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1. The general solution of the homogeneous differential equation
y(x +y)dr —2*dy =0

1S

a) yln|z| +2x = cy (correct)

(
(b) yInly| +2* = cy

)

)
(c) yInly|+z =cy
(d) zln|z| + 2% = cy
)

(e) xIn|y| +y =cx

2. The general solution of the exact differential equation
(y sec?(xy) + sinx) dx + (zsec(zy) + siny) dy = 0

is given by

(a
(b

)
)
C) T tan SI’J@/) — COST —COSY = ¢
)
)

tan(xy) — cosx — cosy = ¢ (correct)
tan(zy) + cosx — 2cosy = ¢

(
(d

(
ytan(zy) + cosz + cosy = ¢
(e) 2tan(xy) — cosx + cosy = ¢
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3. The general solution of the linear differential equation

d
xlnxd—y —y =32°(Inx)? 2 > 1, is given by
x

= (c+ x?’) Inx (correct)
=(c+2%) Inz

) y=(

) y=(
(c)y=(c+2z") Inz
(d) y=(

) y=(

=(c+2z) Inz

=(c+3x) Inz

4. The three vectors vi = (2, —1,4), vo = (0,5,1) and v3 = (5,0, B) of R? are linearly
dependent if B =

10.5 (correct)
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1 4 H 2
) -2 -8 —10 —4 |.
5. The rank of the matrix s 19 15 6 is
0 O 3 0

(correct)

6. By using the method of undetermined coefficients, a particular solution of the
differential equation

Y + 4y + 3y = 8e” + 3e " is given by

Yp = e’ — 3e (correct)
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7. A particular solution of the differential equation

y" +y =secrtanxw

is given by y,(z) =

a) xcosx — sinz + sinz In | sec x|

| MASTER |

(correct)

(
(b) 2z cosx + sinz In|sec x|

)

)
(¢) 2z cosx + sinztanx
(d) 3z cosz + sinzIn | tan x|
)

(e) xcosx + sinzIn|cos x|

(correct)

8. For the matrix A = [ _32 _41 ] , if P is a diagonalizing matrix such that
P71AP = [(2) g],thenP:
wr=l1y
(b) P = ; —11_
oreit
we-[3
@P=|7,
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9. The general solution of the differential equation y® + 2y® + " = 0 is given by

(a) y(z) =1 + cax + (c3 + cuz) cosx + (c5 + cex) sinx (correct)
(b) y(z) =1+ cax 4+ cgcosx + ¢4 sinx + ¢ cos(2x) + ¢¢ sin(2x)

() y(x) =c1+coe” +cge ™™ + g cosx + ¢5 sinx + cgx sinx

(d) y(x) =c1+cox+cze ™ +cype” +¢5 cosx + ¢g sinx

(e) y(x) =c1 4+ cox + (c3 + cyx) e* cosx + (5 + cgx) €” sinx

3 —1

11 ] X is given by

10. The general solution of the system X' = [

(a) X(t) =C i et + Co L —tl— t e?t (correct)
) X)) =cr | 5 [ *rer| 270 | e
() X(t)=er| 5 | ¥ ven| 0] e
(d) X(t) =c; _11 e + ¢y _1t+t} 2
— [ 1] 2t [ 1+t 2t
(e) X(t)—cl_ 1| e +02_ o ]
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11. Consider the system X' = AX, and X(0) = [ 7|, where A is a 2 x 2 matrix

5
3
with real entries. If A has an eigenvalue A = 2 + 2¢ with corresponding eigenvector

-9 T
K= [1+2¢]’the”X<§)_

[ 5
(a) ] e’ (correct)

12. A possible fundamental matrix ®(t¢) of the system X' = [ ?) :; ] X is
[ el e!
(a) o 3ot | (correct)
o ot
(b) 3675 —t
3et et
(c) ot et
2¢! et
(d) et 36—7,‘
el et
(e) ] et 26—1?
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31
2 1 | X can be written as
30

1 3 v
X=c¢c|1|eM+e|B|el4+e]| 0 et
« 0 —1
then ao + 8+ v =
(a) 1 (correct)
(b) —1
(c) 3
(d) 4
(e) 0

