

King Fahd University of Petroleum and Minerals  
Department of Mathematics

**Math 208  
Final Exam  
Term 251  
December 22, 2025**

**EXAM COVER**

**Number of versions: 4  
Number of questions: 21**

This exam was prepared using MC Exam Randomizer.  
For questions send an email to Dr. Mohammed Alshahrani ([mshahrani@kfupm.edu.sa](mailto:mshahrani@kfupm.edu.sa)) You can  
download it by scanning the code



King Fahd University of Petroleum and Minerals  
Department of Mathematics

**Math 208**

**Final Exam**

**Term 251**

**December 22, 2025**

**Net Time Allowed: 120 Minutes**

**MASTER VERSION**

1. The general solution of the homogeneous differential equation

$$y(x+y)dx - x^2 dy = 0$$

is

(a)  $y \ln|x| + x = cy$  \_\_\_\_\_ (correct)  
(b)  $y \ln|y| + x^2 = cy$   
(c)  $y \ln|y| + x = cy$   
(d)  $x \ln|x| + x^2 = cy$   
(e)  $x \ln|y| + y = cx$

2. The general solution of the exact differential equation

$$(y \sec^2(xy) + \sin x) dx + (x \sec^2(xy) + \sin y) dy = 0$$

is given by

(a)  $\tan(xy) - \cos x - \cos y = c$  \_\_\_\_\_ (correct)  
(b)  $\tan(xy) + \cos x - 2 \cos y = c$   
(c)  $x \tan(xy) - \cos x - \cos y = c$   
(d)  $y \tan(xy) + \cos x + \cos y = c$   
(e)  $2 \tan(xy) - \cos x + \cos y = c$

3. The general solution of the linear differential equation

$$x \ln x \frac{dy}{dx} - y = 3x^3(\ln x)^2, \quad x > 1, \text{ is given by}$$

(a)  $y = (c + x^3) \ln x$  \_\_\_\_\_ (correct)  
(b)  $y = (c + x^2) \ln x$   
(c)  $y = (c + x^4) \ln x$   
(d)  $y = (c + x) \ln x$   
(e)  $y = (c + 3x) \ln x$

4. The three vectors  $\mathbf{v}_1 = (2, -1, 4)$ ,  $\mathbf{v}_2 = (0, 5, 1)$  and  $\mathbf{v}_3 = (5, 0, B)$  of  $\mathbb{R}^3$  are **linearly dependent** if  $B =$

(a) 10.5 \_\_\_\_\_ (correct)  
(b) 8.5  
(c) 7.5  
(d) 6.5  
(e) 5.5

5. The rank of the matrix  $\begin{bmatrix} 1 & 4 & 5 & 2 \\ -2 & -8 & -10 & -4 \\ 3 & 12 & 15 & 6 \\ 0 & 0 & 3 & 0 \end{bmatrix}$  is

(a) 2 \_\_\_\_\_ (correct)  
(b) 3  
(c) 4  
(d) 1  
(e) 0

6. By using the method of undetermined coefficients, a particular solution of the differential equation

$y'' + 4y' + 3y = 8e^x + 3e^{-2x}$  is given by

(a)  $y_p = e^x - 3e^{-2x}$  \_\_\_\_\_ (correct)  
(b)  $y_p = e^x + 2e^{-2x}$   
(c)  $y_p = 2e^x + e^{-2x}$   
(d)  $y_p = 3e^x - 2e^{-2x}$   
(e)  $y_p = e^x - e^{-2x}$

7. A particular solution of the differential equation

$$y'' + y = \sec x \tan x$$

is given by  $y_p(x) =$

(a)  $x \cos x - \sin x + \sin x \ln |\sec x|$  \_\_\_\_\_ (correct)  
(b)  $2x \cos x + \sin x \ln |\sec x|$   
(c)  $2x \cos x + \sin x \tan x$   
(d)  $3x \cos x + \sin x \ln |\tan x|$   
(e)  $x \cos x + \sin x \ln |\cos x|$

8. For the matrix  $A = \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$ , if  $P$  is a diagonalizing matrix such that  $P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$ , then  $P =$

(a)  $P = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$  \_\_\_\_\_ (correct)  
(b)  $P = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$   
(c)  $P = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$   
(d)  $P = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$   
(e)  $P = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}$

9. The general solution of the differential equation  $y^{(6)} + 2y^{(4)} + y'' = 0$  is given by

(a)  $y(x) = c_1 + c_2 x + (c_3 + c_4 x) \cos x + (c_5 + c_6 x) \sin x$  \_\_\_\_\_ (correct)  
(b)  $y(x) = c_1 + c_2 x + c_3 \cos x + c_4 \sin x + c_5 \cos(2x) + c_6 \sin(2x)$   
(c)  $y(x) = c_1 + c_2 e^x + c_3 e^{-x} + c_4 \cos x + c_5 \sin x + c_6 x \sin x$   
(d)  $y(x) = c_1 + c_2 x + c_3 e^{-x} + c_4 e^x + c_5 \cos x + c_6 \sin x$   
(e)  $y(x) = c_1 + c_2 x + (c_3 + c_4 x) e^x \cos x + (c_5 + c_6 x) e^x \sin x$

10. The general solution of the system  $X' = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} X$  is given by

(a)  $X(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ t \end{bmatrix} e^{2t}$  \_\_\_\_\_ (correct)  
(b)  $X(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 2+t \\ t \end{bmatrix} e^{2t}$   
(c)  $X(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ t \end{bmatrix} e^{2t}$   
(d)  $X(t) = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} -1+t \\ t \end{bmatrix} e^{2t}$   
(e)  $X(t) = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ 2t \end{bmatrix} e^{2t}$

11. Consider the system  $X' = AX$ , and  $X(0) = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$ , where  $A$  is a  $2 \times 2$  matrix with real entries. If  $A$  has an eigenvalue  $\lambda = 2 + 2i$  with corresponding eigenvector  $K = \begin{bmatrix} -5 \\ 1 + 2i \end{bmatrix}$ , then  $X\left(\frac{\pi}{2}\right) =$

(a)  $\begin{bmatrix} 5 \\ -3 \end{bmatrix} e^{\pi}$  \_\_\_\_\_ (correct)

