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11 3 3 0
: -1 0 -2 -1 1| .
1. If the rank of the matrix 5 3 7 8 4| equal to 3, then a =
-2 4 0 6 7

(correct)

2. A basis for the subspace of R? consists of the line of intersection of the planes
r—4y+T7z=0and y = —z is given by v = (a, —1,1) where a =

—11 (correct)
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| MASTER |
3. If the solution space of the system
T — 2332 — 3333 — 16554 =0
2.1}1 — 4[62 + x3 + 17.%4 =0
T — 229 + 3x3 + 2604 = 0
Consists of all linear combination of the vectors
v1 = (a,1,0,b) and vy = (¢,0,—7,d), then a + b+ c+ d =
(a) —2 (correct)
(b) =3
(c) —4
(d) 5
(e) 0
4. If W(z) is the Wronkian of the functions
fi(z) =2z + 3cosz, fo(x) =5cosz, f3(x) = —3x, then W (x) =
(a) 0 (correct)
(b) 2z
(c) —2z
(d) sinz
)
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5. If y(x) is the solution of the initial-value problem

(D+2)*y=0,y(0) =1,4(0) = —1, theny <%> -

(a) 2_36 (correct)
3
b) 2
Ok
5)
(c) -
5
d) =
(d) o
(e) 0
6. The general solution of the differential equation
(D* —2D* —2D* —3D —2)y =0 is
(a) y(x) = e “(c1 + o) + c3€* + ¢4 coST + cpsinw (correct)
(b) y(z) = cre™ + (co + c31) €** + ¢4 cosx + ¢z sinx
(c) y(z) = e*(c1 + caz) + c3€** + ¢4 cosT + ¢5 sinz
(d) y(x) = e™%(c1 + cox) + c3¢** + cye”cosx + cy e’ sinz
(e) y(z) = e %(c1 + cox) + c3e** +cpe T cosT + cze Tsing
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7. A linear homogeneous differential equation with real coefficients having the solutions
ze®, be’ cos(3x) is

(a) yW —4y® + 159" — 22 + 10y = 0 (correct)
(b) y™W +4y® + 15y — 22y +2y =0

(¢) y® —4y® + 13y — 22y + 12y =0

(d) y¥ — 4y® 4+ 159" — 20y +8y =0

(e) yW — 10y + 15y" — 22y + 16y = 0

8. If y, = Az®+ Bz>+ Cxz+ D cosx+ E sinz is a particular solution of the differential
equation

y" + 4y’ = 24(2® +sinz), then A+ B+C+ D+ E =

-9 (correct)
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9. An appropriate form of a particular solution ¥, for the non-homogeneous differential
equation

(D? —1)*y = ¢" +sinx

is given by y,(x) =

(a) Az?e® + Bceosz + Csinx (correct)
(b) Ae® + Bcosz + Csinx
(¢) Axze® + Bceosz + C'sinz
(d)

)

d) Ax2e® + Bsinx

(e) Az*e® + Bx*cosx + Cx’sinx

10. Given that y = e ® cos z is a solution of the differential equation 9y + 11y" 4 4y’ —
14y = 0. The general solution of the differential equation is

7 _ .
=ces’ +cge Pcosr+c3e Psine (correct)

2y —T —T &3
=C1e9” +cge T CosST +c3e Tsinw

)y
)y
(€) y=cre 5 4+ coe P cosx +cze sina
(d) y=cre 8 +cye " cosx +cze sina
)y

=c e+ e Pecosx +c3e Tsing
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11. A particular solution of the differential equation
y" — 3y + 2y = cos(e™)

is given by y,(x) =

(a) —e™" cos (e7") (correct)
(b) e cos (e7%) + e** sin(e %)

(c) 2e** sin (e™)

(d) 2e” cos( 7) + e* sin(e™?)

(e) —2¢*" cos (e™")

0o 1 -1
12. The characteristic equation of the matrix | =3 1 —3 | is
1 -4 2
(a —6A+8=0 (correct)
(b 4>\2 —6A+8=0

—6A—-8=0

) A

) A
(c) A 3>\2+6)\ 8 =0
(d) A

) A —5A+6=0
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13. An eigenvector associated with the eigenvalue A = 5 of the matrix A = [ o0 ]

4 —1
1S [3] where o =
«

(correct)

7 N /
@]
SN—— N—— SN—— N— N——
w

—_

14. If the characteristic polynomial of the matrix

1
1| isp(\) = —(A+1))(A —4),
0

then a basis for the eigenspace of A = —1 is v = 0 |,vy= 1| —1 |, where

a+f=

(correct)
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15. If the matrix A = { :; i ] is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P~'AP = D, then

(a) P = (31211002 (correct)
(b) P = [13121002

(c) P =[31— 211002

(d) P = [13121002

(e) P =[131— 20120
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2. Use HB 2.5 pencils only.
3. Use a good eraser. DO NOT use the erasers attached to the pencil.