14. Consider the non-homogeneous system X' = AX + [ _41 ] If the general solution

of the associated homogeneous system is

1 3
Xc=01[1]+02[2] e,

then the value of the particular solution X,(—1) =

@ ] ot
o[}
ot
@ |5
@3]
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15. The minimum radius of convergence of a power series solution of the differential
equation (2% — 2z +5)y” + 2y’ —y = 0 about the ordinary point z = —2 is equal to

(a) V13 (correct)
(b) 2v2
(¢) oo
(d) 0
(e) V1
16. If y = Z cp,x™ is a power series solution of the differential equation (2z+1)y"+y’ = 0
n=0

about the ordinary point z = 0, then the constants ¢, are given according to the
recurrence relation:

2n — 3

(a) Cn = — Cn_1, M > 2 (correct)
n
3n —1
(b) ey = = cu1,n > 2
2 3
(c) ¢n = nx Cno1,n > 1
n
3n — 2
(d) ¢ =— n Cn-1, n >1
n
3n — 2

(e) ¢ =— - Cn1, M > 2
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e.¢]

17. Ify = Z ¢,z is a series solution for the differential equation 2xy” —y' + 2y = 0

n=
about x = 0, then the non-integer indicial root is equal to

—~
&
N~—

(correct)

=

S

VY Y
©) o
N— N—
WIS BRI WNI R WIND N W

(k—3)(k+3)
2k(2k + 1)

to the indicial root » = — in the series solution of the differential equation

18. If ¢ # 0, ¢, =

ck_1, k > 1, is the recurrence relation corresponding

r(4d—2)y" + (2 —2)y + 4y = 0 about = = 0, then the solution is given by

[ ) 7
(a) Yy =x2 -1 — éZL‘ + ESZL‘Q + ... (correct)

ul 5 7
b)) y=x2 |14+ x4+ —a24+ ...
(b) y=x —|—8:L‘+128:I:+

1 3 7
d)y=22 |14+ o+ —a?
(d) y :L‘2_—|—8x—|—128x+ |
[ 5 7
— 72 |1 —Zp — —72
(e)y== _ % 128x-|— |
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— 3 4 At __
19. If A= [0 3],thene =
B e3t 4t63t
(a) 0 3 ] (correct)
[ o3t 4Bt
o5 ]
[ o3t At
@[5 o]
B e3t 3t63t
(d) 0 e?)t
[ 33t 4te!
(e) 0 3€3t
1 2 1
20. It K = a is an eigenvector with eigenvalue A = 0 of A = -1 0 1,
—13 -1 -2 -1
then a =
(a (correct)
(b
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a

21.IfX:[2

Page 11 of 11

] e 31/2 is a solution of the system X’ = [

1

—1

1
4
—1

| MASTER |

] X, then a =

(correct)




King Fahd University of Petroleum and Minerals
Department of Mathematics

| CODE 1 | | CODE 1 |
Math 208
Final Exam
Term 251
December 22, 2025
Net Time Allowed: 120 Minutes

[ Name |

o [ sec |

Check that this exam has 21 questions.

Important Instructions:

1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
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1 4 H 2
) -2 -8 —10 —4 |.
1. The rank of the matrix s 19 15 6 is
0 O 3 0
(a) 1
(b) 3
(c) 2
(d) 0
(e) 4

2. The three vectors vi = (2, —1,4), vo = (0,5,1) and v3 = (5,0, B) of R? are linearly
dependent if B =
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3. For the matrix A = [ _32 _41 ] , if P is a diagonalizing matrix such that
2 0
-1 = h =
P~AP [ 05 ], then P

(a)P:'l —1]

12
me=[;]
0F=7 )]
W r=[g]

(e) P = ;—11]

4. The general solution of the linear differential equation

d
:cln:z:d—y —y =32°(Inxz)% 2 > 1, is given by
x

) y=(c+3z) Inx
Jy=(c+2*) Inx
(c) y=(c+2%) Inz
(@) y=(c+2) nz
)y = (

=(c+2") Inz
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5. The general solution of the differential equation y® + 2y® + " = 0 is given by

(a) y(x) =1+ cox + c3cos + ¢4 sinx + ¢ cos(2x) + ¢g sin(2z)
(b) y(x) =c1 + cox + (c3+ cax) cosax + (c5 + cex) sina

