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1. The general solution of the homogeneous differential equation

y(x+ y)dx − x2 dy = 0

is

(a) y ln |x|+ x = cy (correct)

(b) y ln |y|+ x2 = cy

(c) y ln |y|+ x = cy

(d) x ln |x|+ x2 = cy

(e) x ln |y|+ y = cx

2. The general solution of the exact differential equation

(y sec2(xy) + sin x) dx+ (x sec2(xy) + sin y) dy = 0

is given by

(a) tan(xy)− cosx− cos y = c (correct)

(b) tan(xy) + cos x− 2 cos y = c

(c) x tan(xy)− cosx− cos y = c

(d) y tan(xy) + cos x+ cos y = c

(e) 2 tan(xy)− cosx+ cos y = c
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3. The general solution of the linear differential equation

x lnx
dy

dx
− y = 3x3(lnx)2, x > 1, is given by

(a) y = (c+ x3) ln x (correct)

(b) y = (c+ x2) ln x

(c) y = (c+ x4) ln x

(d) y = (c+ x) ln x

(e) y = (c+ 3x) ln x

4. The three vectors v1 = (2,−1, 4), v2 = (0, 5, 1) and v3 = (5, 0, B) of R3 are linearly
dependent if B =

(a) 10.5 (correct)

(b) 8.5

(c) 7.5

(d) 6.5

(e) 5.5
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5. The rank of the matrix


1 4 5 2
−2 −8 −10 −4
3 12 15 6
0 0 3 0

is

(a) 2 (correct)

(b) 3

(c) 4

(d) 1

(e) 0

6. By using the method of undetermined coefficients, a particular solution of the
differential equation

y′′ + 4y′ + 3y = 8ex + 3e−2x is given by

(a) yp = ex − 3e−2x (correct)

(b) yp = ex + 2e−2x

(c) yp = 2ex + e−2x

(d) yp = 3ex − 2e−2x

(e) yp = ex − e−2x
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7. A particular solution of the differential equation

y′′ + y = secx tanx

is given by yp(x) =

(a) x cosx− sinx+ sinx ln | secx| (correct)

(b) 2x cosx+ sinx ln | secx|
(c) 2x cosx+ sinx tanx

(d) 3x cosx+ sinx ln | tanx|
(e) x cosx+ sinx ln | cosx|

8. For the matrix A =

[
3 −1
−2 4

]
, if P is a diagonalizing matrix such that

P−1AP =

[
2 0
0 5

]
, then P =

(a) P =

[
1 −1
1 2

]
(correct)

(b) P =

[
1 1
2 −1

]
(c) P =

[
1 1
2 1

]
(d) P =

[
1 0
0 2

]
(e) P =

[
−1 1
1 2

]
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9. The general solution of the differential equation y(6) + 2y(4) + y′′ = 0 is given by

(a) y(x) = c1 + c2 x+ (c3 + c4x) cos x+ (c5 + c6x) sinx (correct)

(b) y(x) = c1 + c2 x+ c3 cosx+ c4 sinx+ c5 cos(2x) + c6 sin(2x)

(c) y(x) = c1 + c2 e
x + c3 e

−x + c4 cosx+ c5 sinx+ c6x sinx

(d) y(x) = c1 + c2 x+ c3 e
−x + c4 e

x + c5 cosx+ c6 sinx

(e) y(x) = c1 + c2 x+ (c3 + c4x) ex cosx+ (c5 + c6x) ex sinx

10. The general solution of the system X ′ =

[
3 −1
1 1

]
X is given by

(a) X(t) = c1

[
1
1

]
e2t + c2

[
1 + t

t

]
e2t (correct)

(b) X(t) = c1

[
1
2

]
e2t + c2

[
2 + t

t

]
e2t

(c) X(t) = c1

[
1
2

]
e2t + c2

[
1 + t

t

]
e2t

(d) X(t) = c1

[
−1
1

]
e2t + c2

[
−1 + t
t

]
e2t

(e) X(t) = c1

[
−1
1

]
e2t + c2

[
1 + t

2t

]
e2t
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11. Consider the system X ′ = AX, andX(0) =

[
−5
3

]
, where A is a 2 × 2 matrix

with real entries. If A has an eigenvalue λ = 2 + 2i with corresponding eigenvector

K =

[
−5

1 + 2i

]
, then X

(π
2

)
=

(a)

[
5
−3

]
eπ (correct)

(b)

[
0
3

]
eπ

(c)

[
−1
2

]
eπ

(d)

[
1
1

]
eπ

(e)

[
3
0

]
eπ

12. A possible fundamental matrix Φ(t) of the system X ′ =

[
2 −1
3 −2

]
X is

(a)

[
et e−t

et 3e−t

]
(correct)

(b)

[
et e−t

3et e−t

]
(c)

[
3et e−t

et 3e−t

]
(d)

[
2et e−t

et 3e−t

]
(e)

[
et e−t

et 2e−t

]
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13. The general solution of X ′ =

 0 3 1
1 2 1
1 3 0

X can be written as

X = c1

 1
1
α

 e4t + c2

 3
β
0

 e−t + c3

 γ
0
−1

 e−t,

then α + β + γ =

(a) 1 (correct)

(b) −1

(c) 3

(d) 4

(e) 0

14. Consider the non-homogeneous system X ′ = AX +

[
4
−1

]
. If the general solution

of the associated homogeneous system is

Xc = c1

[
1
1

]
+ c2

[
3
2

]
et,

then the value of the particular solution Xp(−1) =

(a)