4. Write your name, ID number and Section number on the examination paper and in the upper left
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1. The general solution of the differential equation

(D* —2D* —2D* —3D —2)y =0 is

1) =cre™" + (co+ c3z) e* + ¢4 cosw + 5 sinx
_ —x( 2x :
= e "(c1 + cox) + 3™ + ¢4 cosx + cssinx

) y()
) y(x)
(c) y(x) = e®(c1 + cox) + c3€** + ¢4 cosx + ¢5 sinx
) y(x) = e (e + cox) + c3€** 4+ cpe T cosw + cse T sinw
) y(x)

= e ¥(c1 + 1) + 3 + et cosx + cx et sinw

2. A linear homogeneous differential equation with real coefficients having the solutions
xe®, be’ cos(3x) is

) y@ — 4yB) 4+ 159" — 22y + 10y = 0
)y — 10y + 159" — 22y + 16y = 0
)y —4y 3 413y — 22y + 12y =0
) y®) 4+ 15¢y” — 20y’ + 8y =0
(e) yW +4y® + 15y — 22y + 2y =0

@
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-1 3
—2 4
diagonal matrix D such that P~'AP = D, then

3. If the matrix A = { ] is diagonalizable with a diagonalizing matrix P and a

(a) P = [31 — 211002
(b) P = [131 — 20120
(¢c) P = [13121002
(d) P = [13121002
(e) P = [31211002

1 13 3 0
: -1 0 -2 =1 1 |.
4. If the rank of the matrix 95 3 7 8 ol equal to 3, then a =
-2 4 0 6 7
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5. If the solution space of the system

T — 2:132 —3333 — 16554 =0
2.1}1 —4.%2 + x3 + 17.%4 =0
T — 229 + 3x3 + 2604 = 0

Consists of all linear combination of the vectors
v1 = (a,1,0,b) and vy = (¢,0,—7,d), then a + b+ c+ d =

6. If W(z) is the Wronkian of the functions

fi(z) =2z + 3cosz, fo(x) =5cosz, f3(x) = —3x, then W (x) =
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o 0
4 —1

7. An eigenvector associated with the eigenvalue A = 5 of the matrix A =

1S [3] where o =
«

(a) 1

(b) 3

(c) 2

(d) =3

(e) —2
0o 1 -1

8. The characteristic equation of the matrix | —3 1 =3 [ is

1 —4 2

(a) M* —4X2 —6A+8=0
(b) A 3>\2+6)\ 8§=0
(c) A —6A—8=0
(d) /\3—3)\2—6>\+8—0

) A

(e —5A+6=0
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9. If y, = Ax®+ Ba*+Cx+ D cosx+ FE sinx is a particular solution of the differential

equation

y" + 4y = 24(2® +sinz), then A+ B+C+ D+ E =

(a) 8
(b) 9
(c) 11
(d) —9
(e) —8

10. A particular solution of the differential equation
y" — 3y + 2y = cos(e™™)

is given by y,(x) =
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11. If y(x) is the solution of the initial-value problem

(D+2)*y=0,y(0) =1,4(0) = —1, theny (%) -

S O o] o1

12. If the characteristic polynomial of the matrix

1
1| isp(\) = —(A+1)2*(\—4),
0

then a basis for the eigenspace of A = —1 is v; = 0 |,v =

a+f=

, where
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13. A basis for the subspace of R? consists of the line of intersection of the planes
r—4y+ 72 =0and y = —z is given by v = (a, —1,1) where a =

(a) —11
(b) —10
(¢) 0
(d) 9
(e) 10

14. Given that y = e ¥ cos x is a solution of the differential equation 9y + 11y" + 41/ —
14y = 0. The general solution of the differential equation is

_2 _ _ .
(a) y=cre 9 +cpe P cosx + cz3e Tsine

2 — J— .
(b) y=c1e5" + e P cosx 4+ c3e sinx

7 _ P
(c)y=cre 9" +cye cosx+cge Usinx
(d) y=cre’+coe “cosxr+cze sinx

7 _ P
(e) y=cres" +coe Pcosx 4+ czge Fsinx
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15. An appropriate form of a particular solution ¥, for the non-homogeneous differential
equation

(D? —1)*y = ¢" +sinx

is given by y,(x) =

Ae* + Bceosx + Csinx
b) Az2e* + Bsinz

(a)
(b)

) Az%e¢® 4+ Bcosx + C'sinx
(d)

)

(c
d) Az?e® + Bx?cosx + Cxlsinz

(e) Aze” + Bceosz + Csinx
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11 3 3 0
: -1 0 -2 -1 1| .
1. If the rank of the matrix 5 3 7 8 4| equal to 3, then a =
-2 4 0 6 7

0
-3
1

1 -1
1 =3
-4 2

2. The characteristic equation of the matrix is

(a) A 4>\2 6A+8 =0
(b) A —5A+6=0
(c) A 3>\2+6)\ 8 =0
(d) 6N —8 =0
(e) A —6A+8=0
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3. An eigenvector associated with the eigenvalue A = 5 of the matrix A = i _01 ]