(¢) y(x) =c1 4+ cox + (c3 + cyx) e* cosx + (5 + cgx) €* sinx

(d) y(z) =c1+coe” +cze™ +cq cosz + c5 sinx + ¢z sinz

() y(r) =c1+cox+cge ™ +cpe” +c5 cost + ¢ sinx

6. The general solution of the homogeneous differential equation
y(x +y)dr —2x*dy =0

1S

(a) zlnly| +y = cx
(b) zln|z| 4+ 2* = cy

d) ylnly| +x = cy

2

)

)
(c) yn|z|+z=cy
(d)
(e) yInly| +2° = cy
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7. A particular solution of the differential equation

y" +y =secrtanxw

is given by y,(z) =

a) 2xcosz + sinz In |sec x|

(
(b) xcosx + sinxIn | cos z|

)
)
(¢) 3xcosz + sinzIn|tan x|
(d) 2z cosz + sinztanx

)

(e) xcosx — sinz + sinz In | sec x|

8. By using the method of undetermined coefficients, a particular solution of the

differential equation

Y + 4y + 3y = 8e” + 3¢ ** is given by

)

) yp = €* + 2
) yp = 3e’ — 2"
) yp = 2" +e
)

(e) yp =" — e
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9. The general solution of the exact differential equation
(y sec?(xy) + sinx) dx + (z sec(zy) + siny) dy = 0

is given by

a) tan(zy) + cosx — 2cosy = ¢

(
(b) 2tan(xy) — cosx + cosy = ¢

)
)
(c¢) xtan(zy) — cosx — cosy = ¢
(d) tan(xy) — cosx — cosy = ¢

)

(e) ytan(zy) + cosz + cosy = ¢

3 —1

11 ] X is given by

10. The general solution of the system X' = [

() X(£) = &1 __1] e2t+cQ[1“] 2

1 ot
- S
) X)) =cr | 5 [ *rer| 0] e
- S
(@) X()=cr | M| 2ge| 2T e
_2_ - t -
: S
@) X = || [*rer| 70 e
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11. Consider the system X' = AX, and X(0) = [ 7|, where A is a 2 x 2 matrix

5
3
with real entries. If A has an eigenvalue A = 2 + 2¢ with corresponding eigenvector

-9 T
K= [1+2¢]’the”X<§)_

12. The minimum radius of convergence of a power series solution of the differential
equation (x® — 2z +5)y” + 2y’ — y = 0 about the ordinary point z = —2 is equal to
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13. Consider the non-homogeneous system X' = AX + [ 4

1 ] . If the general solution

of the associated homogeneous system is

Xc:ﬁ[i]—l-@[g] e,

then the value of the particular solution X,(—1) =

2 —1

14. A possible fundamental matrix ®(t) of the system X' = [ 5 _o

]Xis

el e
(b) 3€t e—t
2el et
(c) ol 3et ]
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1
X = C1 1 €4t + Co
(8%
then o+ + v =
(a) —1
(b) 3
(c) 0
(d) 4
(e) 1
16. If A = [g ;L],theneAt:
(a) [ 3e3t Atel
Vo e
i €3t e4t
|G G
[ €3t 4t€3t
@ % %]
[ €3t 463t
@[5 ]
i €3t 3t63t
CE

Page 8 of 11
0 31
1 2 1 | X can be written as
1 30
3 g
Blelt+es| O et
0 —1
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1 1 2 1
17. If K = a is an eigenvector with eigenvalue A = 0 of A = 6 —1 0 [,
—13 -1 -2 -1
then a =
(a) 3
(b) 6
(c) 4
(d) 7
(e) 5

(k =3k +3)
2%k (2k + 1)

to the indicial root » = = in the series solution of the differential equation

18. If ¢y # 0, ¢, = cr—1, k > 1, is the recurrence relation corresponding

r(4d—2)y" + (2 —2)y + 4y = 0 about = = 0, then the solution is given by

(b)y:$5_1—§x+614x2+ ]
(c)y:x§:1+gx+%x2+..:
PP PO

(e) y = a? l—gaﬂr%x%r
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a

19.IfX:[2

o

] e 31/2 is a solution of the system X’ = [

Page 10 of 11

1
-1 =
4

X, then a =
1 -1

20. If y = Z c,x" "7 is a series solution for the differential equation 2zy” — v’ + 2y = 0

n=0

about x = 0, then the non-integer indicial root is equal to

DO QWIADNWWIN W
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(0.8}
21. Ify = Z c,z” is a power series solution of the differential equation (2z+1)y"+y' = 0

n=0
about the ordinary point z = 0, then the constants ¢, are given according to the

recurrence relation:

