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1. If the rank of the matrix


1 1 3 3 0
−1 0 −2 −1 1
2 3 7 8 α
−2 4 0 6 7

 is equal to 3, then α =

(a) 1 (correct)

(b) 0

(c) 2

(d) 3

(e) −2

2. A basis for the subspace of R3 consists of the line of intersection of the planes
x− 4y + 7z = 0 and y = −z is given by v = (α,−1, 1) where α =

(a) −11 (correct)

(b) 10

(c) −10

(d) 0

(e) 9
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3. If the solution space of the system

x1 − 2x2 − 3x3 − 16x4 = 0
2x1 − 4x2 + x3 + 17x4 = 0
x1 − 2x2 + 3x3 + 26x4 = 0

Consists of all linear combination of the vectors
v1 = (a, 1, 0, b) and v2 = (c, 0,−7, d), then a+ b+ c+ d =

(a) −2 (correct)

(b) −3

(c) −4

(d) 5

(e) 0

4. If W (x) is the Wronkian of the functions

f1(x) = 2x+ 3 cosx, f2(x) = 5 cosx, f3(x) = −3x, thenW (x) =

(a) 0 (correct)

(b) 2x

(c) −2x

(d) sinx

(e) 3 cosx
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5. If y(x) is the solution of the initial-value problem

(D + 2)2 y = 0, y(0) = 1, y′(0) = −1, then y

(
1

2

)
=

(a)
3

2e
(correct)

(b)
3

e

(c)
5

e

(d)
5

2e
(e) 0

6. The general solution of the differential equation

(D5 − 2D3 − 2D2 − 3D − 2) y = 0 is

(a) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx (correct)

(b) y(x) = c1e
−x + (c2 + c3x) e2x + c4 cosx+ c5 sinx

(c) y(x) = ex(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(d) y(x) = e−x(c1 + c2x) + c3e
2x + c4 e

x cosx+ c5 e
x sinx

(e) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 e

−x cosx+ c5 e
−x sinx
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7. A linear homogeneous differential equation with real coefficients having the solutions
xex, 5ex cos(3x) is

(a) y(4) − 4y(3) + 15y′′ − 22y′ + 10y = 0 (correct)

(b) y(4) + 4y(3) + 15y′′ − 22y′ + 2y = 0

(c) y(4) − 4y(3) + 13y′′ − 22y′ + 12y = 0

(d) y(4) − 4y(3) + 15y′′ − 20y′ + 8y = 0

(e) y(4) − 10y(3) + 15y′′ − 22y′ + 16y = 0

8. If yp = Ax3 +Bx2 +Cx+D cosx+E sinx is a particular solution of the differential
equation

y′′′ + 4y′ = 24(x2 + sinx), thenA+B + C +D + E =

(a) −9 (correct)

(b) 9

(c) −8

(d) 8

(e) 11



Term 251, MATH 208, Major Exam II Page 5 of 8 MASTER

9. An appropriate form of a particular solution yp for the non-homogeneous differential
equation

(D2 − 1)2 y = ex + sinx

is given by yp(x) =

(a) Ax2ex +B cosx+ C sinx (correct)

(b) Aex +B cosx+ C sinx

(c) Axex +B cosx+ C sinx

(d) Ax2ex +B sinx

(e) Ax2ex +Bx2 cosx+ Cx2 sinx

10. Given that y = e−x cosx is a solution of the differential equation 9y(3) +11y′′+4y′−
14y = 0. The general solution of the differential equation is

(a) y = c1 e
7
9x + c2 e

−x cosx+ c3 e
−x sinx (correct)

(b) y = c1 e
2
9x + c2 e

−x cosx+ c3 e
−x sinx

(c) y = c1 e
− 7

9x + c2 e
−x cosx+ c3 e

−x sinx

(d) y = c1 e
− 2

9x + c2 e
−x cosx+ c3 e

−x sinx

(e) y = c1 e
x + c2 e

−x cosx+ c3 e
−x sinx
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11. A particular solution of the differential equation

y′′ − 3y′ + 2y = cos(e−x)

is given by yp(x) =

(a) −e2x cos (e−x) (correct)

(b) ex cos (e−x) + e2x sin(e−x)

(c) 2e2x sin (e−x)

(d) 2ex cos (e−x) + e2x sin(e−x)

(e) −2e2x cos (e−x)

12. The characteristic equation of the matrix

 0 1 −1
−3 1 −3
1 −4 2

 is

(a) λ3 − 3λ2 − 6λ+ 8 = 0 (correct)

(b) λ3 − 4λ2 − 6λ+ 8 = 0

(c) λ3 − 3λ2 + 6λ− 8 = 0

(d) λ3 − 5λ2 − 6λ− 8 = 0

(e) λ3 − 3λ2 − 5λ+ 6 = 0
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13. An eigenvector associated with the eigenvalue λ = 5 of the matrix A =

[
5 0
4 −1

]
is

[
3
α

]
where α =

(a) 2 (correct)

(b) −2

(c) 3

(d) −3

(e) 1

14. If the characteristic polynomial of the matrix

A =

 0 3 1
1 2 1
1 3 0

 is p(λ) = −(λ+ 1)2(λ− 4),

then a basis for the eigenspace of λ = −1 is v1 =

 α

0
−1

 , v2 =

 β

−1
0

, where

α + β =

(a) 4 (correct)

(b) −4

(c) 0

(d) 3

(e) 2
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15. If the matrix A =

[
−1 3
−2 4

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P = [31211002 (correct)

(b) P = [13121002

(c) P = [31− 211002

(d) P = [13121002

(e) P = [131− 20120
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1. The general solution of the differential equation

(D5 − 2D3 − 2D2 − 3D − 2) y = 0 is

(a) y(x) = c1e
−x + (c2 + c3x) e2x + c4 cosx+ c5 sinx

(b) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(c) y(x) = ex(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(d) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 e