(b)  $\begin{bmatrix} 0 \\ 3 \end{bmatrix} e^{\pi}$

(c)  $\begin{bmatrix} -1 \\ 2 \end{bmatrix} e^{\pi}$

(d)  $\begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{\pi}$

(e)  $\begin{bmatrix} 3 \\ 0 \end{bmatrix} e^{\pi}$

12. A possible fundamental matrix  $\Phi(t)$  of the system  $X' = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix} X$  is

(a)  $\begin{bmatrix} e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$  \_\_\_\_\_ (correct)

(b)  $\begin{bmatrix} e^t & e^{-t} \\ 3e^t & e^{-t} \end{bmatrix}$

(c)  $\begin{bmatrix} 3e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$

(d)  $\begin{bmatrix} 2e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$

(e)  $\begin{bmatrix} e^t & e^{-t} \\ e^t & 2e^{-t} \end{bmatrix}$

13. The general solution of  $X' = \begin{bmatrix} 0 & 3 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 0 \end{bmatrix} X$  can be written as

$$X = c_1 \begin{bmatrix} 1 \\ 1 \\ \alpha \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} 3 \\ \beta \\ 0 \end{bmatrix} e^{-t} + c_3 \begin{bmatrix} \gamma \\ 0 \\ -1 \end{bmatrix} e^{-t},$$

then  $\alpha + \beta + \gamma =$

- (a) 1 \_\_\_\_\_ (correct)
- (b) -1
- (c) 3
- (d) 4
- (e) 0

14. Consider the non-homogeneous system  $X' = AX + \begin{bmatrix} 4 \\ -1 \end{bmatrix}$ . If the general solution of the associated homogeneous system is

$$X_c = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 2 \end{bmatrix} e^t,$$

then the value of the particular solution  $X_p(-1) =$

- (a)  $\begin{bmatrix} -4 \\ 1 \end{bmatrix}$  \_\_\_\_\_ (correct)
- (b)  $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$
- (c)  $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$
- (d)  $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$
- (e)  $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

15. The minimum radius of convergence of a power series solution of the differential equation  $(x^2 - 2x + 5) y'' + xy' - y = 0$  about the ordinary point  $x = -2$  is equal to

(a)  $\sqrt{13}$  \_\_\_\_\_ (correct)  
(b)  $2\sqrt{2}$   
(c)  $\infty$   
(d) 0  
(e)  $\sqrt{11}$

16. If  $y = \sum_{n=0}^{\infty} c_n x^n$  is a power series solution of the differential equation  $(2x+1)y''+y' = 0$  about the ordinary point  $x = 0$ , then the constants  $c_n$  are given according to the recurrence relation:

(a)  $c_n = -\frac{2n-3}{n} c_{n-1}, n \geq 2$  \_\_\_\_\_ (correct)  
(b)  $c_n = \frac{3n-1}{n} c_{n-1}, n \geq 2$   
(c)  $c_n = \frac{2n+3}{n} c_{n-1}, n \geq 1$   
(d)  $c_n = -\frac{3n-2}{n} c_{n-1}, n \geq 1$   
(e)  $c_n = -\frac{3n-2}{n} c_{n-1}, n \geq 2$

17. If  $y = \sum_{n=0}^{\infty} c_n x^{n+r}$  is a series solution for the differential equation  $2xy'' - y' + 2y = 0$  about  $x = 0$ , then the non-integer indicial root is equal to

(a)  $\frac{3}{2}$  \_\_\_\_\_ (correct)

(b)  $\frac{2}{3}$

(c)  $\frac{1}{2}$

(d)  $\frac{3}{4}$

(e)  $\frac{4}{3}$

18. If  $c_0 \neq 0$ ,  $c_k = \frac{(k - \frac{5}{2})(k + \frac{3}{2})}{2k(2k + 1)} c_{k-1}$ ,  $k \geq 1$ , is the recurrence relation corresponding to the indicial root  $r = \frac{1}{2}$  in the series solution of the differential equation  $x(4 - x)y'' + (2 - x)y' + 4y = 0$  about  $x = 0$ , then the solution is given by

(a)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{5}{8}x + \frac{7}{128}x^2 + \dots \right]$  \_\_\_\_\_ (correct)

(b)  $y = x^{\frac{1}{2}} \left[ 1 + \frac{5}{8}x + \frac{7}{128}x^2 + \dots \right]$

(c)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{3}{8}x + \frac{7}{64}x^2 + \dots \right]$

(d)  $y = x^{\frac{1}{2}} \left[ 1 + \frac{3}{8}x + \frac{7}{128}x^2 + \dots \right]$

(e)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{5}{8}x - \frac{7}{128}x^2 + \dots \right]$

19. If  $A = \begin{bmatrix} 3 & 4 \\ 0 & 3 \end{bmatrix}$ , then  $e^{At} =$

(a)  $\begin{bmatrix} e^{3t} & 4te^{3t} \\ 0 & e^{3t} \end{bmatrix}$  \_\_\_\_\_ (correct)

(b)  $\begin{bmatrix} e^{3t} & 4e^{3t} \\ 0 & e^{3t} \end{bmatrix}$

(c)  $\begin{bmatrix} e^{3t} & e^{4t} \\ 0 & e^{3t} \end{bmatrix}$

(d)  $\begin{bmatrix} e^{3t} & 3te^{3t} \\ 0 & e^{3t} \end{bmatrix}$

(e)  $\begin{bmatrix} 3e^{3t} & 4te^t \\ 0 & 3e^{3t} \end{bmatrix}$

20. If  $K = \begin{bmatrix} 1 \\ a \\ -13 \end{bmatrix}$  is an eigenvector with eigenvalue  $\lambda = 0$  of  $A = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix}$ ,  
then  $a =$

(a) 6 \_\_\_\_\_ (correct)

(b) 4

(c) 3

(d) 5

(e) 7

21. If  $X = \begin{bmatrix} a \\ 2 \end{bmatrix} e^{-3t/2}$  is a solution of the system  $X' = \begin{bmatrix} -1 & \frac{1}{4} \\ 1 & -1 \end{bmatrix} X$ , then  $a =$

(a) -1 \_\_\_\_\_ (correct)  
(b) 1  
(c) 0  
(d) -2  
(e) 2

**CODE 1**

**CODE 1**

**Math 208  
Final Exam  
Term 251  
December 22, 2025  
Net Time Allowed: 120 Minutes**

|      |  |     |  |
|------|--|-----|--|
| Name |  |     |  |
| ID   |  | Sec |  |

Check that this exam has 21 questions.