3n — 2
(a) ¢ = — n Cp1, N > 2
n
an — 2
(b) Cpn = — t Cno1,n 21
n
2 3
(c) ¢, = nr Cno1,n > 1
In—1
(d) ¢, = n Cna1, T > 2

2n — 3
(e) Cp = — n Cp—1, N Z 2
n
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1. The three vectors vi = (2, —1,4), vo = (0,5,1) and v3 = (5,0, B) of R? are linearly
dependent if B =

(a) 6.5
(b) 7.5
(c) 5.5
(d) 10.5
(e) 8.5
1 4 5 2
) -2 -8 —10 —4 |.
2. The rank of the matrix s 19 15 6 1S
0 O 3 0
(a
(b
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3. The general solution of the exact differential equation
(y sec?(xy) + sinx) dx + (z sec(zy) + siny) dy = 0

is given by

a) ytan(xy) + cosx + cosy = ¢

(
(b) tan(xy) — cosx — cosy = ¢

)

)

(c¢) 2tan(zy) — cosx + cosy = ¢

(d) xtan(zy) — cosx — cosy = ¢
)

(e) tan(xy) + cosxz — 2cosy = ¢

4. For the matrix A = [ _32 _41 ] , if P is a diagonalizing matrix such that
P71AP = [(2) g],thenP:
wr={y 4]
o3
or-lis
@P=|, 7
@P=17 5
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5. By using the method of undetermined coefficients, a particular solution of the
differential equation

y" + 4y + 3y = 8e” + 3e~** is given by

6. The general solution of the linear differential equation

xlnxj—z —y =32°(Inx)? 2 > 1, is given by
(a) y = (c+3x) Inx
(b) y = (c+2%) Inz
(c)y=(c+a2*) Inx
(d) y=(c+2%) Inz
(e)y=(c+z)Inx
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7. A particular solution of the differential equation

y" +y =secrtanxw

is given by y,(z) =

a) 3x cosx + sinzIn | tan x|

(
(b) 2z cosx + sinx In | sec x|

)

)
(¢) xcosx + sinxln |cosz|
(d) xcosx —sinz + sinz In | sec x|
)

(e) 2xcosz + sinz tan x

8. The general solution of the differential equation y® + 2y + " = 0 is given by
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9. The general solution of the homogeneous differential equation
y(x +y)dr —2*dy =0

1S

(a) yIn|z|+ 2 =cy
(b) zln|z| 4+ 2* = cy

)

)

(c) yInly| +2° = cy

(d) yInly| +z = cy
)

(e) xIn|y| +y =cx

3 —1

11 ] X is given by

10. The general solution of the system X' = [

S
() X(t)=cr | 5| e | 2T
) X)) =cr | | [ ¥ rer| 0] e

@)X@y:q_‘1]&t+@[1;t]&t

m)X@y:q_é}e%+@[1jt}ét

() X(t) = ¢ 2116%+02[_z+t}e%
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4 ] . If the general solution

11. Consider the non-homogeneous system X' = AX + [ 1

of the associated homogeneous system is

1 3
XC:01[1]+02[2] et,

then the value of the particular solution X,(—1) =

@ |5
|3
@ ;]
@ |5
@ |3]

1 3 v
X=c |1 e4t+02 g | e "4y 0 €_t>
« 0 —1
then o + 8+ v =
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13. A possible fundamental matrix ®(¢) of the system X' = [

W %

t t
ON
Ol
@ & g
© | g o

14. The minimum radius of convergence of a power series solution of the differential
equation (22 — 2z +5)y” + 2y — y = 0 about the ordinary point z = —2 is equal to



Term 251, Math 208, Final Exam Page 8 of 11 CODE 2

35 , where A is a 2 x 2 matrix
with real entries. If A has an eigenvalue A\ = 2 + 27 with corresponding eigenvector

