)
dy

dx
+ 3x3y = 6x e−

3
2x

2

is

(a) y(x) = [−3 + c(x2 + 1)
3
2 ] e−

3
2x

2

(b) y(x) = [−4 + c(x2 + 1)
3
2 ] e−

3
2x

2

(c) y(x) = [1 + c(x2 + 1)
3
2 ] e−

3
2x

2

(d) y(x) = [−6 + c(x2 + 1)
3
2 ] e−

3
2x

2

(e) y(x) = [−2 + c(x2 + 1)
3
2 ] e−

3
2x

2
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13. Let v1 = (5, 3, 4), v2 = (3, 2, 5) and w = (1, 0,−7) be three vectors in R3.
If w = av1 + bv2, then ab =

(a) −6

(b) 6

(c) 0

(d) −8

(e) 10

14. If the function k(x) with k(0) = 0 makes

dy

dx
=
y cosx+ 2xey + 3

k(x)− x2ey + 2x

an exact differential equation, then k(x) =

(a) − sinx+ 3x

(b) − sinx− 2x

(c) sinx+ 2x

(d) − sinx+ 4x

(e) sinx− 2x
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15. The general solution of the differential equation

(2xy + 3y2) dx− (2xy + x2) dy = 0

is given by

(a) y2 + 2xy = cx3

(b) y2 − xy = cx2

(c) y3 + xy = cx2

(d) y2 + xy = cx4

(e) y2 + xy = cx3
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1. Let y = xm be a solution of the differential equation xy(4) + 6y′′′ = 0, then the sum
of all values of m is equal to

(a) 2

(b) 0

(c) 3

(d) 1

(e) −1

2. If the function k(x) with k(0) = 0 makes

dy

dx
=
y cosx+ 2xey + 3

k(x)− x2ey + 2x

an exact differential equation, then k(x) =

(a) sinx+ 2x

(b) − sinx+ 3x

(c) − sinx+ 4x

(d) − sinx− 2x

(e) sinx− 2x



Term 251, MATH 208, Major Exam I Page 2 of 8 CODE 6

3. Which one of the following subsets is not a subspace of R3

(a) The set of all vectors (x1, x2, x3) such that x1 + x2 = 0

(b) The set of all vectors (x1, x2, x3) such that x3 = x1 + x2

(c) The set of all vectors (x1, x2, x3) such that x3 = 1

(d) The set of all vectors (x1, x2, x3) such that x3 = 0

(e) The set of all vectors (x1, x2, x3) such that x1 + x2 + x3 = 0

4. By using a suitable substitution, we can transform the differential equation

(2y cos2 x− 2
√
y) dx+ x cos2 x dy = 0

into the linear differential equation

(a) v′ +
2

x
v =

1

x
cos2 x

(b) v′ +
1

x
v =

1

x
sec2 x

(c) v′ +
2

x
v =

1

x
sec2 x

(d) v′ − 2

x
v =

1

x
sec2 x

(e) v′ − 1

x
v =

1

x
sec2 x
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5. If the vectors u = (5,−4, 3), v = (−2, 0, 3) and w = (a,−8, 1) are linearly depen-
dent, then 3a =

(a) 36

(b) −42

(c) −40

(d) 40

(e) 42

6. The solution of the initial-value problem

(1 + x cos2 y + x+ cos2 y) dx− x sin y dy = 0, y(1) = 0

is

(a) ln |x|+ 3x+ tan−1(cos y) = 1 +
π

3

(b) ln |x|+ x+ tan−1(cos y) = 1 +
π

4

(c) ln |x|+ 2x+ tan−1(cos y) = 1 +
π

4

(d) ln |x|+ 5x+ tan−1(cos y) = 1 +
π

2

(e) ln |x|+ 4x+ tan−1(cos y) = 1 +
π

4
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7. A particle is moving in a straight line with acceleration a(t) = t2 ln t and an initial
velocity v(1) = 0. The velocity at any time t > 1 is given by