**Important Instructions:**

1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
2. Use HB 2.5 pencils only.
3. Use a good eraser. DO NOT use the erasers attached to the pencil.
4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
7. When bubbling, make sure that the bubbled space is fully covered.
8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The rank of the matrix  $\begin{bmatrix} 1 & 4 & 5 & 2 \\ -2 & -8 & -10 & -4 \\ 3 & 12 & 15 & 6 \\ 0 & 0 & 3 & 0 \end{bmatrix}$  is

- (a) 1
- (b) 3
- (c) 2
- (d) 0
- (e) 4

2. The three vectors  $\mathbf{v}_1 = (2, -1, 4)$ ,  $\mathbf{v}_2 = (0, 5, 1)$  and  $\mathbf{v}_3 = (5, 0, B)$  of  $\mathbb{R}^3$  are **linearly dependent** if  $B =$

- (a) 5.5
- (b) 8.5
- (c) 10.5
- (d) 6.5
- (e) 7.5

3. For the matrix  $A = \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$ , if  $P$  is a diagonalizing matrix such that  $P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$ , then  $P =$

(a)  $P = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$

(b)  $P = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$

(c)  $P = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}$

(d)  $P = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(e)  $P = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$

4. The general solution of the linear differential equation

$x \ln x \frac{dy}{dx} - y = 3x^3(\ln x)^2$ ,  $x > 1$ , is given by

(a)  $y = (c + 3x) \ln x$

(b)  $y = (c + x^2) \ln x$

(c)  $y = (c + x^3) \ln x$

(d)  $y = (c + x) \ln x$

(e)  $y = (c + x^4) \ln x$

5. The general solution of the differential equation  $y^{(6)} + 2y^{(4)} + y'' = 0$  is given by

- (a)  $y(x) = c_1 + c_2 x + c_3 \cos x + c_4 \sin x + c_5 \cos(2x) + c_6 \sin(2x)$
- (b)  $y(x) = c_1 + c_2 x + (c_3 + c_4 x) \cos x + (c_5 + c_6 x) \sin x$
- (c)  $y(x) = c_1 + c_2 x + (c_3 + c_4 x) e^x \cos x + (c_5 + c_6 x) e^x \sin x$
- (d)  $y(x) = c_1 + c_2 e^x + c_3 e^{-x} + c_4 \cos x + c_5 \sin x + c_6 x \sin x$
- (e)  $y(x) = c_1 + c_2 x + c_3 e^{-x} + c_4 e^x + c_5 \cos x + c_6 \sin x$

6. The general solution of the homogeneous differential equation

$$y(x+y)dx - x^2 dy = 0$$

is

- (a)  $x \ln |y| + y = cx$
- (b)  $x \ln |x| + x^2 = cy$
- (c)  $y \ln |x| + x = cy$
- (d)  $y \ln |y| + x = cy$
- (e)  $y \ln |y| + x^2 = cy$

7. A particular solution of the differential equation

$$y'' + y = \sec x \tan x$$

is given by  $y_p(x) =$

- (a)  $2x \cos x + \sin x \ln |\sec x|$
- (b)  $x \cos x + \sin x \ln |\cos x|$
- (c)  $3x \cos x + \sin x \ln |\tan x|$
- (d)  $2x \cos x + \sin x \tan x$
- (e)  $x \cos x - \sin x + \sin x \ln |\sec x|$

8. By using the method of undetermined coefficients, a particular solution of the differential equation

$$y'' + 4y' + 3y = 8e^x + 3e^{-2x}$$
 is given by

- (a)  $y_p = e^x - e^{-2x}$
- (b)  $y_p = e^x + 2e^{-2x}$
- (c)  $y_p = 3e^x - 2e^{-2x}$
- (d)  $y_p = 2e^x + e^{-2x}$
- (e)  $y_p = e^x - 3e^{-2x}$

9. The general solution of the exact differential equation

$$(y \sec^2(xy) + \sin x) dx + (x \sec^2(xy) + \sin y) dy = 0$$

is given by

- (a)  $\tan(xy) + \cos x - 2 \cos y = c$
- (b)  $2 \tan(xy) - \cos x + \cos y = c$
- (c)  $x \tan(xy) - \cos x - \cos y = c$
- (d)  $\tan(xy) - \cos x - \cos y = c$
- (e)  $y \tan(xy) + \cos x + \cos y = c$

10. The general solution of the system  $X' = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} X$  is given by

- (a)  $X(t) = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ 2t \end{bmatrix} e^{2t}$
- (b)  $X(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ t \end{bmatrix} e^{2t}$
- (c)  $X(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 2+t \\ t \end{bmatrix} e^{2t}$
- (d)  $X(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ t \end{bmatrix} e^{2t}$
- (e)  $X(t) = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} -1+t \\ t \end{bmatrix} e^{2t}$

11. Consider the system  $X' = AX$ , and  $X(0) = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$ , where  $A$  is a  $2 \times 2$  matrix with real entries. If  $A$  has an eigenvalue  $\lambda = 2 + 2i$  with corresponding eigenvector  $K = \begin{bmatrix} -5 \\ 1 + 2i \end{bmatrix}$ , then  $X\left(\frac{\pi}{2}\right) =$

- (a)  $\begin{bmatrix} 3 \\ 0 \end{bmatrix} e^{\pi}$
- (b)  $\begin{bmatrix} 5 \\ -3 \end{bmatrix} e^{\pi}$
- (c)  $\begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{\pi}$
- (d)  $\begin{bmatrix} -1 \\ 2 \end{bmatrix} e^{\pi}$
- (e)  $\begin{bmatrix} 0 \\ 3 \end{bmatrix} e^{\pi}$

12. The minimum radius of convergence of a power series solution of the differential equation  $(x^2 - 2x + 5) y'' + xy' - y = 0$  about the ordinary point  $x = -2$  is equal to

- (a)  $\sqrt{11}$
- (b)  $\sqrt{13}$
- (c) 0
- (d)  $\infty$
- (e)  $2\sqrt{2}$

13. Consider the non-homogeneous system  $X' = AX + \begin{bmatrix} 4 \\ -1 \end{bmatrix}$ . If the general solution of the associated homogeneous system is

$$X_c = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 2 \end{bmatrix} e^t,$$

then the value of the particular solution  $X_p(-1) =$

(a)  $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$

(b)  $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$

(c)  $\begin{bmatrix} -4 \\ 1 \end{bmatrix}$

(d)  $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$

(e)  $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

14. A possible fundamental matrix  $\Phi(t)$  of the system  $X' = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix} X$  is