1S [3] where o =
«

DN

w

4. A basis for the subspace of R? consists of the line of intersection of the planes
r—4y+T7z=0and y = —z is given by v = (o, —1,1) where o =
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5. A linear homogeneous differential equation with real coefficients having the solutions
ze®, be’ cos(3x) is

)y — 4y 4 15y — 22y + 10y = 0
)y — 4y® 4 159" — 20y + 8y =0
)y —4y®) 4 13y" — 22y + 12y =0
)y — 10y + 159" — 22y + 16y =0
(e) yW +4y® + 15y" — 22y + 2y =0

@

6. If the solution space of the system

T, — 209 — 3x3 — 1624 = 0
201 — 4o+ 23+ 1724 =0
1 — 2[62 +3$3+26[E4 =0

Consists of all linear combination of the vectors
v1 = (a,1,0,b) and vo = (¢,0,—7,d), then a + b+ c+d =

(a) 5
(b) 0
(c) =3
(d) —2
(e) —4
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7. Given that y = e~ cos x is a solution of the differential equation 9y® + 11y" + 4y —
14y = 0. The general solution of the differential equation is

)y

)y

) ZU:C1€5x+026_xcosx+03e_a’sinx
)y Y +coe Pcosx +cze Psing
)y

2z - —T
=crev +cpe fcosr+cze Psinx

8. If y(x) is the solution of the initial-value problem

(D+2)°y=0,y(0) =1, y(0) =—1, theny G) _

JELICEINI
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9. If W(x) is the Wronkian of the functions
fi(z) =2x 4+ 3cosz, fo(r) =5cosz, f3(x) = —3x, then W (z) =

(a) —2z
(b) 3 cosx
(c) sinx
(d) 2z

)

10. A particular solution of the differential equation
y" — 3y + 2y = cos(e™)

is given by y,(x) =

e’ cos (e™*) + e* sin(e™")

2e” cos (e7") + e* sin(e ™)
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11. If y, = Az®+ Ba?+Cx+ D cosx+ E sinz is a particular solution of the differential
equation

y" + 4y = 24(2® +sinz), then A+ B+C+ D+ E =

(a) =9
(b) 11
() 9
(d) 8
(e) =8

12. If the characteristic polynomial of the matrix

031
A=112 1] isp(\)=—-A+1)*\—4),
1 30
el 5
then a basis for the eigenspace of A = —1 is v; = 0 |,vy= | —1 |, where
—1 0
a+f=
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13. The general solution of the differential equation

(D* —2D* —2D* —3D —2)y =0 is

-1 3
—2 4
diagonal matrix D such that P~'AP = D, then

14. If the matrix A = [

(a) P = [131 — 20120
(b) P = [31211002
(c) P =[31— 211002
(d) P = [13121002
(e) P = [13121002

] is diagonalizable with a diagonalizing matrix P and a
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15. An appropriate form of a particular solution ¥, for the non-homogeneous differential
equation

(D? —1)*y = ¢" +sinx

is given by y,(x) =

(a) Ax?e® + Ba?cosx + Ca’sinw
(b) Ae® + Bcosx + Csinx

(¢) Axze® + Bceosz + C'sinz

(d) Az%e® + Bcosx + Csing

(e) Ax?e® + Bsinw



King Fahd University of Petroleum and Minerals
Department of Mathematics

| CODE 3 | | CODE 3 |
MATH 208
Major Exam II
Term 251
11 November 2025
Net Time Allowed: 90 Minutes

[ Name |

o [ sec |

Check that this exam has 15 questions.

Important Instructions:

1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
2. Use HB 2.5 pencils only.
3. Use a good eraser. DO NOT use the erasers attached to the pencil.

4. Write your name, ID number and Section number on the examination paper and in the upper left
corner of the answer sheet.

5. When bubbling your ID number and Section number, be sure that the bubbles match with the
numbers that you write.

6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as
that printed on your question paper.

7. When bubbling, make sure that the bubbled space is fully covered.

8. When erasing a bubble, make sure that you do not leave any trace of penciling.



Term 251, MATH 208, Major Exam II Page 1 of 8 CODE 3

0o 1 -1
1. The characteristic equation of the matrix | —3 1 —3 | is
1 -4 2

(a) A 3>\2+6>\ 8=0
(b) A —6A—8=0
(c) )\3—3>\2—5>\+6—0
(d) A —6A+8=0
(e) A 4>\2 6A+8=0

2. A linear homogeneous differential equation with real coefficients having the solutions
xe’, be’ cos(3x) is

) y® — 4y 413y — 22y + 12y = 0
) yW 4 4y®) + 159" — 22y + 2y =0
(c) y™® — 10y + 159" — 22y + 16y = 0
(d) y¥ —4y® + 159" — 22y + 10y = 0
) y® — 4y £ 159" — 20 + 8y =0
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3. If y(x) is the solution of the initial-value problem