[
−4
1

]
(correct)

(b)

[
1
3

]
(c)

[
4
3

]
(d)

[
−4
3

]
(e)

[
−1
3

]
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15. The minimum radius of convergence of a power series solution of the differential
equation (x2− 2x+ 5) y′′+ xy′− y = 0 about the ordinary point x = −2 is equal to

(a)
√

13 (correct)

(b) 2
√

2

(c) ∞
(d) 0

(e)
√

11

16. If y =
∞∑
n=0

cnx
n is a power series solution of the differential equation (2x+1)y′′+y′ = 0

about the ordinary point x = 0, then the constants cn are given according to the
recurrence relation:

(a) cn = −2n− 3

n
cn−1, n ≥ 2 (correct)

(b) cn =
3n− 1

n
cn−1, n ≥ 2

(c) cn =
2n+ 3

n
cn−1, n ≥ 1

(d) cn = −3n− 2

n
cn−1, n ≥ 1

(e) cn = −3n− 2

n
cn−1, n ≥ 2
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17. If y =
∞∑
n=0

cnx
n+r is a series solution for the differential equation 2xy′′ − y′ + 2y = 0

about x = 0, then the non-integer indicial root is equal to

(a)
3

2
(correct)

(b)
2

3

(c)
1

2

(d)
3

4

(e)
4

3

18. If c0 6= 0, ck =

(
k − 5

2)(k + 3
2

)
2k(2k + 1)

ck−1, k ≥ 1, is the recurrence relation corresponding

to the indicial root r =
1

2
in the series solution of the differential equation

x(4− x)y′′ + (2− x)y′ + 4y = 0 about x = 0, then the solution is given by

(a) y = x
1
2

[
1− 5

8
x+

7

128
x2 + . . .

]
(correct)

(b) y = x
1
2

[
1 +

5

8
x+

7

128
x2 + . . .

]
(c) y = x

1
2

[
1− 3

8
x+

7

64
x2 + . . .

]
(d) y = x

1
2

[
1 +

3

8
x+

7

128
x2 + . . .

]
(e) y = x

1
2

[
1− 5

8
x− 7

128
x2 + . . .

]
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19. If A =

[
3 4
0 3

]
, then eAt =

(a)

[
e3t 4te3t

0 e3t

]
(correct)

(b)

[
e3t 4e3t

0 e3t

]
(c)

[
e3t e4t

0 e3t

]
(d)

[
e3t 3te3t

0 e3t

]
(e)

[
3e3t 4tet

0 3e3t

]

20. If K =

 1
a

−13

 is an eigenvector with eigenvalue λ = 0 of A =

 1 2 1
6 −1 0
−1 −2 −1

,

then a =

(a) 6 (correct)

(b) 4

(c) 3

(d) 5

(e) 7
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21. If X =

[
a
2

]
e−3t/2 is a solution of the system X ′ =

[
−1

1

4
1 −1

]
X, then a =

(a) −1 (correct)

(b) 1

(c) 0

(d) −2

(e) 2
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1. The rank of the matrix


1 4 5 2
−2 −8 −10 −4
3 12 15 6
0 0 3 0

is

(a) 1

(b) 3

(c) 2

(d) 0

(e) 4

2. The three vectors v1 = (2,−1, 4), v2 = (0, 5, 1) and v3 = (5, 0, B) of R3 are linearly
dependent if B =

(a) 5.5

(b) 8.5

(c) 10.5

(d) 6.5

(e) 7.5
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3. For the matrix A =

[
3 −1
−2 4

]
, if P is a diagonalizing matrix such that

P−1AP =

[
2 0
0 5

]
, then P =

(a) P =

[
1 −1
1 2

]
(b) P =

[
1 1
2 1

]
(c) P =

[
−1 1
1 2

]
(d) P =

[
1 0
0 2

]
(e) P =

[
1 1
2 −1

]

4. The general solution of the linear differential equation

x lnx
dy

dx
− y = 3x3(lnx)2, x > 1, is given by

(a) y = (c+ 3x) ln x

(b) y = (c+ x2) ln x

(c) y = (c+ x3) ln x

(d) y = (c+ x) ln x

(e) y = (c+ x4) ln x
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5. The general solution of the differential equation y(6) + 2y(4) + y′′ = 0 is given by

(a) y(x) = c1 + c2 x+ c3 cosx+ c4 sinx+ c5 cos(2x) + c6 sin(2x)

(b) y(x) = c1 + c2 x+ (c3 + c4x) cos x+ (c5 + c6x) sinx

(c) y(x) = c1 + c2 x+ (c3 + c4x) ex cosx+ (c5 + c6x) ex sinx

(d) y(x) = c1 + c2 e
x + c3 e

−x + c4 cosx+ c5 sinx+ c6x sinx

(e) y(x) = c1 + c2 x+ c3 e
−x + c4 e

x + c5 cosx+ c6 sinx

6. The general solution of the homogeneous differential equation

y(x+ y)dx − x2 dy = 0

is

(a) x ln |y|+ y = cx

(b) x ln |x|+ x2 = cy

(c) y ln |x|+ x = cy

(d) y ln |y|+ x = cy

(e) y ln |y|+ x2 = cy
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7. A particular solution of the differential equation

y′′ + y = secx tanx

is given by yp(x) =

(a) 2x cosx+ sinx ln | secx|
(b) x cosx+ sinx ln | cosx|
(c) 3x cosx+ sinx ln | tanx|
(d) 2x cosx+ sinx tanx