-9 T
K= [1+2¢]’the”X<§)_

15. Consider the system X' = AX, and X(0) = [ .

1 1 2 1
16. If K = a is an eigenvector with eigenvalue A = 0 of A = 6 —1 0 |,
—13 -1 -2 -1
then a =
(a
(b
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17. IfA:{g ;l],theneAt:
(a) [ 3e3t 4t§Z]
| 0 3e
o5 ]
@5 %6
@ |y
@[5 o]

oo

18. If y = Z c,x"*" is a series solution for the differential equation 2xy” —y' + 2y = 0

n=0
about x = 0, then the non-integer indicial root is equal to

DO WIN = WW kDN W
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a

19.IfX:[2

(a) O
(b) 2
(c) 1
(d) —2
(e) —1

@]

Page 10 of 11

] e 31/2 is a solution of the system X’ = [

1

—1

1
4
—1

] X, then a =

20. If y = Z cpx™ is a power series solution of the differential equation (2z+1)y"+y’ = 0

n=0

about the ordinary point z = 0, then the constants ¢, are given according to the

recurrence relation:

_3n—1

(a) cp Cne1, T > 2
(b) ¢, = —3n_20n_1, n>1
(c) cn:—gn_2cn_1,n22
(d) ¢, = 2n+3cn_1, n>1
(e) cn:—zn_gcn_l,nZZ
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(k—3)(k+3)
2k(2k + 1)

to the indicial root » = = in the series solution of the differential equation

21. If ¢g £ 0, ¢, = cr_1, k > 1, is the recurrence relation corresponding

r(4—2)y" + (2 —2)y + 4y = 0 about z = 0, then the solution is given by

(a) y = :1—§x+614x2+
(b) y = 22 1—2$+%I2+..:
(c) y =22 _1+gx+%x2+
(d) y = 2> :1—§x—1—28x2+

. -
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1. For the matrix A = [ _32 _41 ] , if P is a diagonalizing matrix such that
P1AP = [(2) g],thenP:
wr=l17y
ORSI I
or-lit
a3y
(e) P = ; —11

2. The general solution of the differential equation y® + 2y® + " = 0 is given by
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3. The general solution of the exact differential equation
(y sec?(xy) + sinx) dx + (z sec(zy) + siny) dy = 0

is given by

(a
(b

) xtan(xy) — cosT — cosy = ¢

) t
(c) ytan(zy) + cosz + cosy = ¢

)

)

an(zy) — cosx — cosy = ¢

(d) 2tan(xy) — cosx + cosy = ¢

(e) tan(xy) + cosxz — 2cosy = ¢

4. By using the method of undetermined coefficients, a particular solution of the
differential equation

y" + 4y + 3y = 8e” + 3¢ ** is given by
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5. The three vectors vi = (2, —1,4), vo = (0,5,1) and v3 = (5,0, B) of R? are linearly
dependent if B =

(a) 7.5
(b) 6.5
(c) 10.5
(d) 8.5
(e) 5.5
1 4 5 2
) -2 -8 —10 —4 |.
6. The rank of the matrix s 19 15 6 is
0 O 3 0
(a
(b
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7. A particular solution of the differential equation

y" +y =secrtanxw

is given by y,(z) =

a) xcosx — sinz + sinz In | sec x|

(
(b) 2z cosx + sinz In|sec x|

)

)
(¢) 2z cosx + sinztanx
(d) 3z cosz + sinzIn | tan x|
)

(e) xcosx + sinzIn|cos x|

8. The general solution of the linear differential equation

d
:z:ln:z:d—y —y =32%(Inx)? 2 > 1, is given by
x

y=(c+a*) Inz
y=(c+2°) Inx
y=(c+3z) Inx
y=(c+z) Inx
y =

c+zt) Inx
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9. The general solution of the homogeneous differential equation
y(x +y)dr —2*dy =0

1S

(a) ylnly| +2° = cy
(b) yIn|z|+ 2 =cy

)

)
(c) yInly|+z=cy
(d) zln|z| + 2% = cy
)