(D+2)*y=0,y(0) =1,4(0) = —1, theny <%> -

S IO o | ® 1w

4. If W{(z) is the Wronkian of the functions

fi(z) =2z + 3cosz, fo(x) =5cosz, f3(x) = —3x, then W (x) =
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5. If the characteristic polynomial of the matrix

1
1| isp(\) = —(A+1)2(A —4),
0

a B

then a basis for the eigenspace of A = —1 is v; = 0 |,vy= 1| —1 |, where

—1 0
a+f=

6. If the solution space of the system

I —2$2 —3:133 — 16%4 =0
201 —4dxy + 23+ 1724 =0
r1 — 229 + 323+ 2624 =0

Consists of all linear combination of the vectors
v1 = (a,1,0,b) and vy = (¢,0,—7,d), then a + b+ c+ d =
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7. A basis for the subspace of R3 consists of the line of intersection of the planes
r—4y+ 72 =0and y = —z is given by v = (a, —1,1) where a =

(a) —11
(b) 0
(c) 10
(d) 9
(e) —10

8. The general solution of the differential equation

(D* —2D* —2D* —3D —2)y =0 is

(a) y(x) = c1e™ + (cg + c37) €2* + ¢4 cosz + c5 sinx

(b) y(x) = e %(c; + coz) + c3e* + e ¥ cosx + cye Tsina
(c) y(z) = e“(c1 + cow) + c3€* + ¢4 cosx + ¢5 sinx

(d) y(z) = e *(c1 + caw) + c3€* + ¢4 cosT + cpsinx

(e) y(x) = e™%(c1 + cox) + c3¢** + cqe¥cosx + cy e’ sinz
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9. A particular solution of the differential equation
y" — 3y + 2y = cos(e™)

is given by y,(x) =

2e” cos (e7") + e* sin(e™ ")

e” cos (e7%) + e* sin(e %)

10. An eigenvector associated with the eigenvalue A = 5 of the matrix A = { i _01 ]

is [3] where o =
«
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1 1 3 3 0
11. If the rank of the matri -1 0 —2-11 is equal to 3, then o =
' *l 2 3 7 8 a q ’ -
-24 0 6 7

-1 3
—2 4
diagonal matrix D such that P~'AP = D, then

12. If the matrix A = [ ] is diagonalizable with a diagonalizing matrix P and a

) P =
) P =
) P =
) P =
) P

(13121002
(13121002
[31 — 211002
[131 — 20120
(31211002
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13. Given that y = e ¥ cos x is a solution of the differential equation 9y + 11y" + 41/ —
14y = 0. The general solution of the differential equation is

14.

=c e’ 4+ e Pcosx+c3e Tsing
T - —T 3
=cres +cge “cosxr+c3e fsinx

_2

)y
)y

~Ix —x —T o
Jy=cre 9+ e Feosx +cz3e Tsine
Jy=cre ¥+ cyePcosx+c3e Using
)y

2z - —T
=crev +cpe fcosr+cze Psinx

If y, = Az®+ B2?+ Cx+ D cosz+ FE sinx is a particular solution of the differential

equation

" 4 4y = 24(2® +sinz), thenA+B+C+D+E =
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15. An appropriate form of a particular solution ¥, for the non-homogeneous differential
equation

(D? —1)*y = ¢" +sinx

is given by y,(x) =

(a) Ax?e® + Ba?cosx + Ca’sinw
(b) Az*e” + Bsinx
) Ae” + Bceosz + Csinx
(d)
(e) Ax?e® + Bcosx + Csinw

(c
Aze® + Beosx + Csinx
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1. If W(z) is the Wronkian of the functions

fi(z) =22 + 3cosz, fo(x) =5cosz, f3(x) = —3x, then W(x) =

(a) 3 cosx

(b) sinz

(c) 2z

(d) —2z

(e) O
0 1 -1

2. The characteristic equation of the matrix | —3 1 =3 [ is

1 —4 2

(a) A —5A+6=0

w)ﬁ—5V—6A 8§ =0

(c) A 4% 6A+8 =0

(d) A —6A+8=0
) A

(e 3V+ﬁA 8§=0
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3. Given that y = e~ cos x is a solution of the differential equation 9y® + 11y" + 4y —
14y = 0. The general solution of the differential equation is

—2x —x —T
=cre 9 4+ cge "cosTr +c3e Tsinw
2y i —T o3
=cres +cge “cosxr+c3e fsinx
+coe Pcosx +c3e Tsine
_z _ o
=cre 94+ cge tcosx +cze fsine

L - —T
=crev +cpe fcosr+cze Psinx

4. Ify, = Az’ + Bx*+Cx+ D cosx+ E sinz is a particular solution of the differential
equation

" 4 4y = 24(2® +sinz), thenA+B+C+D+E =
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5. An eigenvector associated with the eigenvalue A = 5 of the matrix A = i _01 ]