(e) x cosx− sinx+ sinx ln | secx|

8. By using the method of undetermined coefficients, a particular solution of the
differential equation

y′′ + 4y′ + 3y = 8ex + 3e−2x is given by

(a) yp = ex − e−2x

(b) yp = ex + 2e−2x

(c) yp = 3ex − 2e−2x

(d) yp = 2ex + e−2x

(e) yp = ex − 3e−2x
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9. The general solution of the exact differential equation

(y sec2(xy) + sin x) dx+ (x sec2(xy) + sin y) dy = 0

is given by

(a) tan(xy) + cos x− 2 cos y = c

(b) 2 tan(xy)− cosx+ cos y = c

(c) x tan(xy)− cosx− cos y = c

(d) tan(xy)− cosx− cos y = c

(e) y tan(xy) + cos x+ cos y = c

10. The general solution of the system X ′ =

[
3 −1
1 1

]
X is given by

(a) X(t) = c1

[
−1
1

]
e2t + c2

[
1 + t

2t

]
e2t

(b) X(t) = c1

[
1
2

]
e2t + c2

[
1 + t

t

]
e2t

(c) X(t) = c1

[
1
2

]
e2t + c2

[
2 + t
t

]
e2t

(d) X(t) = c1

[
1
1

]
e2t + c2

[
1 + t
t

]
e2t

(e) X(t) = c1

[
−1
1

]
e2t + c2

[
−1 + t
t

]
e2t



Term 251, Math 208, Final Exam Page 6 of 11 CODE 1

11. Consider the system X ′ = AX, andX(0) =

[
−5
3

]
, where A is a 2 × 2 matrix

with real entries. If A has an eigenvalue λ = 2 + 2i with corresponding eigenvector

K =

[
−5

1 + 2i

]
, then X

(π
2

)
=

(a)

[
3
0

]
eπ

(b)

[
5
−3

]
eπ

(c)

[
1
1

]
eπ

(d)

[
−1
2

]
eπ

(e)

[
0
3

]
eπ

12. The minimum radius of convergence of a power series solution of the differential
equation (x2− 2x+ 5) y′′+ xy′− y = 0 about the ordinary point x = −2 is equal to

(a)
√

11

(b)
√

13

(c) 0

(d) ∞
(e) 2

√
2
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13. Consider the non-homogeneous system X ′ = AX +

[
4
−1

]
. If the general solution

of the associated homogeneous system is

Xc = c1

[
1
1

]
+ c2

[
3
2

]
et,

then the value of the particular solution Xp(−1) =

(a)

[
4
3

]
(b)

[
−4
3

]
(c)

[
−4
1

]
(d)

[
1
3

]
(e)

[
−1
3

]

14. A possible fundamental matrix Φ(t) of the system X ′ =

[
2 −1
3 −2

]
X is

(a)

[
et e−t

et 3e−t

]
(b)

[
et e−t

3et e−t

]
(c)

[
2et e−t

et 3e−t

]
(d)

[
et e−t

et 2e−t

]
(e)

[
3et e−t

et 3e−t

]
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15. The general solution of X ′ =

 0 3 1
1 2 1
1 3 0

X can be written as

X = c1

 1
1
α

 e4t + c2

 3
β
0

 e−t + c3

 γ
0
−1

 e−t,

then α + β + γ =

(a) −1

(b) 3

(c) 0

(d) 4

(e) 1

16. If A =

[
3 4
0 3

]
, then eAt =

(a)

[
3e3t 4tet

0 3e3t

]
(b)

[
e3t e4t

0 e3t

]
(c)

[
e3t 4te3t

0 e3t

]
(d)

[
e3t 4e3t

0 e3t

]
(e)

[
e3t 3te3t

0 e3t

]
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17. If K =

 1
a
−13

 is an eigenvector with eigenvalue λ = 0 of A =

 1 2 1
6 −1 0
−1 −2 −1

,

then a =

(a) 3

(b) 6

(c) 4

(d) 7

(e) 5

18. If c0 6= 0, ck =

(
k − 5

2)(k + 3
2

)
2k(2k + 1)

ck−1, k ≥ 1, is the recurrence relation corresponding

to the indicial root r =
1

2
in the series solution of the differential equation

x(4− x)y′′ + (2− x)y′ + 4y = 0 about x = 0, then the solution is given by

(a) y = x
1
2

[
1 +

5

8
x+

7

128
x2 + . . .

]
(b) y = x

1
2

[
1− 3

8
x+

7

64
x2 + . . .

]
(c) y = x

1
2

[
1 +

3

8
x+

7

128
x2 + . . .

]
(d) y = x

1
2

[
1− 5

8
x− 7

128
x2 + . . .

]
(e) y = x

1
2

[
1− 5

8
x+

7

128
x2 + . . .