(a)  $\begin{bmatrix} e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$

(b)  $\begin{bmatrix} e^t & e^{-t} \\ 3e^t & e^{-t} \end{bmatrix}$

(c)  $\begin{bmatrix} 2e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$

(d)  $\begin{bmatrix} e^t & e^{-t} \\ e^t & 2e^{-t} \end{bmatrix}$

(e)  $\begin{bmatrix} 3e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$

15. The general solution of  $X' = \begin{bmatrix} 0 & 3 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 0 \end{bmatrix} X$  can be written as

$$X = c_1 \begin{bmatrix} 1 \\ 1 \\ \alpha \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} 3 \\ \beta \\ 0 \end{bmatrix} e^{-t} + c_3 \begin{bmatrix} \gamma \\ 0 \\ -1 \end{bmatrix} e^{-t},$$

then  $\alpha + \beta + \gamma =$

- (a) -1
- (b) 3
- (c) 0
- (d) 4
- (e) 1

16. If  $A = \begin{bmatrix} 3 & 4 \\ 0 & 3 \end{bmatrix}$ , then  $e^{At} =$

- (a)  $\begin{bmatrix} 3e^{3t} & 4te^t \\ 0 & 3e^{3t} \end{bmatrix}$
- (b)  $\begin{bmatrix} e^{3t} & e^{4t} \\ 0 & e^{3t} \end{bmatrix}$
- (c)  $\begin{bmatrix} e^{3t} & 4te^{3t} \\ 0 & e^{3t} \end{bmatrix}$
- (d)  $\begin{bmatrix} e^{3t} & 4e^{3t} \\ 0 & e^{3t} \end{bmatrix}$
- (e)  $\begin{bmatrix} e^{3t} & 3te^{3t} \\ 0 & e^{3t} \end{bmatrix}$

17. If  $K = \begin{bmatrix} 1 \\ a \\ -13 \end{bmatrix}$  is an eigenvector with eigenvalue  $\lambda = 0$  of  $A = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix}$ , then  $a =$

- (a) 3
- (b) 6
- (c) 4
- (d) 7
- (e) 5

18. If  $c_0 \neq 0$ ,  $c_k = \frac{(k - \frac{5}{2})(k + \frac{3}{2})}{2k(2k + 1)} c_{k-1}$ ,  $k \geq 1$ , is the recurrence relation corresponding to the indicial root  $r = \frac{1}{2}$  in the series solution of the differential equation  $x(4 - x)y'' + (2 - x)y' + 4y = 0$  about  $x = 0$ , then the solution is given by

- (a)  $y = x^{\frac{1}{2}} \left[ 1 + \frac{5}{8}x + \frac{7}{128}x^2 + \dots \right]$
- (b)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{3}{8}x + \frac{7}{64}x^2 + \dots \right]$
- (c)  $y = x^{\frac{1}{2}} \left[ 1 + \frac{3}{8}x + \frac{7}{128}x^2 + \dots \right]$
- (d)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{5}{8}x - \frac{7}{128}x^2 + \dots \right]$
- (e)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{5}{8}x + \frac{7}{128}x^2 + \dots \right]$

19. If  $X = \begin{bmatrix} a \\ 2 \end{bmatrix} e^{-3t/2}$  is a solution of the system  $X' = \begin{bmatrix} -1 & \frac{1}{4} \\ 1 & -1 \end{bmatrix} X$ , then  $a =$

- (a) 0
- (b) -1
- (c) 1
- (d) 2
- (e) -2

20. If  $y = \sum_{n=0}^{\infty} c_n x^{n+r}$  is a series solution for the differential equation  $2xy'' - y' + 2y = 0$  about  $x = 0$ , then the non-integer indicial root is equal to

- (a)  $\frac{3}{4}$
- (b)  $\frac{2}{3}$
- (c)  $\frac{3}{2}$
- (d)  $\frac{4}{3}$
- (e)  $\frac{1}{2}$

21. If  $y = \sum_{n=0}^{\infty} c_n x^n$  is a power series solution of the differential equation  $(2x+1)y''+y' = 0$  about the ordinary point  $x = 0$ , then the constants  $c_n$  are given according to the recurrence relation:

- (a)  $c_n = -\frac{3n-2}{n} c_{n-1}, n \geq 2$
- (b)  $c_n = -\frac{3n-2}{n} c_{n-1}, n \geq 1$
- (c)  $c_n = \frac{2n+3}{n} c_{n-1}, n \geq 1$
- (d)  $c_n = \frac{3n-1}{n} c_{n-1}, n \geq 2$
- (e)  $c_n = -\frac{2n-3}{n} c_{n-1}, n \geq 2$

**CODE 2**

**CODE 2**

**Math 208  
Final Exam  
Term 251  
December 22, 2025  
Net Time Allowed: 120 Minutes**

|      |  |     |  |
|------|--|-----|--|
| Name |  |     |  |
| ID   |  | Sec |  |

Check that this exam has 21 questions.

**Important Instructions:**

1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
2. Use HB 2.5 pencils only.
3. Use a good eraser. DO NOT use the erasers attached to the pencil.
4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
7. When bubbling, make sure that the bubbled space is fully covered.
8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The three vectors  $\mathbf{v}_1 = (2, -1, 4)$ ,  $\mathbf{v}_2 = (0, 5, 1)$  and  $\mathbf{v}_3 = (5, 0, B)$  of  $\mathbb{R}^3$  are **linearly dependent** if  $B =$

- (a) 6.5
- (b) 7.5
- (c) 5.5
- (d) 10.5
- (e) 8.5

2. The rank of the matrix  $\begin{bmatrix} 1 & 4 & 5 & 2 \\ -2 & -8 & -10 & -4 \\ 3 & 12 & 15 & 6 \\ 0 & 0 & 3 & 0 \end{bmatrix}$  is

- (a) 3
- (b) 2
- (c) 4
- (d) 0
- (e) 1

3. The general solution of the exact differential equation

$$(y \sec^2(xy) + \sin x) dx + (x \sec^2(xy) + \sin y) dy = 0$$

is given by

- (a)  $y \tan(xy) + \cos x + \cos y = c$
- (b)  $\tan(xy) - \cos x - \cos y = c$
- (c)  $2 \tan(xy) - \cos x + \cos y = c$
- (d)  $x \tan(xy) - \cos x - \cos y = c$
- (e)  $\tan(xy) + \cos x - 2 \cos y = c$