−x cosx+ c5 e
−x sinx

(e) y(x) = e−x(c1 + c2x) + c3e
2x + c4 e

x cosx+ c5 e
x sinx

2. A linear homogeneous differential equation with real coefficients having the solutions
xex, 5ex cos(3x) is

(a) y(4) − 4y(3) + 15y′′ − 22y′ + 10y = 0

(b) y(4) − 10y(3) + 15y′′ − 22y′ + 16y = 0

(c) y(4) − 4y(3) + 13y′′ − 22y′ + 12y = 0

(d) y(4) − 4y(3) + 15y′′ − 20y′ + 8y = 0

(e) y(4) + 4y(3) + 15y′′ − 22y′ + 2y = 0
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3. If the matrix A =

[
−1 3
−2 4

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P = [31− 211002

(b) P = [131− 20120

(c) P = [13121002

(d) P = [13121002

(e) P = [31211002

4. If the rank of the matrix


1 1 3 3 0
−1 0 −2 −1 1
2 3 7 8 α

−2 4 0 6 7

 is equal to 3, then α =

(a) −2

(b) 0

(c) 2

(d) 1

(e) 3
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5. If the solution space of the system

x1 − 2x2 − 3x3 − 16x4 = 0
2x1 − 4x2 + x3 + 17x4 = 0
x1 − 2x2 + 3x3 + 26x4 = 0

Consists of all linear combination of the vectors
v1 = (a, 1, 0, b) and v2 = (c, 0,−7, d), then a+ b+ c+ d =

(a) −3

(b) −2

(c) 5

(d) −4

(e) 0

6. If W (x) is the Wronkian of the functions

f1(x) = 2x+ 3 cosx, f2(x) = 5 cosx, f3(x) = −3x, thenW (x) =

(a) −2x

(b) 2x

(c) 0

(d) sinx

(e) 3 cosx



Term 251, MATH 208, Major Exam II Page 4 of 8 CODE 1

7. An eigenvector associated with the eigenvalue λ = 5 of the matrix A =

[
5 0
4 −1

]
is

[
3
α

]
where α =

(a) 1

(b) 3

(c) 2

(d) −3

(e) −2

8. The characteristic equation of the matrix

 0 1 −1
−3 1 −3
1 −4 2

 is

(a) λ3 − 4λ2 − 6λ+ 8 = 0

(b) λ3 − 3λ2 + 6λ− 8 = 0

(c) λ3 − 5λ2 − 6λ− 8 = 0

(d) λ3 − 3λ2 − 6λ+ 8 = 0

(e) λ3 − 3λ2 − 5λ+ 6 = 0
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9. If yp = Ax3 +Bx2 +Cx+D cosx+E sinx is a particular solution of the differential
equation

y′′′ + 4y′ = 24(x2 + sinx), thenA+B + C +D + E =

(a) 8

(b) 9

(c) 11

(d) −9

(e) −8

10. A particular solution of the differential equation

y′′ − 3y′ + 2y = cos(e−x)

is given by yp(x) =

(a) ex cos (e−x) + e2x sin(e−x)

(b) −2e2x cos (e−x)

(c) −e2x cos (e−x)

(d) 2e2x sin (e−x)

(e) 2ex cos (e−x) + e2x sin(e−x)
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11. If y(x) is the solution of the initial-value problem

(D + 2)2 y = 0, y(0) = 1, y′(0) = −1, then y

(
1

2

)
=

(a)
5

e

(b)
3

2e

(c)
5

2e
(d) 0

(e)
3

e

12. If the characteristic polynomial of the matrix

A =

 0 3 1
1 2 1
1 3 0

 is p(λ) = −(λ+ 1)2(λ− 4),

then a basis for the eigenspace of λ = −1 is v1 =

 α
0
−1

 , v2 =

 β
−1
0

, where

α + β =

(a) 0

(b) 2

(c) 4

(d) −4

(e) 3
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13. A basis for the subspace of R3 consists of the line of intersection of the planes
x− 4y + 7z = 0 and y = −z is given by v = (α,−1, 1) where α =

(a) −11

(b) −10

(c) 0

(d) 9

(e) 10

14. Given that y = e−x cosx is a solution of the differential equation 9y(3) +11y′′+4y′−
14y = 0. The general solution of the differential equation is

(a) y = c1 e
− 2

9x + c2 e
−x cosx+ c3 e

−x sinx

(b) y = c1 e
2
9x + c2 e

−x cosx+ c3 e
−x sinx

(c) y = c1 e
− 7

9x + c2 e
−x cosx+ c3 e

−x sinx

(d) y = c1 e
x + c2 e

−x cosx+ c3 e
−x sinx

(e) y = c1 e
7
9x + c2 e

−x cosx+ c3 e
−x sinx
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15. An appropriate form of a particular solution yp for the non-homogeneous differential
equation

(D2 − 1)2 y = ex + sinx

is given by yp(x) =

(a) Aex +B cosx+ C sinx

(b) Ax2ex +B sinx

(c) Ax2ex +B cosx+ C sinx

(d) Ax2ex +Bx2 cosx+ Cx2 sinx

(e) Axex +B cosx+ C sinx
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1. If the rank of the matrix


1 1 3 3 0
−1 0 −2 −1 1
2 3 7 8 α
−2 4 0 6 7

 is equal to 3, then α =

(a) 0

(b) 1

(c) 3

(d) −2

(e) 2

2. The characteristic equation of the matrix

 0 1 −1
−3 1 −3
1 −4 2

 is

(a) λ3 − 4λ2 − 6λ+ 8 = 0

(b) λ3 − 3λ2 − 5λ+ 6 = 0

(c) λ3 − 3λ2 + 6λ− 8 = 0

(d) λ3 − 5λ2 − 6λ− 8 = 0

(e) λ3 − 3λ2 − 6λ+ 8 = 0
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3. An eigenvector associated with the eigenvalue λ = 5 of the matrix A =

[
5 0
4 −1

]
is

[
3
α

]
where α =

(a) 2

(b) 1

(c) −2

(d) −3

(e) 3

4. A basis for the subspace of R3 consists of the line of intersection of the planes
x− 4y + 7z = 0 and y = −z is given by v = (α,−1, 1) where α =

(a) 0

(b) −10

(c) 9

(d) 10

(e) −11
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5. A linear homogeneous differential equation with real coefficients having the solutions
xex, 5ex cos(3x) is