]
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19. If X =

[
a
2

]
e−3t/2 is a solution of the system X ′ =

[
−1

1

4
1 −1

]
X, then a =

(a) 0

(b) −1

(c) 1

(d) 2

(e) −2

20. If y =
∞∑
n=0

cnx
n+r is a series solution for the differential equation 2xy′′ − y′ + 2y = 0

about x = 0, then the non-integer indicial root is equal to

(a)
3

4

(b)
2

3

(c)
3

2

(d)
4

3

(e)
1

2
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21. If y =
∞∑
n=0

cnx
n is a power series solution of the differential equation (2x+1)y′′+y′ = 0

about the ordinary point x = 0, then the constants cn are given according to the
recurrence relation:

(a) cn = −3n− 2

n
cn−1, n ≥ 2

(b) cn = −3n− 2

n
cn−1, n ≥ 1

(c) cn =
2n+ 3

n
cn−1, n ≥ 1

(d) cn =
3n− 1

n
cn−1, n ≥ 2

(e) cn = −2n− 3

n
cn−1, n ≥ 2
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1. The three vectors v1 = (2,−1, 4), v2 = (0, 5, 1) and v3 = (5, 0, B) of R3 are linearly
dependent if B =

(a) 6.5

(b) 7.5

(c) 5.5

(d) 10.5

(e) 8.5

2. The rank of the matrix


1 4 5 2
−2 −8 −10 −4
3 12 15 6
0 0 3 0

is

(a) 3

(b) 2

(c) 4

(d) 0

(e) 1
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3. The general solution of the exact differential equation

(y sec2(xy) + sin x) dx+ (x sec2(xy) + sin y) dy = 0

is given by

(a) y tan(xy) + cos x+ cos y = c

(b) tan(xy)− cosx− cos y = c

(c) 2 tan(xy)− cosx+ cos y = c

(d) x tan(xy)− cosx− cos y = c

(e) tan(xy) + cos x− 2 cos y = c

4. For the matrix A =

[
3 −1
−2 4

]
, if P is a diagonalizing matrix such that

P−1AP =

[
2 0
0 5

]
, then P =

(a) P =

[
1 1
2 −1

]
(b) P =

[
1 1
2 1

]
(c) P =

[
1 0
0 2

]
(d) P =

[
1 −1
1 2

]
(e) P =

[
−1 1
1 2

]
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5. By using the method of undetermined coefficients, a particular solution of the
differential equation

y′′ + 4y′ + 3y = 8ex + 3e−2x is given by

(a) yp = ex − e−2x

(b) yp = 2ex + e−2x

(c) yp = 3ex − 2e−2x

(d) yp = ex − 3e−2x

(e) yp = ex + 2e−2x

6. The general solution of the linear differential equation

x lnx
dy

dx
− y = 3x3(lnx)2, x > 1, is given by

(a) y = (c+ 3x) ln x

(b) y = (c+ x2) ln x

(c) y = (c+ x4) ln x

(d) y = (c+ x3) ln x

(e) y = (c+ x) ln x
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7. A particular solution of the differential equation

y′′ + y = secx tanx

is given by yp(x) =

(a) 3x cosx+ sinx ln | tanx|
(b) 2x cosx+ sinx ln | secx|
(c) x cosx+ sinx ln | cosx|
(d) x cosx− sinx+ sinx ln | secx|
(e) 2x cosx+ sinx tanx

8. The general solution of the differential equation y(6) + 2y(4) + y′′ = 0 is given by

(a) y(x) = c1 + c2 x+ (c3 + c4x) ex cosx+ (c5 + c6x) ex sinx

(b) y(x) = c1 + c2 x+ (c3 + c4x) cos x+ (c5 + c6x) sinx

(c) y(x) = c1 + c2 x+ c3 e
−x + c4 e

x + c5 cosx+ c6 sinx

(d) y(x) = c1 + c2 e
x + c3 e

−x + c4 cosx+ c5 sinx+ c6x sinx

(e) y(x) = c1 + c2 x+ c3 cosx+ c4 sinx+ c5 cos(2x) + c6 sin(2x)
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9. The general solution of the homogeneous differential equation

y(x+ y)dx − x2 dy = 0

is

(a) y ln |x|+ x = cy

(b) x ln |x|+ x2 = cy

(c) y ln |y|+ x2 = cy

(d) y ln |y|+ x = cy

(e) x ln |y|+ y = cx

10. The general solution of the system X ′ =

[
3 −1
1 1

]
X is given by

(a) X(t) = c1

[
1
2

]
e2t + c2

[
2 + t

t

]
e2t

(b) X(t) = c1

[
1
1

]
e2t + c2

[
1 + t

t

]
e2t

(c) X(t) = c1

[
−1
1

]
e2t + c2

[
1 + t

2t

]
e2t

(d) X(t) = c1

[
1
2

]
e2t + c2

[
1 + t
t

]
e2t

(e) X(t) = c1

[
−1
1

]
e2t + c2

[
−1 + t
t

]
e2t
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11. Consider the non-homogeneous system X ′ = AX +

[
4
−1

]
. If the general solution

of the associated homogeneous system is

Xc = c1

[
1
1

]
+ c2

[
3
2

]
et,

then the value of the particular solution Xp(−1) =

(a)

[
−1
3

]
(b)

[
−4
1

]
(c)

[
1
3

]
(d)

[
−4
3

]
(e)

[
4
3

]

12. The general solution of X ′ =

 0 3 1
1 2 1
1 3 0

X can be written as

X = c1

 1
1
α

 e4t + c2

 3
β
0

 e−t + c3

 γ
0
−1

 e−t,

then α + β + γ =

(a) 3

(b) −1

(c) 0

(d) 1

(e) 4
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13. A possible fundamental matrix Φ(t) of the system X ′ =