4. For the matrix  $A = \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$ , if  $P$  is a diagonalizing matrix such that  $P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$ , then  $P =$

- (a)  $P = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$
- (b)  $P = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$
- (c)  $P = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
- (d)  $P = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$
- (e)  $P = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}$

5. By using the method of undetermined coefficients, a particular solution of the differential equation

$y'' + 4y' + 3y = 8e^x + 3e^{-2x}$  is given by

- (a)  $y_p = e^x - e^{-2x}$
- (b)  $y_p = 2e^x + e^{-2x}$
- (c)  $y_p = 3e^x - 2e^{-2x}$
- (d)  $y_p = e^x - 3e^{-2x}$
- (e)  $y_p = e^x + 2e^{-2x}$

6. The general solution of the linear differential equation

$x \ln x \frac{dy}{dx} - y = 3x^3(\ln x)^2, x > 1$ , is given by

- (a)  $y = (c + 3x) \ln x$
- (b)  $y = (c + x^2) \ln x$
- (c)  $y = (c + x^4) \ln x$
- (d)  $y = (c + x^3) \ln x$
- (e)  $y = (c + x) \ln x$

7. A particular solution of the differential equation

$$y'' + y = \sec x \tan x$$

is given by  $y_p(x) =$

- (a)  $3x \cos x + \sin x \ln |\tan x|$
- (b)  $2x \cos x + \sin x \ln |\sec x|$
- (c)  $x \cos x + \sin x \ln |\cos x|$
- (d)  $x \cos x - \sin x + \sin x \ln |\sec x|$
- (e)  $2x \cos x + \sin x \tan x$

8. The general solution of the differential equation  $y^{(6)} + 2y^{(4)} + y'' = 0$  is given by

- (a)  $y(x) = c_1 + c_2 x + (c_3 + c_4 x) e^x \cos x + (c_5 + c_6 x) e^x \sin x$
- (b)  $y(x) = c_1 + c_2 x + (c_3 + c_4 x) \cos x + (c_5 + c_6 x) \sin x$
- (c)  $y(x) = c_1 + c_2 x + c_3 e^{-x} + c_4 e^x + c_5 \cos x + c_6 \sin x$
- (d)  $y(x) = c_1 + c_2 e^x + c_3 e^{-x} + c_4 \cos x + c_5 \sin x + c_6 x \sin x$
- (e)  $y(x) = c_1 + c_2 x + c_3 \cos x + c_4 \sin x + c_5 \cos(2x) + c_6 \sin(2x)$

9. The general solution of the homogeneous differential equation

$$y(x+y)dx - x^2 dy = 0$$

is

- (a)  $y \ln|x| + x = cy$
- (b)  $x \ln|x| + x^2 = cy$
- (c)  $y \ln|y| + x^2 = cy$
- (d)  $y \ln|y| + x = cy$
- (e)  $x \ln|y| + y = cx$

10. The general solution of the system  $X' = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} X$  is given by

- (a)  $X(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 2+t \\ t \end{bmatrix} e^{2t}$
- (b)  $X(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ t \end{bmatrix} e^{2t}$
- (c)  $X(t) = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ 2t \end{bmatrix} e^{2t}$
- (d)  $X(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ t \end{bmatrix} e^{2t}$
- (e)  $X(t) = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} -1+t \\ t \end{bmatrix} e^{2t}$

11. Consider the non-homogeneous system  $X' = AX + \begin{bmatrix} 4 \\ -1 \end{bmatrix}$ . If the general solution of the associated homogeneous system is

$$X_c = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 2 \end{bmatrix} e^t,$$

then the value of the particular solution  $X_p(-1) =$

- (a)  $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$
- (b)  $\begin{bmatrix} -4 \\ 1 \end{bmatrix}$
- (c)  $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$
- (d)  $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$
- (e)  $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$

12. The general solution of  $X' = \begin{bmatrix} 0 & 3 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 0 \end{bmatrix} X$  can be written as

$$X = c_1 \begin{bmatrix} 1 \\ 1 \\ \alpha \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} 3 \\ \beta \\ 0 \end{bmatrix} e^{-t} + c_3 \begin{bmatrix} \gamma \\ 0 \\ -1 \end{bmatrix} e^{-t},$$

then  $\alpha + \beta + \gamma =$

- (a) 3
- (b) -1
- (c) 0
- (d) 1
- (e) 4

13. A possible fundamental matrix  $\Phi(t)$  of the system  $X' = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix} X$  is

(a)  $\begin{bmatrix} 3e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$

(b)  $\begin{bmatrix} 2e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$

(c)  $\begin{bmatrix} e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$

(d)  $\begin{bmatrix} e^t & e^{-t} \\ e^t & 2e^{-t} \end{bmatrix}$

(e)  $\begin{bmatrix} e^t & e^{-t} \\ 3e^t & e^{-t} \end{bmatrix}$

14. The minimum radius of convergence of a power series solution of the differential equation  $(x^2 - 2x + 5) y'' + xy' - y = 0$  about the ordinary point  $x = -2$  is equal to

(a)  $\sqrt{13}$

(b)  $\infty$

(c)  $2\sqrt{2}$

(d) 0

(e)  $\sqrt{11}$

15. Consider the system  $X' = AX$ , and  $X(0) = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$ , where  $A$  is a  $2 \times 2$  matrix with real entries. If  $A$  has an eigenvalue  $\lambda = 2 + 2i$  with corresponding eigenvector  $K = \begin{bmatrix} -5 \\ 1 + 2i \end{bmatrix}$ , then  $X\left(\frac{\pi}{2}\right) =$

(a)  $\begin{bmatrix} 5 \\ -3 \end{bmatrix} e^{\pi}$

(b)  $\begin{bmatrix} -1 \\ 2 \end{bmatrix} e^{\pi}$

(c)  $\begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{\pi}$

(d)  $\begin{bmatrix} 3 \\ 0 \end{bmatrix} e^{\pi}$

(e)  $\begin{bmatrix} 0 \\ 3 \end{bmatrix} e^{\pi}$

16. If  $K = \begin{bmatrix} 1 \\ a \\ -13 \end{bmatrix}$  is an eigenvector with eigenvalue  $\lambda = 0$  of  $A = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix}$ , then  $a =$