(a)
t3

3
ln t− t3

8
+

1

8

(b)
t3

3
ln t− t3

9
+

1

9

(c)
t4

4
ln t− t4

9
+

1

9

(d)
t2

2
ln t− t2

8
+

1

8

(e)
t4

4
ln t− t4

8
+

1

8

8. The general solution of the differential equation x2y′′ + 3xy′ = 2 is given by
(Note: A and B are constants, and x > 0)

(a) y(x) = 2 lnx+
A

x3
+B

(b) y(x) = 2 lnx+
A

x2
+B

(c) y(x) = ln x+
A

x3
+B

(d) y(x) = ln x+
A

x2
+Bx

(e) y(x) = ln x+
A

x2
+B
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9. A general solution of the exact differential equation

(y2 + 3x2 − 2xy3) dx− (1− 2xy + 3x2y2) dy = 0

is

(a) y − xy2 − x2y3 − x3 = c

(b) y + xy2 + x2y3 − x3 = c

(c) y − xy2 + x2y3 + x3 = c

(d) y − 2xy2 + x2y3 + x3 = c

(e) y − xy2 + x2y3 − x3 = c

10. At 4:00 pm, a thermometer reading 20◦C is put into a freezer where the temperature
is −10◦C. If the reading is 5◦C at 4:02 pm, then the reading at 4:06 pm is

(a) −7.25◦C

(b) −8.25◦C

(c) −6.25◦C

(d) −4.25◦C

(e) 0◦C
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11. The general solution of the linear differential equation

(x2 + 1)
dy

dx
+ 3x3y = 6x e−

3
2x

2

is

(a) y(x) = [−4 + c(x2 + 1)
3
2 ] e−

3
2x

2

(b) y(x) = [−2 + c(x2 + 1)
3
2 ] e−

3
2x

2

(c) y(x) = [−6 + c(x2 + 1)
3
2 ] e−

3
2x

2

(d) y(x) = [1 + c(x2 + 1)
3
2 ] e−

3
2x

2

(e) y(x) = [−3 + c(x2 + 1)
3
2 ] e−

3
2x

2

12. By making a suitable substitution, the differential equation
dy

dx
= 1 + ey−x+5 can be transformed into a separable differential equation

(a) e−v dv = dx

(b) ev dv = 2 dx

(c) ev dv = dx

(d) e−v dv = x dx

(e) e−v dv = 2 dx
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13. Let v1 = (5, 3, 4), v2 = (3, 2, 5) and w = (1, 0,−7) be three vectors in R3.
If w = av1 + bv2, then ab =

(a) −6

(b) 6

(c) 0

(d) −8

(e) 10

14. If the solution space of the system

x1 − 4x2 − 3x3 − 7x4 = 0
2x1 − x2 + x3 + 7x4 = 0
x1 + 2x2 + 3x3 + 11x4 = 0

is the set of all linear combinations of the form su+ tv where s, t are real numbers,
then

(a) u = (5,−3, 0, 1) and v = (−1,−1, 1, 0)

(b) u = (−5,−3, 0,−1) and v = (−1,−1, 1, 0)

(c) u = (−5,−3, 0, 1) and v = (−1,−1, 1, 0)

(d) u = (−5,−3, 0,−1) and v = (1, 1,−1, 0)

(e) u = (−5,−3, 0, 1) and v = (1,−1, 1, 0)
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15. The general solution of the differential equation

(2xy + 3y2) dx− (2xy + x2) dy = 0

is given by

(a) y3 + xy = cx2

(b) y2 − xy = cx2

(c) y2 + xy = cx3

(d) y2 + xy = cx4

(e) y2 + 2xy = cx3
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1. By making a suitable substitution, the differential equation
dy

dx
= 1 + ey−x+5 can be transformed into a separable differential equation

(a) ev dv = dx

(b) e−v dv = 2 dx

(c) e−v dv = x dx

(d) e−v dv = dx

(e) ev dv = 2 dx

2. Which one of the following subsets is not a subspace of R3

(a) The set of all vectors (x1, x2, x3) such that x1 + x2 = 0

(b) The set of all vectors (x1, x2, x3) such that x1 + x2 + x3 = 0

(c) The set of all vectors (x1, x2, x3) such that x3 = 1

(d) The set of all vectors (x1, x2, x3) such that x3 = x1 + x2

(e) The set of all vectors (x1, x2, x3) such that x3 = 0
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3. The solution of the initial-value problem