[
2 −1
3 −2

]
X is

(a)

[
3et e−t

et 3e−t

]
(b)

[
2et e−t

et 3e−t

]
(c)

[
et e−t

et 3e−t

]
(d)

[
et e−t

et 2e−t

]
(e)

[
et e−t

3et e−t

]

14. The minimum radius of convergence of a power series solution of the differential
equation (x2− 2x+ 5) y′′+ xy′− y = 0 about the ordinary point x = −2 is equal to

(a)
√

13

(b) ∞
(c) 2

√
2

(d) 0

(e)
√

11
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15. Consider the system X ′ = AX, andX(0) =

[
−5
3

]
, where A is a 2 × 2 matrix

with real entries. If A has an eigenvalue λ = 2 + 2i with corresponding eigenvector

K =

[
−5

1 + 2i

]
, then X

(π
2

)
=

(a)

[
5
−3

]
eπ

(b)

[
−1
2

]
eπ

(c)

[
1
1

]
eπ

(d)

[
3
0

]
eπ

(e)

[
0
3

]
eπ

16. If K =

 1
a
−13

 is an eigenvector with eigenvalue λ = 0 of A =

 1 2 1
6 −1 0
−1 −2 −1

,

then a =

(a) 6

(b) 7

(c) 4

(d) 3

(e) 5
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17. If A =

[
3 4
0 3

]
, then eAt =

(a)

[
3e3t 4tet

0 3e3t

]
(b)

[
e3t 4e3t

0 e3t

]
(c)

[
e3t 3te3t

0 e3t

]
(d)

[
e3t 4te3t

0 e3t

]
(e)

[
e3t e4t

0 e3t

]

18. If y =
∞∑
n=0

cnx
n+r is a series solution for the differential equation 2xy′′ − y′ + 2y = 0

about x = 0, then the non-integer indicial root is equal to

(a)
3

2

(b)
4

3

(c)
3

4

(d)
2

3

(e)
1

2
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19. If X =

[
a
2

]
e−3t/2 is a solution of the system X ′ =

[
−1

1

4
1 −1

]
X, then a =

(a) 0

(b) 2

(c) 1

(d) −2

(e) −1

20. If y =
∞∑
n=0

cnx
n is a power series solution of the differential equation (2x+1)y′′+y′ = 0

about the ordinary point x = 0, then the constants cn are given according to the
recurrence relation:

(a) cn =
3n− 1

n
cn−1, n ≥ 2

(b) cn = −3n− 2

n
cn−1, n ≥ 1

(c) cn = −3n− 2

n
cn−1, n ≥ 2

(d) cn =
2n+ 3

n
cn−1, n ≥ 1

(e) cn = −2n− 3

n
cn−1, n ≥ 2
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21. If c0 6= 0, ck =

(
k − 5

2)(k + 3
2

)
2k(2k + 1)

ck−1, k ≥ 1, is the recurrence relation corresponding

to the indicial root r =
1

2
in the series solution of the differential equation

x(4− x)y′′ + (2− x)y′ + 4y = 0 about x = 0, then the solution is given by

(a) y = x
1
2

[
1− 3

8
x+

7

64
x2 + . . .

]
(b) y = x

1
2

[
1− 5

8
x+

7

128
x2 + . . .

]
(c) y = x

1
2

[
1 +

3

8
x+

7

128
x2 + . . .

]
(d) y = x

1
2

[
1− 5

8
x− 7

128
x2 + . . .

]
(e) y = x

1
2

[
1 +

5

8
x+

7

128
x2 + . . .

]
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1. For the matrix A =

[
3 −1
−2 4

]
, if P is a diagonalizing matrix such that

P−1AP =

[
2 0
0 5

]
, then P =

(a) P =

[
1 −1
1 2

]
(b) P =

[
−1 1
1 2

]
(c) P =

[
1 1
2 1

]
(d) P =

[
1 0
0 2

]
(e) P =

[
1 1
2 −1

]

2. The general solution of the differential equation y(6) + 2y(4) + y′′ = 0 is given by

(a) y(x) = c1 + c2 x+ (c3 + c4x) ex cosx+ (c5 + c6x) ex sinx

(b) y(x) = c1 + c2 x+ (c3 + c4x) cos x+ (c5 + c6x) sinx

(c) y(x) = c1 + c2 x+ c3 cosx+ c4 sinx+ c5 cos(2x) + c6 sin(2x)

(d) y(x) = c1 + c2 e
x + c3 e

−x + c4 cosx+ c5 sinx+ c6x sinx

(e) y(x) = c1 + c2 x+ c3 e
−x + c4 e

x + c5 cosx+ c6 sinx
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3. The general solution of the exact differential equation

(y sec2(xy) + sin x) dx+ (x sec2(xy) + sin y) dy = 0

is given by

(a) x tan(xy)− cosx− cos y = c

(b) tan(xy)− cosx− cos y = c

(c) y tan(xy) + cos x+ cos y = c

(d) 2 tan(xy)− cosx+ cos y = c

(e) tan(xy) + cos x− 2 cos y = c

4. By using the method of undetermined coefficients, a particular solution of the
differential equation

y′′ + 4y′ + 3y = 8ex + 3e−2x is given by

(a) yp = ex − e−2x

(b) yp = 3ex − 2e−2x

(c) yp = ex − 3e−2x

(d) yp = 2ex + e−2x

(e) yp = ex + 2e−2x
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5. The three vectors v1 = (2,−1, 4), v2 = (0, 5, 1) and v3 = (5, 0, B) of R3 are linearly
dependent if B =