1S [3] where o =
«

(a) —3
(b) —2
(c) 3
(d) 1
(e) 2

6. A basis for the subspace of R? consists of the line of intersection of the planes
r—4y+T7z=0and y = —z is given by v = (o, —1,1) where o =
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7. A particular solution of the differential equation
y" — 3y + 2y = cos(e™)

is given by y,(x) =

8. A linear homogeneous differential equation with real coefficients having the solutions

ze®, be’ cos(3x) is

) y® — 4y 4 15y" — 209/ + 8y =0

) y® —4y®) 4 13y" — 22y + 12y = 0
(¢) y® — 10y + 159" — 22 + 16y = 0
(d) y™® + 493 4+ 159" — 229/ 42y =0

) y® — 4y 4 15y — 22y + 10y = 0
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9. If the characteristic polynomial of the matrix

031
A=112 1] isp(\)=—-A+1)*\—4),
1 30
o
then a basis for the eigenspace of A = —1 is v; = 0
—1
a+f =
(a) —4
(b) 4
(c) 2
(d) 3
(e) 0

10. If the solution space of the system

I —2$2 —3:133 — 16%4 =0
201 —4dxy + 23+ 1724 =0
r1 — 229 + 323+ 2624 =0

Consists of all linear combination of the vectors
v1 = (a,1,0,b) and vy = (¢,0,—7,d), then a + b+ c+ d =

(a) —4
(b) =3
(c) 0
(d) 5
(e) =2

y UV =

—1

, Where
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11. If y(x) is the solution of the initial-value problem

(D+2)*y=0,y(0) =1,4(0) = —1, theny (%) -

LRI

-1 3
—2 4
diagonal matrix D such that P~1AP = D, then

12. If the matrix A = { ] is diagonalizable with a diagonalizing matrix P and a

(a) P = [13121002
(b) P = [31 — 211002
(c) P =[31211002
(d) P = [13121002
(e) P = [131 — 20120
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11 3 3 0
: -1 0 -2 =1 1| .
13. If the rank of the matrix 5 3 7 8 4| equal to 3, then a =
-2 4 0 6 7

14. The general solution of the differential equation

(D° —2D* —2D* - 3D —2)y =0 is
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15. An appropriate form of a particular solution ¥, for the non-homogeneous differential
equation

(D? —1)*y = ¢" +sinx

is given by y,(x) =
a) Ae* + Bcosz + Csinx

b) Ax?e® + Ba?cosx + Ca’sinz
(c) Az*e® + Bsinx

d) Az%e® + Beosx + Csinx

(e) Aze” + Bceosz + Csinx

(
(
(
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11 3 3 0
: -1 0 -2 -1 1| .
1. If the rank of the matrix 5 3 7 8 4| equal to 3, then a =
-2 4 0 6 7

2. Given that y = e~ cos z is a solution of the differential equation 9y®) + 11y" 4+ 4y’ —
14y = 0. The general solution of the differential equation is

=c et + e Pcosx +c3e Tsing
= e=5% + coe fcosr+cz3e Usin
9 4+ cge Pcosxr+cge sin
=0 €% + coe fcosr +cz3e Usina

Tx -z —T &}
=c1es +cge "cosxr+cze fsine
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3. If the solution space of the system

T — 2:132 —3333 — 16554 =0
2.1}1 —4.%2 + x3 + 17.%4 =0
T — 229 + 3x3 + 2604 = 0

Consists of all linear combination of the vectors
v1 = (a,1,0,b) and vy = (¢,0,—7,d), then a + b+ c+ d =

4. The general solution of the differential equation

(D° —2D* —2D* —3D —2)y =0 is

(a) y(z) = €%(c1 + o) + c3€* + ¢4 cosx + ¢ sinx

(b) y(z) = e *(c1 + cax) + c3€* + ¢4 cosx + cpsinx

(c) y(z) = e (c1 + cox) + c3e** +cpe T cosT + cze Tsina
(d) y(x) = e™%(c1 + cox) + c3¢** + cye¥cosx + cy e’ sinz
(e) y(z) = cre™ + (co + c31) €** + ¢4 cosz + ¢ sinx
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5. If W(x) is the Wronkian of the functions
fi(z) =2x 4+ 3cosz, fo(r) =5cosz, f3(x) = —3x, then W (z) =

6. A particular solution of the differential equation
y" — 3y' + 2y = cos(e™)

is given by y,(x) =
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-1 3
—2 4
diagonal matrix D such that P~'AP = D, then

7. If the matrix A = [ ] is diagonalizable with a diagonalizing matrix P and a

(a) P = [31 — 211002
(b) P = [131 — 20120
(¢c) P =[31211002
(d) P = [13121002
(e) P = [13121002

8. A linear homogeneous differential equation with real coefficients having the solutions
xe’, be’ cos(3x) is

) yW 4 4y®) + 159" — 22y + 2y =0

) y@ —4y®) 4 15y — 224/ + 10y = 0
) 4@ — 10y + 159" — 22y 4 16y = 0
)y — 4y® 4 159" — 20y’ + 8y = 0