(a) y(4) − 4y(3) + 15y′′ − 22y′ + 10y = 0

(b) y(4) − 4y(3) + 15y′′ − 20y′ + 8y = 0

(c) y(4) − 4y(3) + 13y′′ − 22y′ + 12y = 0

(d) y(4) − 10y(3) + 15y′′ − 22y′ + 16y = 0

(e) y(4) + 4y(3) + 15y′′ − 22y′ + 2y = 0

6. If the solution space of the system

x1 − 2x2 − 3x3 − 16x4 = 0
2x1 − 4x2 + x3 + 17x4 = 0
x1 − 2x2 + 3x3 + 26x4 = 0

Consists of all linear combination of the vectors
v1 = (a, 1, 0, b) and v2 = (c, 0,−7, d), then a+ b+ c+ d =

(a) 5

(b) 0

(c) −3

(d) −2

(e) −4
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7. Given that y = e−x cosx is a solution of the differential equation 9y(3) +11y′′+4y′−
14y = 0. The general solution of the differential equation is

(a) y = c1 e
x + c2 e

−x cosx+ c3 e
−x sinx

(b) y = c1 e
− 2

9x + c2 e
−x cosx+ c3 e

−x sinx

(c) y = c1 e
7
9x + c2 e

−x cosx+ c3 e
−x sinx

(d) y = c1 e
− 7

9x + c2 e
−x cosx+ c3 e

−x sinx

(e) y = c1 e
2
9x + c2 e

−x cosx+ c3 e
−x sinx

8. If y(x) is the solution of the initial-value problem

(D + 2)2 y = 0, y(0) = 1, y′(0) = −1, then y

(
1

2

)
=

(a)
5

2e

(b)
3

2e
(c) 0

(d)
5

e

(e)
3

e
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9. If W (x) is the Wronkian of the functions

f1(x) = 2x+ 3 cosx, f2(x) = 5 cosx, f3(x) = −3x, thenW (x) =

(a) −2x

(b) 3 cosx

(c) sinx

(d) 2x

(e) 0

10. A particular solution of the differential equation

y′′ − 3y′ + 2y = cos(e−x)

is given by yp(x) =

(a) ex cos (e−x) + e2x sin(e−x)

(b) 2ex cos (e−x) + e2x sin(e−x)

(c) −e2x cos (e−x)

(d) −2e2x cos (e−x)

(e) 2e2x sin (e−x)
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11. If yp = Ax3 +Bx2 +Cx+D cosx+E sinx is a particular solution of the differential
equation

y′′′ + 4y′ = 24(x2 + sinx), thenA+B + C +D + E =

(a) −9

(b) 11

(c) 9

(d) 8

(e) −8

12. If the characteristic polynomial of the matrix

A =

 0 3 1
1 2 1
1 3 0

 is p(λ) = −(λ+ 1)2(λ− 4),

then a basis for the eigenspace of λ = −1 is v1 =

 α
0
−1

 , v2 =

 β

−1
0

, where

α + β =

(a) 3

(b) 4

(c) −4

(d) 2

(e) 0
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13. The general solution of the differential equation

(D5 − 2D3 − 2D2 − 3D − 2) y = 0 is

(a) y(x) = ex(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(b) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 e

−x cosx+ c5 e
−x sinx

(c) y(x) = e−x(c1 + c2x) + c3e
2x + c4 e

x cosx+ c5 e
x sinx

(d) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(e) y(x) = c1e
−x + (c2 + c3x) e2x + c4 cosx+ c5 sinx

14. If the matrix A =

[
−1 3
−2 4

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P = [131− 20120

(b) P = [31211002

(c) P = [31− 211002

(d) P = [13121002

(e) P = [13121002
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15. An appropriate form of a particular solution yp for the non-homogeneous differential
equation

(D2 − 1)2 y = ex + sinx

is given by yp(x) =

(a) Ax2ex +Bx2 cosx+ Cx2 sinx

(b) Aex +B cosx+ C sinx

(c) Axex +B cosx+ C sinx

(d) Ax2ex +B cosx+ C sinx

(e) Ax2ex +B sinx
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1. The characteristic equation of the matrix

 0 1 −1
−3 1 −3
1 −4 2

 is

(a) λ3 − 3λ2 + 6λ− 8 = 0

(b) λ3 − 5λ2 − 6λ− 8 = 0

(c) λ3 − 3λ2 − 5λ+ 6 = 0

(d) λ3 − 3λ2 − 6λ+ 8 = 0

(e) λ3 − 4λ2 − 6λ+ 8 = 0

2. A linear homogeneous differential equation with real coefficients having the solutions
xex, 5ex cos(3x) is

(a) y(4) − 4y(3) + 13y′′ − 22y′ + 12y = 0

(b) y(4) + 4y(3) + 15y′′ − 22y′ + 2y = 0

(c) y(4) − 10y(3) + 15y′′ − 22y′ + 16y = 0

(d) y(4) − 4y(3) + 15y′′ − 22y′ + 10y = 0

(e) y(4) − 4y(3) + 15y′′ − 20y′ + 8y = 0
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3. If y(x) is the solution of the initial-value problem

(D + 2)2 y = 0, y(0) = 1, y′(0) = −1, then y

(
1

2

)
=

(a)
3

e

(b)
5

2e

(c)
3

2e

(d)
5

e
(e) 0

4. If W (x) is the Wronkian of the functions

f1(x) = 2x+ 3 cosx, f2(x) = 5 cosx, f3(x) = −3x, thenW (x) =

(a) sinx

(b) 2x

(c) 0

(d) 3 cosx

(e) −2x
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5. If the characteristic polynomial of the matrix

A =

 0 3 1
1 2 1
1 3 0

 is p(λ) = −(λ+ 1)2(λ− 4),

then a basis for the eigenspace of λ = −1 is v1 =

 α
0
−1

 , v2 =

 β
−1
0

, where

α + β =

(a) 2

(b) 4

(c) 0

(d) −4

(e) 3

6. If the solution space of the system

x1 − 2x2 − 3x3 − 16x4 = 0
2x1 − 4x2 + x3 + 17x4 = 0
x1 − 2x2 + 3x3 + 26x4 = 0

Consists of all linear combination of the vectors
v1 = (a, 1, 0, b) and v2 = (c, 0,−7, d), then a+ b+ c+ d =