(a) 7.5

(b) 6.5

(c) 10.5

(d) 8.5

(e) 5.5

6. The rank of the matrix


1 4 5 2
−2 −8 −10 −4
3 12 15 6
0 0 3 0

is

(a) 0

(b) 1

(c) 4

(d) 3

(e) 2
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7. A particular solution of the differential equation

y′′ + y = secx tanx

is given by yp(x) =

(a) x cosx− sinx+ sinx ln | secx|
(b) 2x cosx+ sinx ln | secx|
(c) 2x cosx+ sinx tanx

(d) 3x cosx+ sinx ln | tanx|
(e) x cosx+ sinx ln | cosx|

8. The general solution of the linear differential equation

x lnx
dy

dx
− y = 3x3(lnx)2, x > 1, is given by

(a) y = (c+ x2) ln x

(b) y = (c+ x3) ln x

(c) y = (c+ 3x) ln x

(d) y = (c+ x) ln x

(e) y = (c+ x4) ln x
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9. The general solution of the homogeneous differential equation

y(x+ y)dx − x2 dy = 0

is

(a) y ln |y|+ x2 = cy

(b) y ln |x|+ x = cy

(c) y ln |y|+ x = cy

(d) x ln |x|+ x2 = cy

(e) x ln |y|+ y = cx

10. The general solution of the system X ′ =

[
3 −1
1 1

]
X is given by

(a) X(t) = c1

[
1
1

]
e2t + c2

[
1 + t

t

]
e2t

(b) X(t) = c1

[
−1
1

]
e2t + c2

[
1 + t

2t

]
e2t

(c) X(t) = c1

[
1
2

]
e2t + c2

[
1 + t
t

]
e2t

(d) X(t) = c1

[
1
2

]
e2t + c2

[
2 + t
t

]
e2t

(e) X(t) = c1

[
−1
1

]
e2t + c2

[
−1 + t
t

]
e2t
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11. Consider the system X ′ = AX, andX(0) =

[
−5
3

]
, where A is a 2 × 2 matrix

with real entries. If A has an eigenvalue λ = 2 + 2i with corresponding eigenvector

K =

[
−5

1 + 2i

]
, then X

(π
2

)
=

(a)

[
0
3

]
eπ

(b)

[
−1
2

]
eπ

(c)

[
3
0

]
eπ

(d)

[
5
−3

]
eπ

(e)

[
1
1

]
eπ

12. The general solution of X ′ =

 0 3 1
1 2 1
1 3 0

X can be written as

X = c1

 1
1
α

 e4t + c2

 3
β
0

 e−t + c3

 γ
0
−1

 e−t,

then α + β + γ =

(a) 3

(b) 0

(c) −1

(d) 4

(e) 1
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13. A possible fundamental matrix Φ(t) of the system X ′ =

[
2 −1
3 −2

]
X is

(a)

[
2et e−t

et 3e−t

]
(b)

[
et e−t

et 3e−t

]
(c)

[
3et e−t

et 3e−t

]
(d)

[
et e−t

3et e−t

]
(e)

[
et e−t

et 2e−t

]

14. Consider the non-homogeneous system X ′ = AX +

[
4
−1

]
. If the general solution

of the associated homogeneous system is

Xc = c1

[
1
1

]
+ c2

[
3
2

]
et,

then the value of the particular solution Xp(−1) =

(a)

[
−1
3

]
(b)

[
4
3

]
(c)

[
−4
3

]
(d)

[
−4
1

]
(e)

[
1
3

]
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15. The minimum radius of convergence of a power series solution of the differential
equation (x2− 2x+ 5) y′′+ xy′− y = 0 about the ordinary point x = −2 is equal to

(a)
√

11

(b) 2
√

2

(c)
√

13

(d) ∞
(e) 0

16. If X =

[
a

2

]
e−3t/2 is a solution of the system X ′ =

[
−1

1

4
1 −1

]
X, then a =

(a) −1

(b) 1

(c) 2

(d) 0

(e) −2
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17. If y =
∞∑
n=0

cnx
n+r is a series solution for the differential equation 2xy′′ − y′ + 2y = 0

about x = 0, then the non-integer indicial root is equal to

(a)
3

2

(b)
2

3

(c)
3

4

(d)
4

3

(e)
1

2

18. If c0 6= 0, ck =

(
k − 5

2)(k + 3
2

)
2k(2k + 1)

ck−1, k ≥ 1, is the recurrence relation corresponding

to the indicial root r =
1

2
in the series solution of the differential equation

x(4− x)y′′ + (2− x)y′ + 4y = 0 about x = 0, then the solution is given by

(a) y = x
1
2

[
1− 5

8
x− 7

128
x2 + . . .

]
(b) y = x

1
2

[
1 +

5

8
x+

7

128
x2 + . . .

]
(c) y = x

1
2

[
1− 5

8
x+

7

128
x2 + . . .

]
(d) y = x

1
2

[
1− 3

8
x+

7

64
x2 + . . .

]
(e) y = x

1
2

[
1 +

3

8
x+

7

128
x2 + . . .