) y® —4y®) 413y — 22y + 12y = 0
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9. A basis for the subspace of R? consists of the line of intersection of the planes
r—4y+ 72 =0and y = —z is given by v = (a, —1,1) where a =

(a) —10
(b) 9
(c) 0
(d) 10
(e) —11

10. An eigenvector associated with the eigenvalue A = 5 of the matrix A = { o 0 ]

4 —1
is [3} where o =
Q
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0o 1 -1
11. The characteristic equation of the matrix | —3 1 —3 | is
1 —4 2

(a) A 4>\2 6A+8=0
(b) A —5A+6=0
(c) >\3—5>\2—6>\ 8=0
(d) A 3>\2+6)\ 8=0
(e) A —6A+8=0

12. If y, = Az®+ Bx?+Cx+ D cosx+ E sinz is a particular solution of the differential
equation

y" 4+ 4y = 24(2® +sinz), then A+ B+C+ D+ E =

(a) =9
(b) 11
(¢) 9
(d) 8
(e) —8
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13. If the characteristic polynomial of the matrix

031
A=112 1] isp(\)=—-A+1)*\—4),
1 30
e s
then a basis for the eigenspace of A = —1 is v; = 0 |,vy= 1| —1 |, where
—1 0
a+f=
(a) 3
(b) 2
(c) 4
(d) 0
(e) —4

14. If y(z) is the solution of the initial-value problem

(D +2)*y=0,y(0) =1, 4'(0) = —1, theny <%> —

§|O~J Omlw%ﬂmmlm



Term 251, MATH 208, Major Exam II Page 8 of 8 CODE 5

15. An appropriate form of a particular solution ¥, for the non-homogeneous differential
equation

(D? —1)*y = ¢" +sinx

is given by y,(x) =

(a) Az?e® + Bceosz + Csinx

(b) Ae® + Bcosz + Csinx

(c) Az*e® + Bx*cosx + Cx’sinx
(d) Aze™ 4+ Bcosx + C'sinx

(e) Ax?e® + Bsinw
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1. An eigenvector associated with the eigenvalue A\ = 5 of the matrix A = i _01 ]

1S [3] where o =
«

(a) —3
(b) —2
(c) 2
(d) 1
(e) 3

2. The general solution of the differential equation

(D° —2D* —2D* - 3D —2)y =0 is

=cre” " + (c2 + c37) e + ¢4 cosx + c5 sinzx

= €_m(C1 + szE) + c3 e 4+ cpe T cosx + cse tsina
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3. If the characteristic polynomial of the matrix

1
1| isp(\) = —(A+1)2(A —4),
0

a B

then a basis for the eigenspace of A = —1 is v; = 0 |,vy= 1| —1 |, where

—1 0
a+f=

4. If the solution space of the system

I —2$2 —3:133 — 16%4 =0
201 —4dxy + 23+ 1724 =0
r1 — 229 + 323+ 2624 =0

Consists of all linear combination of the vectors
v1 = (a,1,0,b) and vy = (¢,0,—7,d), then a + b+ c+ d =
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5. A particular solution of the differential equation
y" — 3y + 2y = cos(e™)

is given by y,(x) =

) e” cos( ) + 2% sin(e™%)
) —2e*" cos (e™7)
(c) 2 ezx sin (e™")
) 2e” cos( ) + ¥ sin(e %)
) —

22 cos (e77)

6. A basis for the subspace of R? consists of the line of intersection of the planes
r—4y+T7z=0and y = —z is given by v = (a, —1,1) where a =

(a) —11

(b) 0

(c) =10

(d) 10
)
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7. If y(x) is the solution of the initial-value problem

(D+2)*y=0,y(0) =1,4(0) = —1, theny <%> -

SENPREEE

8. Given that y = e~ cos x is a solution of the differential equation 9y® + 11y" + 4y —
14y = 0. The general solution of the differential equation is

= e~ o7 4 coe Pcosx +cge Tsing
= ¢ e 5% 4 coe fcosr+cz3e Psing
+coe Pcosx +c3e Fsine
W+ cogefcosr+c3e Tsin

"4+ cogePcosx+cze Tsine
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9. A linear homogeneous differential equation with real coefficients having the solutions
ze®, be’ cos(3x) is

)y —10y®) 4+ 159" — 22y 4+ 16y = 0
)y + 4y + 159" — 22y + 2y =0

) y® — 4y 4 15y — 22y + 10y = 0
) yW — 4y® 4 13y" — 22 + 12y = 0
)y — 4y £ 159" — 20 + 8y =0

0o 1 -1
10. The characteristic equation of the matrix | —3 1 =3 | is
1 —4 2

—9A+6=0

4A2 6A+8=0

) A

)
() M =3X2+61—8=0
(d) A

) A — 6\ —8=0
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11 3 3 0
: -1 0 -2 =1 1| .
11. If the rank of the matrix 5 3 7 8 4| equal to 3, then a =
-2 4 0 6 7