(1 + x cos2 y + x+ cos2 y) dx− x sin y dy = 0, y(1) = 0

is

(a) ln |x|+ 5x+ tan−1(cos y) = 1 +
π

2

(b) ln |x|+ 2x+ tan−1(cos y) = 1 +
π

4

(c) ln |x|+ x+ tan−1(cos y) = 1 +
π

4

(d) ln |x|+ 4x+ tan−1(cos y) = 1 +
π

4

(e) ln |x|+ 3x+ tan−1(cos y) = 1 +
π

3

4. A general solution of the exact differential equation

(y2 + 3x2 − 2xy3) dx− (1− 2xy + 3x2y2) dy = 0

is

(a) y − xy2 − x2y3 − x3 = c

(b) y + xy2 + x2y3 − x3 = c

(c) y − xy2 + x2y3 + x3 = c

(d) y − xy2 + x2y3 − x3 = c

(e) y − 2xy2 + x2y3 + x3 = c
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5. Let y = xm be a solution of the differential equation xy(4) + 6y′′′ = 0, then the sum
of all values of m is equal to

(a) 0

(b) 2

(c) −1

(d) 1

(e) 3

6. If the vectors u = (5,−4, 3), v = (−2, 0, 3) and w = (a,−8, 1) are linearly depen-
dent, then 3a =

(a) −42

(b) 42

(c) 36

(d) −40

(e) 40
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7. By using a suitable substitution, we can transform the differential equation

(2y cos2 x− 2
√
y) dx+ x cos2 x dy = 0

into the linear differential equation

(a) v′ +
1

x
v =

1

x
sec2 x

(b) v′ − 1

x
v =

1

x
sec2 x

(c) v′ +
2

x
v =

1

x
cos2 x

(d) v′ +
2

x
v =

1

x
sec2 x

(e) v′ − 2

x
v =

1

x
sec2 x

8. The general solution of the linear differential equation

(x2 + 1)
dy

dx
+ 3x3y = 6x e−

3
2x

2

is

(a) y(x) = [1 + c(x2 + 1)
3
2 ] e−

3
2x

2

(b) y(x) = [−6 + c(x2 + 1)
3
2 ] e−

3
2x

2

(c) y(x) = [−2 + c(x2 + 1)
3
2 ] e−

3
2x

2

(d) y(x) = [−4 + c(x2 + 1)
3
2 ] e−

3
2x

2

(e) y(x) = [−3 + c(x2 + 1)
3
2 ] e−

3
2x

2



Term 251, MATH 208, Major Exam I Page 5 of 8 CODE 7

9. If the solution space of the system

x1 − 4x2 − 3x3 − 7x4 = 0
2x1 − x2 + x3 + 7x4 = 0
x1 + 2x2 + 3x3 + 11x4 = 0

is the set of all linear combinations of the form su+ tv where s, t are real numbers,
then

(a) u = (−5,−3, 0,−1) and v = (1, 1,−1, 0)

(b) u = (−5,−3, 0, 1) and v = (1,−1, 1, 0)

(c) u = (5,−3, 0, 1) and v = (−1,−1, 1, 0)

(d) u = (−5,−3, 0,−1) and v = (−1,−1, 1, 0)

(e) u = (−5,−3, 0, 1) and v = (−1,−1, 1, 0)

10. The general solution of the differential equation x2y′′ + 3xy′ = 2 is given by
(Note: A and B are constants, and x > 0)