(a) 6

(b) 7

(c) 4

(d) 3

(e) 5

17. If  $A = \begin{bmatrix} 3 & 4 \\ 0 & 3 \end{bmatrix}$ , then  $e^{At} =$

(a)  $\begin{bmatrix} 3e^{3t} & 4te^t \\ 0 & 3e^{3t} \end{bmatrix}$

(b)  $\begin{bmatrix} e^{3t} & 4e^{3t} \\ 0 & e^{3t} \end{bmatrix}$

(c)  $\begin{bmatrix} e^{3t} & 3te^{3t} \\ 0 & e^{3t} \end{bmatrix}$

(d)  $\begin{bmatrix} e^{3t} & 4te^{3t} \\ 0 & e^{3t} \end{bmatrix}$

(e)  $\begin{bmatrix} e^{3t} & e^{4t} \\ 0 & e^{3t} \end{bmatrix}$

18. If  $y = \sum_{n=0}^{\infty} c_n x^{n+r}$  is a series solution for the differential equation  $2xy'' - y' + 2y = 0$  about  $x = 0$ , then the non-integer indicial root is equal to

(a)  $\frac{3}{2}$

(b)  $\frac{4}{3}$

(c)  $\frac{3}{4}$

(d)  $\frac{2}{3}$

(e)  $\frac{1}{2}$

19. If  $X = \begin{bmatrix} a \\ 2 \end{bmatrix} e^{-3t/2}$  is a solution of the system  $X' = \begin{bmatrix} -1 & \frac{1}{4} \\ 1 & -1 \end{bmatrix} X$ , then  $a =$

- (a) 0
- (b) 2
- (c) 1
- (d) -2
- (e) -1

20. If  $y = \sum_{n=0}^{\infty} c_n x^n$  is a power series solution of the differential equation  $(2x+1)y'' + y' = 0$  about the ordinary point  $x = 0$ , then the constants  $c_n$  are given according to the recurrence relation:

- (a)  $c_n = \frac{3n-1}{n} c_{n-1}, n \geq 2$
- (b)  $c_n = -\frac{3n-2}{n} c_{n-1}, n \geq 1$
- (c)  $c_n = -\frac{3n-2}{n} c_{n-1}, n \geq 2$
- (d)  $c_n = \frac{2n+3}{n} c_{n-1}, n \geq 1$
- (e)  $c_n = -\frac{2n-3}{n} c_{n-1}, n \geq 2$

21. If  $c_0 \neq 0$ ,  $c_k = \frac{(k - \frac{5}{2})(k + \frac{3}{2})}{2k(2k + 1)} c_{k-1}$ ,  $k \geq 1$ , is the recurrence relation corresponding to the indicial root  $r = \frac{1}{2}$  in the series solution of the differential equation  $x(4 - x)y'' + (2 - x)y' + 4y = 0$  about  $x = 0$ , then the solution is given by

- (a)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{3}{8}x + \frac{7}{64}x^2 + \dots \right]$
- (b)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{5}{8}x + \frac{7}{128}x^2 + \dots \right]$
- (c)  $y = x^{\frac{1}{2}} \left[ 1 + \frac{3}{8}x + \frac{7}{128}x^2 + \dots \right]$
- (d)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{5}{8}x - \frac{7}{128}x^2 + \dots \right]$
- (e)  $y = x^{\frac{1}{2}} \left[ 1 + \frac{5}{8}x + \frac{7}{128}x^2 + \dots \right]$

**CODE 3**

**CODE 3**

**Math 208  
Final Exam  
Term 251  
December 22, 2025  
Net Time Allowed: 120 Minutes**

|      |  |     |  |
|------|--|-----|--|
| Name |  |     |  |
| ID   |  | Sec |  |

Check that this exam has 21 questions.

**Important Instructions:**

1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
2. Use HB 2.5 pencils only.
3. Use a good eraser. DO NOT use the erasers attached to the pencil.
4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
7. When bubbling, make sure that the bubbled space is fully covered.
8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. For the matrix  $A = \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$ , if  $P$  is a diagonalizing matrix such that  $P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$ , then  $P =$

(a)  $P = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$

(b)  $P = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}$

(c)  $P = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$

(d)  $P = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(e)  $P = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$

2. The general solution of the differential equation  $y^{(6)} + 2y^{(4)} + y'' = 0$  is given by

(a)  $y(x) = c_1 + c_2 x + (c_3 + c_4 x) e^x \cos x + (c_5 + c_6 x) e^x \sin x$

(b)  $y(x) = c_1 + c_2 x + (c_3 + c_4 x) \cos x + (c_5 + c_6 x) \sin x$

(c)  $y(x) = c_1 + c_2 x + c_3 \cos x + c_4 \sin x + c_5 \cos(2x) + c_6 \sin(2x)$

(d)  $y(x) = c_1 + c_2 e^x + c_3 e^{-x} + c_4 \cos x + c_5 \sin x + c_6 x \sin x$

(e)  $y(x) = c_1 + c_2 x + c_3 e^{-x} + c_4 e^x + c_5 \cos x + c_6 \sin x$

3. The general solution of the exact differential equation

$$(y \sec^2(xy) + \sin x) dx + (x \sec^2(xy) + \sin y) dy = 0$$

is given by

- (a)  $x \tan(xy) - \cos x - \cos y = c$
- (b)  $\tan(xy) - \cos x - \cos y = c$
- (c)  $y \tan(xy) + \cos x + \cos y = c$
- (d)  $2 \tan(xy) - \cos x + \cos y = c$
- (e)  $\tan(xy) + \cos x - 2 \cos y = c$

4. By using the method of undetermined coefficients, a particular solution of the differential equation

$$y'' + 4y' + 3y = 8e^x + 3e^{-2x}$$
 is given by

- (a)  $y_p = e^x - e^{-2x}$
- (b)  $y_p = 3e^x - 2e^{-2x}$
- (c)  $y_p = e^x - 3e^{-2x}$
- (d)  $y_p = 2e^x + e^{-2x}$
- (e)  $y_p = e^x + 2e^{-2x}$

5. The three vectors  $\mathbf{v}_1 = (2, -1, 4)$ ,  $\mathbf{v}_2 = (0, 5, 1)$  and  $\mathbf{v}_3 = (5, 0, B)$  of  $\mathbb{R}^3$  are **linearly dependent** if  $B =$