(e) xIn|y| +y =cx

3 —1

11 ] X is given by

10. The general solution of the system X' = [

(a) X(t) = H em@[lﬂ

() X(t) = &1 __1] e2f+c2[1”] 2

1 2t
- S

(@ X()=cr | M| ge| T e
- S

@) X)) = |, | *rer| 270 e
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11. Consider the system X' = AX, and X(0) = [ 7|, where A is a 2 x 2 matrix

5
3

with real entries. If A has an eigenvalue A = 2 + 2¢ with corresponding eigenvector

-9 T
K= [1+2¢]’the”X<§)_

@ |5]
|5
@ o]
@ | 2]
@ 1]
031
12. The general solution of X’ = | 1 2 1 | X can be written as
1 30
1 3 Y
X=c | 1| M4+ |et4+e| 0 | e
o} 0 —1
then a + 8+ v =

—
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13. A possible fundamental matrix ®(¢) of the system X' = [ 2 1 ] X is

(a) _ ol 3t

[ el et
o [4 g

et et
@ % 5]

[ ot et
(d) I Set e—t

[ el et
(e) _ ol et

14. Consider the non-homogeneous system X' = AX + [ ] . If the general solution

—1
of the associated homogeneous system is

Xc:cllil—l—@[g] et,

then the value of the particular solution X,(—1) =

@3
@ |7
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15. The minimum radius of convergence of a power series solution of the differential
equation (2% — 2z +5)y” + 2y’ —y = 0 about the ordinary point z = —2 is equal to

1
16. If X = [ g ] e3/2 is a solution of the system X' = [ -1 4 ] X, then a =
1

—1
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e.¢]

17. Ify = Z ¢,z is a series solution for the differential equation 2xy” —y' + 2y = 0

n=
about x = 0, then the non-integer indicial root is equal to

DO — Wl I WWlI NN W

(k—3)(k+3)
2k(2k + 1)

to the indicial root » = — in the series solution of the differential equation

18. If ¢ # 0, ¢, =

ck_1, k > 1, is the recurrence relation corresponding

r(4d—2)y" + (2 —2)y + 4y = 0 about = = 0, then the solution is given by
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(0.8}
19. Ify = Z c,z” is a power series solution of the differential equation (2z+1)y"+y' = 0

n=0
about the ordinary point z = 0, then the constants ¢, are given according to the

recurrence relation:

3n — 2
(a) ¢ = — n Cp1, N > 2
n
3n —1
(b) ¢, = n Cn1, M > 2
2n — 3
(c) ¢ =— n Cno1, N > 2
n
3n — 2
(d) ¢, =— n Cno1, n > 1
n
2 3
(e) ¢ = nt Cno1, 1 >1
20. If A = {3 ;l],theneAt:
i €3t 4t63t
W |5
6325 4€3t
(b) 0 €3t ]
() 3e3t Atet
0 3e3!
et 3tedt
(d) 0 63t
T3t it
@ % o]
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1 1 2 1
21. If K = a is an eigenvector with eigenvalue A\ =0of A= | 6 -1 0 |,
—13 -1 -2 -1
then a =
(a
(b
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1 4 H 2
) -2 -8 —10 —4 |.
1. The rank of the matrix s 19 15 6 is
0 O 3 0

2. The general solution of the linear differential equation

d
xlnxd—y —y =32%(Inx)? 2 > 1, is given by
x
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3. The three vectors vi = (2, —1,4), vo = (0,5,1) and v3 = (5,0, B) of R? are linearly
dependent if B =

4. The general solution of the exact differential equation
(ysec?(zy) + sinx) dx + (zsec’(xy) + siny) dy = 0

is given by

(a) tan(xy) + cosx — 2cosy = ¢
(b) ztan(zy) — cosx — cosy = ¢
(c) tan(xy) — cosx — cosy = ¢
(d) ytan(zy) + cosz + cosy = ¢
)

(e) 2tan(xy) — cosx + cosy = ¢
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5. For the matrix A = [ _32 _41 ], if P is a diagonalizing matrix such that
P1AP = [(2) g],thenP:
wr=17
S
@P=17 ]
- (1)
(e) P = ; —11]

6. The general solution of the homogeneous differential equation
y(x +y)dr — 2*dy =0
is
(a) yIn|z|+2 = cy
(b) zln|y| +y = cx

)

)

(c) ylnly|+2° = cy

(d) zln|z| + 2% = cy
)