(a) −4

(b) 5

(c) −3

(d) 0

(e) −2
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7. A basis for the subspace of R3 consists of the line of intersection of the planes
x− 4y + 7z = 0 and y = −z is given by v = (α,−1, 1) where α =

(a) −11

(b) 0

(c) 10

(d) 9

(e) −10

8. The general solution of the differential equation

(D5 − 2D3 − 2D2 − 3D − 2) y = 0 is

(a) y(x) = c1e
−x + (c2 + c3x) e2x + c4 cosx+ c5 sinx

(b) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 e

−x cosx+ c5 e
−x sinx

(c) y(x) = ex(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(d) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(e) y(x) = e−x(c1 + c2x) + c3e
2x + c4 e

x cosx+ c5 e
x sinx
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9. A particular solution of the differential equation

y′′ − 3y′ + 2y = cos(e−x)

is given by yp(x) =

(a) 2ex cos (e−x) + e2x sin(e−x)

(b) ex cos (e−x) + e2x sin(e−x)

(c) −e2x cos (e−x)

(d) 2e2x sin (e−x)

(e) −2e2x cos (e−x)

10. An eigenvector associated with the eigenvalue λ = 5 of the matrix A =

[
5 0
4 −1

]
is

[
3
α

]
where α =

(a) 3

(b) 1

(c) 2

(d) −3

(e) −2
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11. If the rank of the matrix


1 1 3 3 0
−1 0 −2 −1 1
2 3 7 8 α
−2 4 0 6 7

 is equal to 3, then α =

(a) 2

(b) 1

(c) −2

(d) 0

(e) 3

12. If the matrix A =

[
−1 3
−2 4

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P = [13121002

(b) P = [13121002

(c) P = [31− 211002

(d) P = [131− 20120

(e) P = [31211002
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13. Given that y = e−x cosx is a solution of the differential equation 9y(3) +11y′′+4y′−
14y = 0. The general solution of the differential equation is

(a) y = c1 e
x + c2 e

−x cosx+ c3 e
−x sinx

(b) y = c1 e
7
9x + c2 e

−x cosx+ c3 e
−x sinx

(c) y = c1 e
− 7

9x + c2 e
−x cosx+ c3 e

−x sinx

(d) y = c1 e
− 2

9x + c2 e
−x cosx+ c3 e

−x sinx

(e) y = c1 e
2
9x + c2 e

−x cosx+ c3 e
−x sinx

14. If yp = Ax3 +Bx2 +Cx+D cosx+E sinx is a particular solution of the differential
equation

y′′′ + 4y′ = 24(x2 + sinx), thenA+B + C +D + E =

(a) 9

(b) 8

(c) −9

(d) 11

(e) −8
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15. An appropriate form of a particular solution yp for the non-homogeneous differential
equation

(D2 − 1)2 y = ex + sinx

is given by yp(x) =

(a) Ax2ex +Bx2 cosx+ Cx2 sinx

(b) Ax2ex +B sinx

(c) Aex +B cosx+ C sinx

(d) Axex +B cosx+ C sinx

(e) Ax2ex +B cosx+ C sinx
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1. If W (x) is the Wronkian of the functions

f1(x) = 2x+ 3 cosx, f2(x) = 5 cosx, f3(x) = −3x, thenW (x) =

(a) 3 cos x

(b) sinx

(c) 2x

(d) −2x

(e) 0

2. The characteristic equation of the matrix

 0 1 −1
−3 1 −3
1 −4 2

 is

(a) λ3 − 3λ2 − 5λ+ 6 = 0

(b) λ3 − 5λ2 − 6λ− 8 = 0

(c) λ3 − 4λ2 − 6λ+ 8 = 0

(d) λ3 − 3λ2 − 6λ+ 8 = 0

(e) λ3 − 3λ2 + 6λ− 8 = 0
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3. Given that y = e−x cosx is a solution of the differential equation 9y(3) +11y′′+4y′−
14y = 0. The general solution of the differential equation is

(a) y = c1 e
− 2

9x + c2 e
−x cosx+ c3 e

−x sinx

(b) y = c1 e
2
9x + c2 e

−x cosx+ c3 e
−x sinx

(c) y = c1 e
x + c2 e

−x cosx+ c3 e
−x sinx

(d) y = c1 e
− 7

9x + c2 e
−x cosx+ c3 e

−x sinx

(e) y = c1 e
7
9x + c2 e

−x cosx+ c3 e
−x sinx

4. If yp = Ax3 +Bx2 +Cx+D cosx+E sinx is a particular solution of the differential
equation

y′′′ + 4y′ = 24(x2 + sinx), thenA+B + C +D + E =

(a) 8

(b) −9

(c) 9

(d) −8

(e) 11
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5. An eigenvector associated with the eigenvalue λ = 5 of the matrix A =

[
5 0
4 −1

]
is

[
3
α

]
where α =

(a) −3

(b) −2

(c) 3

(d) 1

(e) 2

6. A basis for the subspace of R3 consists of the line of intersection of the planes
x− 4y + 7z = 0 and y = −z is given by v = (α,−1, 1) where α =

(a) −10

(b) 9

(c) 10

(d) −11

(e) 0
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7. A particular solution of the differential equation

y′′ − 3y′ + 2y = cos(e−x)

is given by yp(x) =

(a) −e2x cos (e−x)

(b) 2ex cos (e−x) + e2x sin(e−x)

(c) −2e2x cos (e−x)

(d) ex cos (e−x) + e2x sin(e−x)

(e) 2e2x sin (e−x)

8. A linear homogeneous differential equation with real coefficients having the solutions
xex, 5ex cos(3x) is

(a) y(4) − 4y(3) + 15y′′ − 20y′ + 8y = 0

(b) y(4) − 4y(3) + 13y′′ − 22y′ + 12y = 0

(c) y(4) − 10y(3) + 15y′′ − 22y′ + 16y = 0

(d) y(4) + 4y(3) + 15y′′ − 22y′ + 2y = 0

(e) y(4) − 4y(3) + 15y′′ − 22y′ + 10y = 0



Term 251, MATH 208, Major Exam II Page 5 of 8 CODE 4

9. If the characteristic polynomial of the matrix

A =

 0 3 1
1 2 1
1 3 0

 is p(λ) = −(λ+ 1)2(λ− 4),

then a basis for the eigenspace of λ = −1 is v1 =

 α
0
−1

 , v2 =

 β
−1
0

, where

α + β =

(a) −4

(b) 4

(c) 2

(d) 3

(e) 0

10. If the solution space of the system

x1 − 2x2 − 3x3 − 16x4 = 0
2x1 − 4x2 + x3 + 17x4 = 0
x1 − 2x2 + 3x3 + 26x4 = 0

Consists of all linear combination of the vectors
v1 = (a, 1, 0, b) and v2 = (c, 0,−7, d), then a+ b+ c+ d =