12. If y, = Az®+ Bx?*+Cx+ D cosz+ E sinx is a particular solution of the differential
equation

y" + 4y = 24(2® +sinz), thenA+B+C+ D+ E =
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-1 3
—2 4
diagonal matrix D such that P~'AP = D, then

13. If the matrix A = { ] is diagonalizable with a diagonalizing matrix P and a

(a) P = [131 — 20120
(b) P = [31211002
(c) P = [13121002
(d) P =[31 — 211002
(e) P = [13121002

14. If W(x) is the Wronkian of the functions

fi(z) =2z + 3cosz, fo(x) =5cosz, f3(x) = —3x, then W (x) =
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15. An appropriate form of a particular solution ¥, for the non-homogeneous differential
equation

(D? —1)*y = ¢" +sinx

is given by y,(x) =

(a) Ax?e® + Ba?cosx + Ca’sinw
(b) Aze® + Bcosz + Csinx
(¢) Ae® + Bceoszx + Csinx
(d) Az%e® + Bsinx

(e) Ax?e® + Bcosx + Csinw
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0o 1 -1
1. The characteristic equation of the matrix | —3 1 —3 | is
1 -4 2

(a) A — 6\ —8=0
(b) A —5A+6=0
(c) )\3—3>\2+6>\ 8§=0
(d) A —6A+8=0
(e) A 4>\2 6A+8=0

2. A particular solution of the differential equation
y" — 3y + 2y = cos(e™™)

is given by y,(x) =
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-1 3
—2 4
diagonal matrix D such that P~'AP = D, then

3. If the matrix A = [ ] is diagonalizable with a diagonalizing matrix P and a

(a) P = [131 — 20120
(b) P = [13121002
(c) P =[31— 211002
(d) P = [13121002
(e) P = [31211002

4. The general solution of the differential equation

(D° —2D* —2D* —3D —2)y =0 is

(a) y(z) = e™%(c1 + cax) + c3€* + cye” cosw + ¢z v sinx
(b) y(x) = €*(c1 + cax) + c3e** + ¢4 cosw + ¢5 sinx

(c) y(x) = e *(c1 + caw) + c3€* + cye " cosx + cse sinw
(d) y(x) = cre™ + (co + c3z) €** + ¢4 cosT + ¢ sinz

(e) y(z) = e %(c1 + o) + c3€*® + ¢4 cosx + cssin



Term 251, MATH 208, Major Exam II Page 3 of 8 CODE 7

5. If W(x) is the Wronkian of the functions

fi(z) =22 + 3cosz, fo(x) =5cosz, f3(x) = —3x, then W(x) =

6. If y, = Az®+ Bz>+ Cz+ D cosx+ E sinz is a particular solution of the differential
equation

y" + 4y = 24(2® +sinz), thenA+B+C+ D+ E =
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7. If the characteristic polynomial of the matrix

1
1| isp(\) = —(A+1)2(A —4),
0

a B

then a basis for the eigenspace of A = —1 is v; = 0 |,vy= 1| —1 |, where

—1 0
a+f=

8. Given that y = e~ cos z is a solution of the differential equation 9y®) + 11y" + 4y’ —
14y = 0. The general solution of the differential equation is

Jy=cre’+ceFcosr+ cze sine

Jy=cres’ +cge Tecosx +cge Usina

3
2 —_ J— .

(c) y=cr1e3" + e cosw + cge Psine

(d) y=cre 8 +cpe " cosz+ cge “sina
y=a 2 3

)y

—Ix - —T &3
=cre 9 4+ cge Pcosxr +c3e Psinw
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9. If the solution space of the system

T — 2:132 —3333 — 16554 =0
2.1}1 —4.%2 + x3 + 17.%4 =0
T — 229 + 3x3 + 2604 = 0

Consists of all linear combination of the vectors
v1 = (a,1,0,b) and vy = (¢,0,—7,d), then a + b+ c+ d =

10. If the rank of the matrix

1 1 3 3 0
-1 0 -2 -1 1
2 3 7T 8 «
-2 4 0 6 7

is equal to 3, then o =
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11. If y(x) is the solution of the initial-value problem

(D+2)*y=0,y(0) =1,4(0) = —1, theny <%> -

Wlen S 0l

12. A linear homogeneous differential equation with real coefficients having the solutions
xe’, be’ cos(3x) is

(a) yW —4y® + 13y — 22y + 12y = 0
(b) y® —4y® + 159" — 22y + 10y = 0
(c) yW — 4y 4 159" — 20y’ 4+ 8y = 0
(d) y@ +4y® + 15y" — 22y + 2y =0
(e) y™® — 10y + 159" — 22 + 16y = 0
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13. An eigenvector associated with the eigenvalue A = 5 of the matrix A = i _01 ]

1S [3] where o =
«

[ —

14. A basis for the subspace of R? consists of the line of intersection of the planes
r—4y+T7z=0and y = —z is given by v = (o, —1,1) where o =
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15. An appropriate form of a particular solution ¥, for the non-homogeneous differential
equation

(D? —1)*y = ¢" +sinx

is given by y,(x) =

(a) Az?e® + Bsinz

(b) Aze® + Bcosz + Csinx

(c) Az*e® + Bcosx + Csinz

(d) Az%e® + Ba?cosx + Ca?sinx
)

(e) Ae® + Bceoszx + Csinx
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7. When bubbling, make sure that the bubbled space is fully covered.