(a) y(x) = 2 lnx+
A

x3
+B

(b) y(x) = ln x+
A

x3
+B

(c) y(x) = 2 lnx+
A

x2
+B

(d) y(x) = ln x+
A

x2
+Bx

(e) y(x) = ln x+
A

x2
+B
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11. At 4:00 pm, a thermometer reading 20◦C is put into a freezer where the temperature
is −10◦C. If the reading is 5◦C at 4:02 pm, then the reading at 4:06 pm is

(a) −4.25◦C

(b) −8.25◦C

(c) −6.25◦C

(d) −7.25◦C

(e) 0◦C

12. If the function k(x) with k(0) = 0 makes

dy

dx
=
y cosx+ 2xey + 3

k(x)− x2ey + 2x

an exact differential equation, then k(x) =

(a) − sinx+ 4x

(b) − sinx− 2x

(c) − sinx+ 3x

(d) sinx− 2x

(e) sinx+ 2x
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13. Let v1 = (5, 3, 4), v2 = (3, 2, 5) and w = (1, 0,−7) be three vectors in R3.
If w = av1 + bv2, then ab =

(a) −6

(b) 6

(c) 0

(d) −8

(e) 10

14. A particle is moving in a straight line with acceleration a(t) = t2 ln t and an initial
velocity v(1) = 0. The velocity at any time t > 1 is given by

(a)
t4

4
ln t− t4

8
+

1

8

(b)
t3

3
ln t− t3

8
+

1

8

(c)
t2

2
ln t− t2

8
+

1

8

(d)
t4

4
ln t− t4

9
+

1

9

(e)
t3

3
ln t− t3

9
+

1

9
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15. The general solution of the differential equation

(2xy + 3y2) dx− (2xy + x2) dy = 0

is given by

(a) y3 + xy = cx2

(b) y2 + xy = cx3

(c) y2 + 2xy = cx3

(d) y2 − xy = cx2

(e) y2 + xy = cx4
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1. A general solution of the exact differential equation

(y2 + 3x2 − 2xy3) dx− (1− 2xy + 3x2y2) dy = 0

is

(a) y + xy2 + x2y3 − x3 = c

(b) y − xy2 + x2y3 − x3 = c

(c) y − xy2 − x2y3 − x3 = c

(d) y − 2xy2 + x2y3 + x3 = c

(e) y − xy2 + x2y3 + x3 = c

2. By using a suitable substitution, we can transform the differential equation

(2y cos2 x− 2
√
y) dx+ x cos2 x dy = 0

into the linear differential equation

(a) v′ − 1

x
v =

1

x
sec2 x

(b) v′ − 2

x
v =

1

x
sec2 x

(c) v′ +
2

x
v =

1

x
cos2 x

(d) v′ +
2

x
v =

1

x
sec2 x

(e) v′ +
1

x
v =

1

x
sec2 x
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3. The general solution of the differential equation x2y′′ + 3xy′ = 2 is given by
(Note: A and B are constants, and x > 0)

(a) y(x) = 2 lnx+
A

x3
+B

(b) y(x) = 2 lnx+
A

x2
+B

(c) y(x) = ln x+
A

x3
+B

(d) y(x) = ln x+
A

x2
+B

(e) y(x) = ln x+
A

x2
+Bx

4. A particle is moving in a straight line with acceleration a(t) = t2 ln t and an initial
velocity v(1) = 0. The velocity at any time t > 1 is given by