(a) −4

(b) −3

(c) 0

(d) 5

(e) −2
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11. If y(x) is the solution of the initial-value problem

(D + 2)2 y = 0, y(0) = 1, y′(0) = −1, then y

(
1

2

)
=

(a)
5

2e

(b)
5

e

(c)
3

e

(d)
3

2e
(e) 0

12. If the matrix A =

[
−1 3
−2 4

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P = [13121002

(b) P = [31− 211002

(c) P = [31211002

(d) P = [13121002

(e) P = [131− 20120
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13. If the rank of the matrix


1 1 3 3 0
−1 0 −2 −1 1
2 3 7 8 α
−2 4 0 6 7

 is equal to 3, then α =

(a) 1

(b) 2

(c) −2

(d) 3

(e) 0

14. The general solution of the differential equation

(D5 − 2D3 − 2D2 − 3D − 2) y = 0 is

(a) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(b) y(x) = ex(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(c) y(x) = e−x(c1 + c2x) + c3e
2x + c4 e

x cosx+ c5 e
x sinx

(d) y(x) = c1e
−x + (c2 + c3x) e2x + c4 cosx+ c5 sinx

(e) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 e

−x cosx+ c5 e
−x sinx
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15. An appropriate form of a particular solution yp for the non-homogeneous differential
equation

(D2 − 1)2 y = ex + sinx

is given by yp(x) =

(a) Aex +B cosx+ C sinx

(b) Ax2ex +Bx2 cosx+ Cx2 sinx

(c) Ax2ex +B sinx

(d) Ax2ex +B cosx+ C sinx

(e) Axex +B cosx+ C sinx
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1. If the rank of the matrix


1 1 3 3 0
−1 0 −2 −1 1
2 3 7 8 α
−2 4 0 6 7

 is equal to 3, then α =

(a) 2

(b) 0

(c) −2

(d) 1

(e) 3

2. Given that y = e−x cosx is a solution of the differential equation 9y(3) +11y′′+4y′−
14y = 0. The general solution of the differential equation is

(a) y = c1 e
x + c2 e

−x cosx+ c3 e
−x sinx

(b) y = c1 e
− 2

9x + c2 e
−x cosx+ c3 e

−x sinx

(c) y = c1 e
− 7

9x + c2 e
−x cosx+ c3 e

−x sinx

(d) y = c1 e
2
9x + c2 e

−x cosx+ c3 e
−x sinx

(e) y = c1 e
7
9x + c2 e

−x cosx+ c3 e
−x sinx
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3. If the solution space of the system

x1 − 2x2 − 3x3 − 16x4 = 0
2x1 − 4x2 + x3 + 17x4 = 0
x1 − 2x2 + 3x3 + 26x4 = 0

Consists of all linear combination of the vectors
v1 = (a, 1, 0, b) and v2 = (c, 0,−7, d), then a+ b+ c+ d =

(a) −3

(b) 5

(c) −2

(d) 0

(e) −4

4. The general solution of the differential equation

(D5 − 2D3 − 2D2 − 3D − 2) y = 0 is

(a) y(x) = ex(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(b) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(c) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 e

−x cosx+ c5 e
−x sinx

(d) y(x) = e−x(c1 + c2x) + c3e
2x + c4 e

x cosx+ c5 e
x sinx

(e) y(x) = c1e
−x + (c2 + c3x) e2x + c4 cosx+ c5 sinx
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5. If W (x) is the Wronkian of the functions

f1(x) = 2x+ 3 cosx, f2(x) = 5 cosx, f3(x) = −3x, thenW (x) =

(a) 0

(b) 2x

(c) 3 cosx

(d) sinx

(e) −2x

6. A particular solution of the differential equation

y′′ − 3y′ + 2y = cos(e−x)

is given by yp(x) =

(a) 2ex cos (e−x) + e2x sin(e−x)

(b) −e2x cos (e−x)

(c) 2e2x sin (e−x)

(d) −2e2x cos (e−x)

(e) ex cos (e−x) + e2x sin(e−x)
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7. If the matrix A =

[
−1 3
−2 4

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P = [31− 211002

(b) P = [131− 20120

(c) P = [31211002

(d) P = [13121002

(e) P = [13121002

8. A linear homogeneous differential equation with real coefficients having the solutions
xex, 5ex cos(3x) is

(a) y(4) + 4y(3) + 15y′′ − 22y′ + 2y = 0

(b) y(4) − 4y(3) + 15y′′ − 22y′ + 10y = 0

(c) y(4) − 10y(3) + 15y′′ − 22y′ + 16y = 0

(d) y(4) − 4y(3) + 15y′′ − 20y′ + 8y = 0

(e) y(4) − 4y(3) + 13y′′ − 22y′ + 12y = 0
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9. A basis for the subspace of R3 consists of the line of intersection of the planes
x− 4y + 7z = 0 and y = −z is given by v = (α,−1, 1) where α =

(a) −10

(b) 9

(c) 0

(d) 10

(e) −11

10. An eigenvector associated with the eigenvalue λ = 5 of the matrix A =

[
5 0
4 −1

]
is

[
3
α

]
where α =

(a) −2

(b) 3

(c) −3

(d) 2

(e) 1
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11. The characteristic equation of the matrix

 0 1 −1
−3 1 −3
1 −4 2

 is

(a) λ3 − 4λ2 − 6λ+ 8 = 0

(b) λ3 − 3λ2 − 5λ+ 6 = 0

(c) λ3 − 5λ2 − 6λ− 8 = 0

(d) λ3 − 3λ2 + 6λ− 8 = 0

(e) λ3 − 3λ2 − 6λ+ 8 = 0

12. If yp = Ax3 +Bx2 +Cx+D cosx+E sinx is a particular solution of the differential
equation

y′′′ + 4y′ = 24(x2 + sinx), thenA+B + C +D + E =

(a) −9

(b) 11

(c) 9

(d) 8

(e) −8
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13. If the characteristic polynomial of the matrix