]
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19. If y =
∞∑
n=0

cnx
n is a power series solution of the differential equation (2x+1)y′′+y′ = 0

about the ordinary point x = 0, then the constants cn are given according to the
recurrence relation:

(a) cn = −3n− 2

n
cn−1, n ≥ 2

(b) cn =
3n− 1

n
cn−1, n ≥ 2

(c) cn = −2n− 3

n
cn−1, n ≥ 2

(d) cn = −3n− 2

n
cn−1, n ≥ 1

(e) cn =
2n+ 3

n
cn−1, n ≥ 1

20. If A =

[
3 4
0 3

]
, then eAt =

(a)

[
e3t 4te3t

0 e3t

]
(b)

[
e3t 4e3t

0 e3t

]
(c)

[
3e3t 4tet

0 3e3t

]
(d)

[
e3t 3te3t

0 e3t

]
(e)

[
e3t e4t

0 e3t

]



Term 251, Math 208, Final Exam Page 11 of 11 CODE 3

21. If K =

 1
a
−13

 is an eigenvector with eigenvalue λ = 0 of A =

 1 2 1
6 −1 0
−1 −2 −1

,

then a =

(a) 7

(b) 5

(c) 6

(d) 4

(e) 3
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1. The rank of the matrix


1 4 5 2
−2 −8 −10 −4
3 12 15 6
0 0 3 0

is

(a) 4

(b) 1

(c) 2

(d) 0

(e) 3

2. The general solution of the linear differential equation

x lnx
dy

dx
− y = 3x3(lnx)2, x > 1, is given by

(a) y = (c+ 3x) ln x

(b) y = (c+ x3) ln x

(c) y = (c+ x4) ln x

(d) y = (c+ x2) ln x

(e) y = (c+ x) ln x
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3. The three vectors v1 = (2,−1, 4), v2 = (0, 5, 1) and v3 = (5, 0, B) of R3 are linearly
dependent if B =

(a) 10.5

(b) 5.5

(c) 7.5

(d) 6.5

(e) 8.5

4. The general solution of the exact differential equation

(y sec2(xy) + sin x) dx+ (x sec2(xy) + sin y) dy = 0

is given by

(a) tan(xy) + cos x− 2 cos y = c

(b) x tan(xy)− cosx− cos y = c

(c) tan(xy)− cosx− cos y = c

(d) y tan(xy) + cos x+ cos y = c

(e) 2 tan(xy)− cosx+ cos y = c
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5. For the matrix A =

[
3 −1
−2 4

]
, if P is a diagonalizing matrix such that

P−1AP =

[
2 0
0 5

]
, then P =

(a) P =

[
1 −1
1 2

]
(b) P =

[
1 1
2 1

]
(c) P =

[
−1 1
1 2

]
(d) P =

[
1 0
0 2

]
(e) P =

[
1 1
2 −1

]

6. The general solution of the homogeneous differential equation

y(x+ y)dx − x2 dy = 0

is

(a) y ln |x|+ x = cy

(b) x ln |y|+ y = cx

(c) y ln |y|+ x2 = cy

(d) x ln |x|+ x2 = cy

(e) y ln |y|+ x = cy
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7. A particular solution of the differential equation

y′′ + y = secx tanx

is given by yp(x) =

(a) 2x cosx+ sinx tanx

(b) 3x cosx+ sinx ln | tanx|
(c) x cosx− sinx+ sinx ln | secx|
(d) x cosx+ sinx ln | cosx|
(e) 2x cosx+ sinx ln | secx|

8. By using the method of undetermined coefficients, a particular solution of the
differential equation

y′′ + 4y′ + 3y = 8ex + 3e−2x is given by

(a) yp = ex − 3e−2x

(b) yp = 2ex + e−2x

(c) yp = ex + 2e−2x

(d) yp = ex − e−2x

(e) yp = 3ex − 2e−2x



Term 251, Math 208, Final Exam Page 5 of 11 CODE 4

9. The general solution of the differential equation y(6) + 2y(4) + y′′ = 0 is given by

(a) y(x) = c1 + c2 e
x + c3 e

−x + c4 cosx+ c5 sinx+ c6x sinx

(b) y(x) = c1 + c2 x+ c3 e
−x + c4 e

x + c5 cosx+ c6 sinx

(c) y(x) = c1 + c2 x+ (c3 + c4x) ex cosx+ (c5 + c6x) ex sinx

(d) y(x) = c1 + c2 x+ c3 cosx+ c4 sinx+ c5 cos(2x) + c6 sin(2x)

(e) y(x) = c1 + c2 x+ (c3 + c4x) cos x+ (c5 + c6x) sinx

10. The general solution of the system X ′ =

[
3 −1
1 1

]
X is given by

(a) X(t) = c1

[
1
2

]
e2t + c2

[
1 + t

t

]
e2t

(b) X(t) = c1

[
1
2

]
e2t + c2

[
2 + t

t

]
e2t

(c) X(t) = c1

[
1
1

]
e2t + c2

[
1 + t

t

]
e2t

(d) X(t) = c1

[
−1
1

]
e2t + c2

[
1 + t

2t

]
e2t

(e) X(t) = c1

[
−1
1

]
e2t + c2

[
−1 + t
t

]
e2t
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11. Consider the system X ′ = AX, andX(0) =