(a)
t3

3
ln t− t3

9
+

1

9

(b)
t4

4
ln t− t4

9
+

1

9

(c)
t3

3
ln t− t3

8
+

1

8

(d)
t2

2
ln t− t2

8
+

1

8

(e)
t4

4
ln t− t4

8
+

1

8



Term 251, MATH 208, Major Exam I Page 3 of 8 CODE 8

5. Which one of the following subsets is not a subspace of R3

(a) The set of all vectors (x1, x2, x3) such that x1 + x2 = 0

(b) The set of all vectors (x1, x2, x3) such that x1 + x2 + x3 = 0

(c) The set of all vectors (x1, x2, x3) such that x3 = 1

(d) The set of all vectors (x1, x2, x3) such that x3 = x1 + x2

(e) The set of all vectors (x1, x2, x3) such that x3 = 0

6. The solution of the initial-value problem

(1 + x cos2 y + x+ cos2 y) dx− x sin y dy = 0, y(1) = 0

is

(a) ln |x|+ 4x+ tan−1(cos y) = 1 +
π

4

(b) ln |x|+ 2x+ tan−1(cos y) = 1 +
π

4

(c) ln |x|+ 5x+ tan−1(cos y) = 1 +
π

2

(d) ln |x|+ x+ tan−1(cos y) = 1 +
π

4

(e) ln |x|+ 3x+ tan−1(cos y) = 1 +
π

3
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7. By making a suitable substitution, the differential equation
dy

dx
= 1 + ey−x+5 can be transformed into a separable differential equation

(a) e−v dv = dx

(b) e−v dv = 2 dx

(c) ev dv = dx

(d) ev dv = 2 dx

(e) e−v dv = x dx

8. If the solution space of the system

x1 − 4x2 − 3x3 − 7x4 = 0
2x1 − x2 + x3 + 7x4 = 0
x1 + 2x2 + 3x3 + 11x4 = 0

is the set of all linear combinations of the form su+ tv where s, t are real numbers,
then

(a) u = (−5,−3, 0, 1) and v = (1,−1, 1, 0)

(b) u = (−5,−3, 0,−1) and v = (−1,−1, 1, 0)

(c) u = (−5,−3, 0,−1) and v = (1, 1,−1, 0)

(d) u = (−5,−3, 0, 1) and v = (−1,−1, 1, 0)

(e) u = (5,−3, 0, 1) and v = (−1,−1, 1, 0)
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9. If the vectors u = (5,−4, 3), v = (−2, 0, 3) and w = (a,−8, 1) are linearly depen-
dent, then 3a =

(a) 42

(b) −42

(c) 36

(d) −40

(e) 40

10. If the function k(x) with k(0) = 0 makes

dy

dx
=
y cosx+ 2xey + 3

k(x)− x2ey + 2x

an exact differential equation, then k(x) =

(a) − sinx− 2x

(b) − sinx+ 3x

(c) sinx− 2x

(d) − sinx+ 4x

(e) sinx+ 2x
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11. At 4:00 pm, a thermometer reading 20◦C is put into a freezer where the temperature
is −10◦C. If the reading is 5◦C at 4:02 pm, then the reading at 4:06 pm is

(a) −4.25◦C

(b) −6.25◦C

(c) 0◦C

(d) −7.25◦C

(e) −8.25◦C

12. The general solution of the linear differential equation

(x2 + 1)
dy

dx
+ 3x3y = 6x e−

3
2x

2

is

(a) y(x) = [1 + c(x2 + 1)
3
2 ] e−

3
2x

2

(b) y(x) = [−4 + c(x2 + 1)
3
2 ] e−

3
2x

2

(c) y(x) = [−6 + c(x2 + 1)
3
2 ] e−

3
2x

2

(d) y(x) = [−2 + c(x2 + 1)
3
2 ] e−

3
2x

2

(e) y(x) = [−3 + c(x2 + 1)
3
2 ] e−

3
2x

2
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13. Let v1 = (5, 3, 4), v2 = (3, 2, 5) and w = (1, 0,−7) be three vectors in R3.
If w = av1 + bv2, then ab =

(a) −6

(b) 6

(c) 0

(d) −8

(e) 10

14. Let y = xm be a solution of the differential equation xy(4) + 6y′′′ = 0, then the sum
of all values of m is equal to

(a) 1

(b) 0

(c) 3

(d) −1

(e) 2
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15. The general solution of the differential equation

(2xy + 3y2) dx− (2xy + x2) dy = 0

is given by

(a) y2 − xy = cx2

(b) y2 + 2xy = cx3

(c) y3 + xy = cx2

(d) y2 + xy = cx4

(e) y2 + xy = cx3
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