- (a) 7.5
- (b) 6.5
- (c) 10.5
- (d) 8.5
- (e) 5.5

6. The rank of the matrix  $\begin{bmatrix} 1 & 4 & 5 & 2 \\ -2 & -8 & -10 & -4 \\ 3 & 12 & 15 & 6 \\ 0 & 0 & 3 & 0 \end{bmatrix}$  is

- (a) 0
- (b) 1
- (c) 4
- (d) 3
- (e) 2

7. A particular solution of the differential equation

$$y'' + y = \sec x \tan x$$

is given by  $y_p(x) =$

- (a)  $x \cos x - \sin x + \sin x \ln |\sec x|$
- (b)  $2x \cos x + \sin x \ln |\sec x|$
- (c)  $2x \cos x + \sin x \tan x$
- (d)  $3x \cos x + \sin x \ln |\tan x|$
- (e)  $x \cos x + \sin x \ln |\cos x|$

8. The general solution of the linear differential equation

$$x \ln x \frac{dy}{dx} - y = 3x^3(\ln x)^2, \quad x > 1, \text{ is given by}$$

- (a)  $y = (c + x^2) \ln x$
- (b)  $y = (c + x^3) \ln x$
- (c)  $y = (c + 3x) \ln x$
- (d)  $y = (c + x) \ln x$
- (e)  $y = (c + x^4) \ln x$

9. The general solution of the homogeneous differential equation

$$y(x+y)dx - x^2 dy = 0$$

is

- (a)  $y \ln |y| + x^2 = cy$
- (b)  $y \ln |x| + x = cy$
- (c)  $y \ln |y| + x = cy$
- (d)  $x \ln |x| + x^2 = cy$
- (e)  $x \ln |y| + y = cx$

10. The general solution of the system  $X' = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} X$  is given by

- (a)  $X(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ t \end{bmatrix} e^{2t}$
- (b)  $X(t) = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ 2t \end{bmatrix} e^{2t}$
- (c)  $X(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ t \end{bmatrix} e^{2t}$
- (d)  $X(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 2+t \\ t \end{bmatrix} e^{2t}$
- (e)  $X(t) = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} -1+t \\ t \end{bmatrix} e^{2t}$

11. Consider the system  $X' = AX$ , and  $X(0) = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$ , where  $A$  is a  $2 \times 2$  matrix with real entries. If  $A$  has an eigenvalue  $\lambda = 2 + 2i$  with corresponding eigenvector  $K = \begin{bmatrix} -5 \\ 1 + 2i \end{bmatrix}$ , then  $X\left(\frac{\pi}{2}\right) =$

- (a)  $\begin{bmatrix} 0 \\ 3 \end{bmatrix} e^{\pi}$
- (b)  $\begin{bmatrix} -1 \\ 2 \end{bmatrix} e^{\pi}$
- (c)  $\begin{bmatrix} 3 \\ 0 \end{bmatrix} e^{\pi}$
- (d)  $\begin{bmatrix} 5 \\ -3 \end{bmatrix} e^{\pi}$
- (e)  $\begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{\pi}$

12. The general solution of  $X' = \begin{bmatrix} 0 & 3 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 0 \end{bmatrix} X$  can be written as

$$X = c_1 \begin{bmatrix} 1 \\ 1 \\ \alpha \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} 3 \\ \beta \\ 0 \end{bmatrix} e^{-t} + c_3 \begin{bmatrix} \gamma \\ 0 \\ -1 \end{bmatrix} e^{-t},$$

then  $\alpha + \beta + \gamma =$

- (a) 3
- (b) 0
- (c) -1
- (d) 4
- (e) 1

13. A possible fundamental matrix  $\Phi(t)$  of the system  $X' = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix} X$  is

(a)  $\begin{bmatrix} 2e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$

(b)  $\begin{bmatrix} e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$

(c)  $\begin{bmatrix} 3e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$

(d)  $\begin{bmatrix} e^t & e^{-t} \\ 3e^t & e^{-t} \end{bmatrix}$

(e)  $\begin{bmatrix} e^t & e^{-t} \\ e^t & 2e^{-t} \end{bmatrix}$

14. Consider the non-homogeneous system  $X' = AX + \begin{bmatrix} 4 \\ -1 \end{bmatrix}$ . If the general solution of the associated homogeneous system is

$$X_c = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 2 \end{bmatrix} e^t,$$

then the value of the particular solution  $X_p(-1) =$

(a)  $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

(b)  $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$

(c)  $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$

(d)  $\begin{bmatrix} -4 \\ 1 \end{bmatrix}$

(e)  $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$

15. The minimum radius of convergence of a power series solution of the differential equation  $(x^2 - 2x + 5) y'' + xy' - y = 0$  about the ordinary point  $x = -2$  is equal to

- (a)  $\sqrt{11}$
- (b)  $2\sqrt{2}$
- (c)  $\sqrt{13}$
- (d)  $\infty$
- (e) 0

16. If  $X = \begin{bmatrix} a \\ 2 \end{bmatrix} e^{-3t/2}$  is a solution of the system  $X' = \begin{bmatrix} -1 & \frac{1}{4} \\ 1 & -1 \end{bmatrix} X$ , then  $a =$

- (a) -1
- (b) 1
- (c) 2
- (d) 0
- (e) -2

17. If  $y = \sum_{n=0}^{\infty} c_n x^{n+r}$  is a series solution for the differential equation  $2xy'' - y' + 2y = 0$  about  $x = 0$ , then the non-integer indicial root is equal to

- (a)  $\frac{3}{2}$
- (b)  $\frac{2}{3}$
- (c)  $\frac{3}{4}$
- (d)  $\frac{4}{3}$
- (e)  $\frac{1}{2}$

18. If  $c_0 \neq 0$ ,  $c_k = \frac{(k - \frac{5}{2})(k + \frac{3}{2})}{2k(2k + 1)} c_{k-1}$ ,  $k \geq 1$ , is the recurrence relation corresponding to the indicial root  $r = \frac{1}{2}$  in the series solution of the differential equation  $x(4 - x)y'' + (2 - x)y' + 4y = 0$  about  $x = 0$ , then the solution is given by

- (a)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{5}{8}x - \frac{7}{128}x^2 + \dots \right]$
- (b)  $y = x^{\frac{1}{2}} \left[ 1 + \frac{5}{8}x + \frac{7}{128}x^2 + \dots \right]$
- (c)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{5}{8}x + \frac{7}{128}x^2 + \dots \right]$
- (d)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{3}{8}x + \frac{7}{64}x^2 + \dots \right]$
- (e)  $y = x^{\frac{1}{2}} \left[ 1 + \frac{3}{8}x + \frac{7}{128}x^2 + \dots \right]$