(e) ylnly|+z=rcy
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7. A particular solution of the differential equation

y" +y =secrtanxw

is given by y,(z) =

a) 2rcosx +sinxtanx

(
(b) 3z cosx + sinzIn | tan x|

)
)
(¢) xcosx —sinz + sinz In | sec x|
(d) xcosz + sinzIn|cosz|

)

(e) 2z cosz + sinz In |sec x|

8. By using the method of undetermined coefficients, a particular solution of the

differential equation

Y + 4y + 3y = 8e” + 3¢ ** is given by

Yyp =€’ — 3¢~

)

) yp = 2" + e
) yp=€* + 2
) yp =€" —e”

)

(e) yp = 3e” — 2e~
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9. The general solution of the differential equation y® + 2y® + " = 0 is given by

3 —1

11 ] X is given by

10. The general solution of the system X' = [

() X(t)=cr | 5| te| T

) X)) =cr | 5 [ *rer| 270 e

() X(t)=er| | | @ ven| 0] e
_ [ 1] 2t -1+t 2t

(d)X(t)—q_ 1| e +c2_ o ]

(e) X(t) = _11 e’ + ¢ _1t+t}62t
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11. Consider the system X' = AX, and X(0) = , where A is a 2 x 2 matrix

—5
3
with real entries. If A has an eigenvalue A = 2 + 2¢ with corresponding eigenvector

-9 T
K= [1+2¢]’the”X<§)_

G
o | 2]
@] e
HE
@ o]

12. A possible fundamental matrix ®(¢) of the system X' = [ ?) :; ] X is

(b) 3675 —t
el et
(c) o et ]
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13. The minimum radius of convergence of a power series solution of the differential
equation (2% — 2z +5)y” + 2y’ —y = 0 about the ordinary point z = —2 is equal to

14. Consider the non-homogeneous system X' = AX + [ ] . If the general solution

—1
of the associated homogeneous system is

XC:Cl[1]+C2[g] et,

then the value of the particular solution X,(—1) =

Ol

@7

@ |
[ 4
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31
2 1 | X can be written as
30

1 3 v
X = Cql 1 €4t + Co 6 € t‘i‘ C3 0 e_ta
« 0 —1
then o + 8+ =

] 1
4
1 -1

a

16. If X = [ } e 312 i a solution of the system X’ = [ ] X, then a =
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1 1 2 1
17. If K = a is an eigenvector with eigenvalue A = 0 of A = 6 —1 0 |,
—13 -1 -2 -1
then a =
(a) 6
(b) 3
(c) 7
(d) 5
(e) 4
18. If A= [g ;l],theneAt:

[ 3t plt
@ |5

[ 3t 4tedt
o5 ]

[ o3t A3t
(C) i 0 e3t ]

[ o3t 3Bt
@[5 %]
(e) [ 3e3t 4tel

0 3e¥
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e.¢]

19. If y = Z ¢,z is a series solution for the differential equation 2xy” —y' + 2y = 0

n=
about x = 0, then the non-integer indicial root is equal to

WIERNIFDNWWI N W

(k—3)(k+3)
2k(2k + 1)

to the indicial root » = — in the series solution of the differential equation

20. If ¢y # 0, ¢, =

ck_1, k > 1, is the recurrence relation corresponding

r(4d—2)y" + (2 —2)y + 4y = 0 about = = 0, then the solution is given by

[ 5 7
(a) y = x2 _l—l—gx—kﬁxﬂ%—...

1 3 7
d)y=22 |14+ o+ —a?
(d) y :L‘2_—|—8x—|—128x+ |
[ 5 7
— 72 |1 —Zp — —72
(e)y== _ % 128x-|— |
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(0.8}
21. Ify = Z c,z” is a power series solution of the differential equation (2z+1)y"+y' = 0

n=0
about the ordinary point z = 0, then the constants ¢, are given according to the

recurrence relation:

3n — 2
(a) Ch = — " Cp—1, N > 1
n
2n — 3
(b) ¢, = — " Cn1, M > 2
n
3n — 2
(C) Cp = — " Cpn—1, N > 2
n
3n —1
(d) ¢, = n Cno1, N > 2
2 3
(e) ¢ = nt Cno1, 1 >1
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