A =

 0 3 1
1 2 1
1 3 0

 is p(λ) = −(λ+ 1)2(λ− 4),

then a basis for the eigenspace of λ = −1 is v1 =

 α
0
−1

 , v2 =

 β
−1
0

, where

α + β =

(a) 3

(b) 2

(c) 4

(d) 0

(e) −4

14. If y(x) is the solution of the initial-value problem

(D + 2)2 y = 0, y(0) = 1, y′(0) = −1, then y

(
1

2

)
=

(a)
5

e

(b)
5

2e

(c)
3

e
(d) 0

(e)
3

2e
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15. An appropriate form of a particular solution yp for the non-homogeneous differential
equation

(D2 − 1)2 y = ex + sinx

is given by yp(x) =

(a) Ax2ex +B cosx+ C sinx

(b) Aex +B cosx+ C sinx

(c) Ax2ex +Bx2 cosx+ Cx2 sinx

(d) Axex +B cosx+ C sinx

(e) Ax2ex +B sinx
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1. An eigenvector associated with the eigenvalue λ = 5 of the matrix A =

[
5 0
4 −1

]
is

[
3
α

]
where α =

(a) −3

(b) −2

(c) 2

(d) 1

(e) 3

2. The general solution of the differential equation

(D5 − 2D3 − 2D2 − 3D − 2) y = 0 is

(a) y(x) = e−x(c1 + c2x) + c3e
2x + c4 e

x cosx+ c5 e
x sinx

(b) y(x) = ex(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(c) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(d) y(x) = c1e
−x + (c2 + c3x) e2x + c4 cosx+ c5 sinx

(e) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 e

−x cosx+ c5 e
−x sinx
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3. If the characteristic polynomial of the matrix

A =

 0 3 1
1 2 1
1 3 0

 is p(λ) = −(λ+ 1)2(λ− 4),

then a basis for the eigenspace of λ = −1 is v1 =

 α
0
−1

 , v2 =

 β
−1
0

, where

α + β =

(a) 4

(b) −4

(c) 3

(d) 0

(e) 2

4. If the solution space of the system

x1 − 2x2 − 3x3 − 16x4 = 0
2x1 − 4x2 + x3 + 17x4 = 0
x1 − 2x2 + 3x3 + 26x4 = 0

Consists of all linear combination of the vectors
v1 = (a, 1, 0, b) and v2 = (c, 0,−7, d), then a+ b+ c+ d =

(a) 0

(b) −3

(c) −4

(d) −2

(e) 5
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5. A particular solution of the differential equation

y′′ − 3y′ + 2y = cos(e−x)

is given by yp(x) =

(a) ex cos (e−x) + e2x sin(e−x)

(b) −2e2x cos (e−x)

(c) 2e2x sin (e−x)

(d) 2ex cos (e−x) + e2x sin(e−x)

(e) −e2x cos (e−x)

6. A basis for the subspace of R3 consists of the line of intersection of the planes
x− 4y + 7z = 0 and y = −z is given by v = (α,−1, 1) where α =

(a) −11

(b) 0

(c) −10

(d) 10

(e) 9
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7. If y(x) is the solution of the initial-value problem

(D + 2)2 y = 0, y(0) = 1, y′(0) = −1, then y

(
1

2

)
=

(a) 0

(b)
5

e

(c)
3

e

(d)
3

2e

(e)
5

2e

8. Given that y = e−x cosx is a solution of the differential equation 9y(3) +11y′′+4y′−
14y = 0. The general solution of the differential equation is

(a) y = c1 e
− 2

9x + c2 e
−x cosx+ c3 e

−x sinx

(b) y = c1 e
− 7

9x + c2 e
−x cosx+ c3 e

−x sinx

(c) y = c1 e
x + c2 e

−x cosx+ c3 e
−x sinx

(d) y = c1 e
2
9x + c2 e

−x cosx+ c3 e
−x sinx

(e) y = c1 e
7
9x + c2 e

−x cosx+ c3 e
−x sinx
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9. A linear homogeneous differential equation with real coefficients having the solutions
xex, 5ex cos(3x) is

(a) y(4) − 10y(3) + 15y′′ − 22y′ + 16y = 0

(b) y(4) + 4y(3) + 15y′′ − 22y′ + 2y = 0

(c) y(4) − 4y(3) + 15y′′ − 22y′ + 10y = 0

(d) y(4) − 4y(3) + 13y′′ − 22y′ + 12y = 0

(e) y(4) − 4y(3) + 15y′′ − 20y′ + 8y = 0

10. The characteristic equation of the matrix

 0 1 −1
−3 1 −3
1 −4 2

 is

(a) λ3 − 3λ2 − 5λ+ 6 = 0

(b) λ3 − 3λ2 − 6λ+ 8 = 0

(c) λ3 − 3λ2 + 6λ− 8 = 0

(d) λ3 − 4λ2 − 6λ+ 8 = 0

(e) λ3 − 5λ2 − 6λ− 8 = 0
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11. If the rank of the matrix


1 1 3 3 0
−1 0 −2 −1 1
2 3 7 8 α
−2 4 0 6 7

 is equal to 3, then α =

(a) 1

(b) 3

(c) −2

(d) 0

(e) 2

12. If yp = Ax3 +Bx2 +Cx+D cosx+E sinx is a particular solution of the differential
equation

y′′′ + 4y′ = 24(x2 + sinx), thenA+B + C +D + E =

(a) 11

(b) 8

(c) −8

(d) −9

(e) 9
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13. If the matrix A =

[
−1 3
−2 4

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P = [131− 20120

(b) P = [31211002

(c) P = [13121002

(d) P = [31− 211002

(e) P = [13121002

14. If W (x) is the Wronkian of the functions

f1(x) = 2x+ 3 cosx, f2(x) = 5 cosx, f3(x) = −3x, thenW (x) =

(a) 2x

(b) 0

(c) 3 cosx

(d) sinx

(e) −2x
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15. An appropriate form of a particular solution yp for the non-homogeneous differential
equation