8. When erasing a bubble, make sure that you do not leave any trace of penciling.
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1. If W(z) is the Wronkian of the functions

fi(z) =22 + 3cosz, fo(x) =5cosz, f3(x) = —3x, then W(x) =

2. Given that y = e~ cos x is a solution of the differential equation 9y® + 11y" + 4y —
14y = 0. The general solution of the differential equation is

Tx -z —T &3
=cres +cge cosr +c3e fsinw
3

=cre’"+cpePcosr+c3e Tsing

)y
)y
(€) y=cre 5 +cye P cosx +cze sina
(d) y:016*%1+Cze*‘”cosx—|—03e*"”sinx
)y

2y - —T o3
=c1es +cge cosr +c3e tsinw
3
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3. The general solution of the differential equation

(D* —2D* —2D* —3D —2)y =0 is

= e %(c1 + cam) + 3€** + et cosx + cx et sinw
— T 2x .
x) =e "(c1 + cox) + c3e” + ¢y cosT + cpsinx

) y(x)
) y(x)
(c) y(x) = e %(c1 + cox) + c3e* + e cosx + cye Csina
) y(z) = c1e™® + (ca + c31) €*¥ + ¢4 cosx + ¢y sinx

) y(x)

= e%(cy + cox) + c3€* + ¢y cosT + ¢5 sinz

0o 1 -1
4. The characteristic equation of the matrix | —3 1 —3 | is
1 -4 2

) A —6A—8=0
) A 4V—6A+8—0
(c) A —6A+8=0
(d) A —5A+6=10
) A 3V+ﬁA 8=0

| CODE 8 |
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5. A basis for the subspace of R3 consists of the line of intersection of the planes
r—4y+ 72 =0and y = —z is given by v = (a, —1,1) where a =

6. If the matrix A = [ :; i ] is diagonalizable with a diagonalizing matrix P and a

diagonal matrix D such that P~'AP = D, then

(a) P = [13121002
(b) P = [13121002
(c) P =[131 — 20120
(d) P =[31 — 211002
(e) P = [31211002
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7. An eigenvector associated with the eigenvalue A = 5 of the matrix A = i _01 ]
is [3] where a =
o
(a) —2
(b) 2
(c) 3
(d) =3
(e) 1
8. If the characteristic polynomial of the matrix
031
A=112 1] isp(\)=—-A+1)*\—4),
1 30
el 5
then a basis for the eigenspace of A = —1 is v; = 0 |,vy= 1| —1 |, where
—1 0

a+f=
(a) 3
(b) 4
(c) 0
(d) —4
(e) 2



Term 251, MATH 208, Major Exam II Page 5 of 8

9. A particular solution of the differential equation
y" — 3y + 2y = cos(e™)

is given by y,(x) =

10. If the solution space of the system

T, — 209 — 3x3 — 1624 = 0
201 — 4y + 13+ 1724 =0
r1 — 229 + 3x3 + 2624 =0

Consists of all linear combination of the vectors

v1 = (a,1,0,b) and vo = (¢,0,—7,d), then a + b+ c+d =

(a) —2
(b) =3
(¢) 5
(d) 0
(e) —4
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11. If y, = Az®+ Ba?+Cx+ D cosx+ E sinz is a particular solution of the differential
equation

y" + 4y = 24(2® +sinz), then A+ B+C+ D+ E =

12. A linear homogeneous differential equation with real coefficients having the solutions
xe’, be’ cos(3x) is

)y — 4y 4 15y" — 22 + 10y = 0
)y 4+ 4y® 4 15y" — 22y + 2y =0
(c) yW — 4y 4 13y" — 22y + 12y = 0
(d) y¥ —10y®) + 159" — 22y + 16y = 0
) y@ —dy® + 15y" — 20y + 8y =0



Term 251, MATH 208, Major Exam II Page 7 of 8 CODE 8

13. If y(x) is the solution of the initial-value problem

(D+2)*y=0,y(0) =1,4(0) = —1, theny (%) -

Sl e e S o len

1 1 3 3 0

14. If the rank of the matrix L0 =2~ is equal to 3, then a =
2 3 7 8 « ’
-2 4 0 6 7
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15. An appropriate form of a particular solution ¥, for the non-homogeneous differential
equation

(D? —1)*y = ¢" +sinx

is given by y,(x) =

(a) Az?e® + Bceosz + Csinx

(b) Ae® + Bcosz + Csinx

(¢) Aze® + Bceosz + C'sinz

(d) Az%e® + Ba?cosx + Ca?sinx
)

(e) Ax?e® + Bsinw
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