[
−5
3

]
, where A is a 2 × 2 matrix

with real entries. If A has an eigenvalue λ = 2 + 2i with corresponding eigenvector

K =

[
−5

1 + 2i

]
, then X

(π
2

)
=

(a)

[
1
1

]
eπ

(b)

[
5
−3

]
eπ

(c)

[
−1
2

]
eπ

(d)

[
0
3

]
eπ

(e)

[
3
0

]
eπ

12. A possible fundamental matrix Φ(t) of the system X ′ =

[
2 −1
3 −2

]
X is

(a)

[
et e−t

et 3e−t

]
(b)

[
et e−t

3et e−t

]
(c)

[
2et e−t

et 3e−t

]
(d)

[
et e−t

et 2e−t

]
(e)

[
3et e−t

et 3e−t

]
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13. The minimum radius of convergence of a power series solution of the differential
equation (x2− 2x+ 5) y′′+ xy′− y = 0 about the ordinary point x = −2 is equal to

(a)
√

13

(b) 0

(c) ∞
(d)
√

11

(e) 2
√

2

14. Consider the non-homogeneous system X ′ = AX +

[
4
−1

]
. If the general solution

of the associated homogeneous system is

Xc = c1

[
1
1

]
+ c2

[
3
2

]
et,

then the value of the particular solution Xp(−1) =

(a)

[
1
3

]
(b)

[
−4
3

]
(c)

[
−4
1

]
(d)

[
−1
3

]
(e)

[
4
3

]
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15. The general solution of X ′ =

 0 3 1
1 2 1
1 3 0

X can be written as

X = c1

 1
1
α

 e4t + c2

 3
β
0

 e−t + c3

 γ
0
−1

 e−t,

then α + β + γ =

(a) 3

(b) 0

(c) −1

(d) 4

(e) 1

16. If X =

[
a
2

]
e−3t/2 is a solution of the system X ′ =

[
−1

1

4
1 −1

]
X, then a =

(a) −1

(b) 1

(c) 0

(d) 2

(e) −2
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17. If K =

 1
a
−13

 is an eigenvector with eigenvalue λ = 0 of A =

 1 2 1
6 −1 0
−1 −2 −1

,

then a =

(a) 6

(b) 3

(c) 7

(d) 5

(e) 4

18. If A =

[
3 4
0 3

]
, then eAt =

(a)

[
e3t e4t

0 e3t

]
(b)

[
e3t 4te3t

0 e3t

]
(c)

[
e3t 4e3t

0 e3t

]
(d)

[
e3t 3te3t

0 e3t

]
(e)

[
3e3t 4tet

0 3e3t

]
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19. If y =
∞∑
n=0

cnx
n+r is a series solution for the differential equation 2xy′′ − y′ + 2y = 0

about x = 0, then the non-integer indicial root is equal to

(a)
3

4

(b)
2

3

(c)
3

2

(d)
1

2

(e)
4

3

20. If c0 6= 0, ck =

(
k − 5

2)(k + 3
2

)
2k(2k + 1)

ck−1, k ≥ 1, is the recurrence relation corresponding

to the indicial root r =
1

2
in the series solution of the differential equation

x(4− x)y′′ + (2− x)y′ + 4y = 0 about x = 0, then the solution is given by

(a) y = x
1
2

[
1 +

5

8
x+

7

128
x2 + . . .

]
(b) y = x

1
2

[
1− 5

8
x+

7

128
x2 + . . .

]
(c) y = x

1
2

[
1− 3

8
x+

7

64
x2 + . . .

]
(d) y = x

1
2

[
1 +

3

8
x+

7

128
x2 + . . .

]
(e) y = x

1
2

[
1− 5

8
x− 7

128
x2 + . . .

]
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21. If y =
∞∑
n=0

cnx
n is a power series solution of the differential equation (2x+1)y′′+y′ = 0

about the ordinary point x = 0, then the constants cn are given according to the
recurrence relation:

(a) cn = −3n− 2

n
cn−1, n ≥ 1

(b) cn = −2n− 3

n
cn−1, n ≥ 2

(c) cn = −3n− 2

n
cn−1, n ≥ 2

(d) cn =
3n− 1

n
cn−1, n ≥ 2

(e) cn =
2n+ 3

n
cn−1, n ≥ 1
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Q MASTER 1 2 3 4
1 A C 5 D 4 A 8 C 5

2 A C 4 B 5 B 9 B 3

3 A A 8 B 2 B 2 A 4

4 A C 3 D 8 C 6 C 2

5 A B 9 D 6 C 4 A 8

6 A C 1 D 3 E 5 A 1

7 A E 7 D 7 A 7 C 7

8 A E 6 B 9 B 3 A 6

9 A D 2 A 1 B 1 E 9

10 A D 10 B 10 A 10 C 10

11 A B 11 B 14 D 11 B 11

12 A B 15 D 13 E 13 A 12

13 A C 14 C 12 B 12 A 15

14 A A 12 A 15 D 14 C 14

15 A E 13 A 11 C 15 E 13

16 A C 19 A 20 A 21 A 21

17 A B 20 D 19 A 17 A 20

18 A E 18 A 17 C 18 B 19

19 A B 21 E 21 C 16 C 17

20 A C 17 E 16 A 19 B 18

21 A E 16 B 18 C 20 B 16
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Figure 1: Frequency of Each Answer Option (Excluding MASTER)