(D2 − 1)2 y = ex + sinx

is given by yp(x) =

(a) Ax2ex +Bx2 cosx+ Cx2 sinx

(b) Axex +B cosx+ C sinx

(c) Aex +B cosx+ C sinx

(d) Ax2ex +B sinx

(e) Ax2ex +B cosx+ C sinx
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1. The characteristic equation of the matrix

 0 1 −1
−3 1 −3
1 −4 2

 is

(a) λ3 − 5λ2 − 6λ− 8 = 0

(b) λ3 − 3λ2 − 5λ+ 6 = 0

(c) λ3 − 3λ2 + 6λ− 8 = 0

(d) λ3 − 3λ2 − 6λ+ 8 = 0

(e) λ3 − 4λ2 − 6λ+ 8 = 0

2. A particular solution of the differential equation

y′′ − 3y′ + 2y = cos(e−x)

is given by yp(x) =

(a) −e2x cos (e−x)

(b) −2e2x cos (e−x)

(c) 2ex cos (e−x) + e2x sin(e−x)

(d) ex cos (e−x) + e2x sin(e−x)

(e) 2e2x sin (e−x)
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3. If the matrix A =

[
−1 3
−2 4

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P = [131− 20120

(b) P = [13121002

(c) P = [31− 211002

(d) P = [13121002

(e) P = [31211002

4. The general solution of the differential equation

(D5 − 2D3 − 2D2 − 3D − 2) y = 0 is

(a) y(x) = e−x(c1 + c2x) + c3e
2x + c4 e

x cosx+ c5 e
x sinx

(b) y(x) = ex(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(c) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 e

−x cosx+ c5 e
−x sinx

(d) y(x) = c1e
−x + (c2 + c3x) e2x + c4 cosx+ c5 sinx

(e) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx
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5. If W (x) is the Wronkian of the functions

f1(x) = 2x+ 3 cosx, f2(x) = 5 cosx, f3(x) = −3x, thenW (x) =

(a) 0

(b) 2x

(c) sinx

(d) 3 cosx

(e) −2x

6. If yp = Ax3 +Bx2 +Cx+D cosx+E sinx is a particular solution of the differential
equation

y′′′ + 4y′ = 24(x2 + sinx), thenA+B + C +D + E =

(a) 11

(b) 8

(c) −9

(d) 9

(e) −8
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7. If the characteristic polynomial of the matrix

A =

 0 3 1
1 2 1
1 3 0

 is p(λ) = −(λ+ 1)2(λ− 4),

then a basis for the eigenspace of λ = −1 is v1 =

 α
0
−1

 , v2 =

 β
−1
0

, where

α + β =

(a) 0

(b) 3

(c) −4

(d) 4

(e) 2

8. Given that y = e−x cosx is a solution of the differential equation 9y(3) +11y′′+4y′−
14y = 0. The general solution of the differential equation is

(a) y = c1 e
x + c2 e

−x cosx+ c3 e
−x sinx

(b) y = c1 e
7
9x + c2 e

−x cosx+ c3 e
−x sinx

(c) y = c1 e
2
9x + c2 e

−x cosx+ c3 e
−x sinx

(d) y = c1 e
− 2

9x + c2 e
−x cosx+ c3 e

−x sinx

(e) y = c1 e
− 7

9x + c2 e
−x cosx+ c3 e

−x sinx
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9. If the solution space of the system

x1 − 2x2 − 3x3 − 16x4 = 0
2x1 − 4x2 + x3 + 17x4 = 0
x1 − 2x2 + 3x3 + 26x4 = 0

Consists of all linear combination of the vectors
v1 = (a, 1, 0, b) and v2 = (c, 0,−7, d), then a+ b+ c+ d =

(a) 0

(b) −2

(c) −4

(d) 5

(e) −3

10. If the rank of the matrix


1 1 3 3 0
−1 0 −2 −1 1
2 3 7 8 α

−2 4 0 6 7

 is equal to 3, then α =

(a) 1

(b) −2

(c) 2

(d) 0

(e) 3
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11. If y(x) is the solution of the initial-value problem

(D + 2)2 y = 0, y(0) = 1, y′(0) = −1, then y

(
1

2

)
=

(a)
3

e

(b)
3

2e

(c)
5

e
(d) 0

(e)
5

2e

12. A linear homogeneous differential equation with real coefficients having the solutions
xex, 5ex cos(3x) is

(a) y(4) − 4y(3) + 13y′′ − 22y′ + 12y = 0

(b) y(4) − 4y(3) + 15y′′ − 22y′ + 10y = 0

(c) y(4) − 4y(3) + 15y′′ − 20y′ + 8y = 0

(d) y(4) + 4y(3) + 15y′′ − 22y′ + 2y = 0

(e) y(4) − 10y(3) + 15y′′ − 22y′ + 16y = 0
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13. An eigenvector associated with the eigenvalue λ = 5 of the matrix A =

[
5 0
4 −1

]
is

[
3
α

]
where α =

(a) 2

(b) 3

(c) −3

(d) 1

(e) −2

14. A basis for the subspace of R3 consists of the line of intersection of the planes
x− 4y + 7z = 0 and y = −z is given by v = (α,−1, 1) where α =

(a) 9

(b) 10

(c) −11

(d) −10

(e) 0
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15. An appropriate form of a particular solution yp for the non-homogeneous differential
equation

(D2 − 1)2 y = ex + sinx

is given by yp(x) =

(a) Ax2ex +B sinx

(b) Axex +B cosx+ C sinx

(c) Ax2ex +B cosx+ C sinx

(d) Ax2ex +Bx2 cosx+ Cx2 sinx

(e) Aex +B cosx+ C sinx
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1. If W (x) is the Wronkian of the functions

f1(x) = 2x+ 3 cosx, f2(x) = 5 cosx, f3(x) = −3x, thenW (x) =

(a) 3 cos x

(b) 2x

(c) sinx

(d) −2x

(e) 0

2. Given that y = e−x cosx is a solution of the differential equation 9y(3) +11y′′+4y′−
14y = 0. The general solution of the differential equation is

(a) y = c1 e
7
9x + c2 e

−x cosx+ c3 e
−x sinx

(b) y = c1 e
x + c2 e

−x cosx+ c3 e
−x sinx

(c) y = c1 e
− 2

9x + c2 e
−x cosx+ c3 e

−x sinx

(d) y = c1 e
− 7

9x + c2 e
−x cosx+ c3 e

−x sinx

(e) y = c1 e
2
9x + c2 e

−x cosx+ c3 e
−x sinx



Term 251, MATH 208, Major Exam II Page 2 of 8 CODE 8

3. The general solution of the differential equation

(D5 − 2D3 − 2D2 − 3D − 2) y = 0 is

(a) y(x) = e−x(c1 + c2x) + c3e
2x + c4 e

x cosx+ c5 e
x sinx

(b) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

(c) y(x) = e−x(c1 + c2x) + c3 e
2x + c4 e

−x cosx+ c5 e
−x sinx

(d) y(x) = c1e
−x + (c2 + c3x) e2x + c4 cosx+ c5 sinx

(e) y(x) = ex(c1 + c2x) + c3 e
2x + c4 cosx+ c5 sinx

4. The characteristic equation of the matrix

 0 1 −1
−3 1 −3
1 −4 2

 is

(a) λ3 − 5λ2 − 6λ− 8 = 0

(b) λ3 − 4λ2 − 6λ+ 8 = 0

(c) λ3 − 3λ2 − 6λ+ 8 = 0

(d) λ3 − 3λ2 − 5λ+ 6 = 0

(e) λ3 − 3λ2 + 6λ− 8 = 0
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5. A basis for the subspace of R3 consists of the line of intersection of the planes
x− 4y + 7z = 0 and y = −z is given by v = (α,−1, 1) where α =

(a) 10

(b) −11

(c) 0

(d) −10

(e) 9

6. If the matrix A =

[
−1 3
−2 4

]
is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P−1AP = D, then

(a) P = [13121002

(b) P = [13121002

(c) P = [131− 20120

(d) P = [31− 211002

(e) P = [31211002
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7. An eigenvector associated with the eigenvalue λ = 5 of the matrix A =

[
5 0
4 −1

]
is

[
3
α

]
where α =

(a) −2

(b) 2

(c) 3

(d) −3

(e) 1

8. If the characteristic polynomial of the matrix

A =

 0 3 1
1 2 1
1 3 0

 is p(λ) = −(λ+ 1)2(λ− 4),

then a basis for the eigenspace of λ = −1 is v1 =

 α

0
−1

 , v2 =

 β

−1
0

, where

α + β =

(a) 3

(b) 4

(c) 0

(d) −4

(e) 2
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9. A particular solution of the differential equation

y′′ − 3y′ + 2y = cos(e−x)

is given by yp(x) =

(a) 2e2x sin (e−x)

(b) 2ex cos (e−x) + e2x sin(e−x)

(c) ex cos (e−x) + e2x sin(e−x)

(d) −e2x cos (e−x)

(e) −2e2x cos (e−x)

10. If the solution space of the system

x1 − 2x2 − 3x3 − 16x4 = 0
2x1 − 4x2 + x3 + 17x4 = 0
x1 − 2x2 + 3x3 + 26x4 = 0

Consists of all linear combination of the vectors
v1 = (a, 1, 0, b) and v2 = (c, 0,−7, d), then a+ b+ c+ d =

(a) −2

(b) −3

(c) 5

(d) 0

(e) −4
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11. If yp = Ax3 +Bx2 +Cx+D cosx+E sinx is a particular solution of the differential
equation

y′′′ + 4y′ = 24(x2 + sinx), thenA+B + C +D + E =

(a) 8

(b) −9

(c) −8

(d) 9

(e) 11

12. A linear homogeneous differential equation with real coefficients having the solutions
xex, 5ex cos(3x) is

(a) y(4) − 4y(3) + 15y′′ − 22y′ + 10y = 0

(b) y(4) + 4y(3) + 15y′′ − 22y′ + 2y = 0

(c) y(4) − 4y(3) + 13y′′ − 22y′ + 12y = 0

(d) y(4) − 10y(3) + 15y′′ − 22y′ + 16y = 0

(e) y(4) − 4y(3) + 15y′′ − 20y′ + 8y = 0
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13. If y(x) is the solution of the initial-value problem

(D + 2)2 y = 0, y(0) = 1, y′(0) = −1, then y

(
1

2

)
=

(a)
5

e
(b) 0

(c)
5

2e

(d)
3

2e

(e)
3

e

14. If the rank of the matrix


1 1 3 3 0
−1 0 −2 −1 1
2 3 7 8 α
−2 4 0 6 7

 is equal to 3, then α =

(a) 2

(b) 1

(c) 3

(d) 0

(e) −2
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15. An appropriate form of a particular solution yp for the non-homogeneous differential
equation

(D2 − 1)2 y = ex + sinx

is given by yp(x) =

(a) Ax2ex +B cosx+ C sinx

(b) Aex +B cosx+ C sinx

(c) Axex +B cosx+ C sinx

(d) Ax2ex +Bx2 cosx+ Cx2 sinx

(e) Ax2ex +B sinx
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3 A E 15 A 13 C 5 E 10 C 3 A 14 E 15 B 6

4 A D 1 E 2 C 4 B 8 B 6 D 3 E 6 C 12

5 A B 3 A 7 B 14 E 13 A 4 E 11 A 4 B 2

6 A C 4 D 3 E 3 D 2 B 11 A 2 C 8 E 15

7 A C 13 C 10 A 2 A 11 C 15 D 5 D 14 B 13

8 A D 12 B 5 D 6 E 7 B 7 E 10 B 10 B 14

9 A D 8 E 4 C 11 B 14 E 2 C 7 B 3 D 11

10 A C 11 C 11 C 13 E 3 D 13 B 12 A 1 A 3

11 A B 5 A 8 B 1 D 5 E 12 A 1 B 5 B 8

12 A C 14 B 14 E 15 C 15 A 8 D 8 B 7 A 7

13 A A 2 D 6 B 10 A 1 C 14 B 15 A 13 D 5

14 A E 10 B 15 C 8 A 6 E 5 B 4 C 2 B 1

15 A C 9 D 9 E 9 D 9 A 9 E 9 C 9 A 9
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