19. If  $y = \sum_{n=0}^{\infty} c_n x^n$  is a power series solution of the differential equation  $(2x+1)y'' + y' = 0$  about the ordinary point  $x = 0$ , then the constants  $c_n$  are given according to the recurrence relation:

(a)  $c_n = -\frac{3n-2}{n} c_{n-1}, n \geq 2$

(b)  $c_n = \frac{3n-1}{n} c_{n-1}, n \geq 2$

(c)  $c_n = -\frac{2n-3}{n} c_{n-1}, n \geq 2$

(d)  $c_n = -\frac{3n-2}{n} c_{n-1}, n \geq 1$

(e)  $c_n = \frac{2n+3}{n} c_{n-1}, n \geq 1$

20. If  $A = \begin{bmatrix} 3 & 4 \\ 0 & 3 \end{bmatrix}$ , then  $e^{At} =$

(a)  $\begin{bmatrix} e^{3t} & 4te^{3t} \\ 0 & e^{3t} \end{bmatrix}$

(b)  $\begin{bmatrix} e^{3t} & 4e^{3t} \\ 0 & e^{3t} \end{bmatrix}$

(c)  $\begin{bmatrix} 3e^{3t} & 4te^t \\ 0 & 3e^{3t} \end{bmatrix}$

(d)  $\begin{bmatrix} e^{3t} & 3te^{3t} \\ 0 & e^{3t} \end{bmatrix}$

(e)  $\begin{bmatrix} e^{3t} & e^{4t} \\ 0 & e^{3t} \end{bmatrix}$

21. If  $K = \begin{bmatrix} 1 \\ a \\ -13 \end{bmatrix}$  is an eigenvector with eigenvalue  $\lambda = 0$  of  $A = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix}$ , then  $a =$

- (a) 7
- (b) 5
- (c) 6
- (d) 4
- (e) 3

**CODE 4**

**CODE 4**

**Math 208  
Final Exam  
Term 251  
December 22, 2025  
Net Time Allowed: 120 Minutes**

|      |  |     |  |
|------|--|-----|--|
| Name |  |     |  |
| ID   |  | Sec |  |

Check that this exam has 21 questions.

**Important Instructions:**

1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
2. Use HB 2.5 pencils only.
3. Use a good eraser. DO NOT use the erasers attached to the pencil.
4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
7. When bubbling, make sure that the bubbled space is fully covered.
8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The rank of the matrix  $\begin{bmatrix} 1 & 4 & 5 & 2 \\ -2 & -8 & -10 & -4 \\ 3 & 12 & 15 & 6 \\ 0 & 0 & 3 & 0 \end{bmatrix}$  is

- (a) 4
- (b) 1
- (c) 2
- (d) 0
- (e) 3

2. The general solution of the linear differential equation

$$x \ln x \frac{dy}{dx} - y = 3x^3(\ln x)^2, \quad x > 1, \text{ is given by}$$

- (a)  $y = (c + 3x) \ln x$
- (b)  $y = (c + x^3) \ln x$
- (c)  $y = (c + x^4) \ln x$
- (d)  $y = (c + x^2) \ln x$
- (e)  $y = (c + x) \ln x$

3. The three vectors  $\mathbf{v}_1 = (2, -1, 4)$ ,  $\mathbf{v}_2 = (0, 5, 1)$  and  $\mathbf{v}_3 = (5, 0, B)$  of  $\mathbb{R}^3$  are **linearly dependent** if  $B =$

- (a) 10.5
- (b) 5.5
- (c) 7.5
- (d) 6.5
- (e) 8.5

4. The general solution of the exact differential equation

$$(y \sec^2(xy) + \sin x) dx + (x \sec^2(xy) + \sin y) dy = 0$$

is given by

- (a)  $\tan(xy) + \cos x - 2 \cos y = c$
- (b)  $x \tan(xy) - \cos x - \cos y = c$
- (c)  $\tan(xy) - \cos x - \cos y = c$
- (d)  $y \tan(xy) + \cos x + \cos y = c$
- (e)  $2 \tan(xy) - \cos x + \cos y = c$

5. For the matrix  $A = \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$ , if  $P$  is a diagonalizing matrix such that  $P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$ , then  $P =$

(a)  $P = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$

(b)  $P = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$

(c)  $P = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}$

(d)  $P = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(e)  $P = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$

6. The general solution of the homogeneous differential equation

$$y(x+y)dx - x^2 dy = 0$$

is

(a)  $y \ln|x| + x = cy$

(b)  $x \ln|y| + y = cx$

(c)  $y \ln|y| + x^2 = cy$

(d)  $x \ln|x| + x^2 = cy$

(e)  $y \ln|y| + x = cy$

7. A particular solution of the differential equation

$$y'' + y = \sec x \tan x$$

is given by  $y_p(x) =$

- (a)  $2x \cos x + \sin x \tan x$
- (b)  $3x \cos x + \sin x \ln |\tan x|$
- (c)  $x \cos x - \sin x + \sin x \ln |\sec x|$
- (d)  $x \cos x + \sin x \ln |\cos x|$
- (e)  $2x \cos x + \sin x \ln |\sec x|$

8. By using the method of undetermined coefficients, a particular solution of the differential equation

$$y'' + 4y' + 3y = 8e^x + 3e^{-2x} \text{ is given by}$$

- (a)  $y_p = e^x - 3e^{-2x}$
- (b)  $y_p = 2e^x + e^{-2x}$
- (c)  $y_p = e^x + 2e^{-2x}$
- (d)  $y_p = e^x - e^{-2x}$
- (e)  $y_p = 3e^x - 2e^{-2x}$

9. The general solution of the differential equation  $y^{(6)} + 2y^{(4)} + y'' = 0$  is given by

- (a)  $y(x) = c_1 + c_2 e^x + c_3 e^{-x} + c_4 \cos x + c_5 \sin x + c_6 x \sin x$
- (b)  $y(x) = c_1 + c_2 x + c_3 e^{-x} + c_4 e^x + c_5 \cos x + c_6 \sin x$
- (c)  $y(x) = c_1 + c_2 x + (c_3 + c_4 x) e^x \cos x + (c_5 + c_6 x) e^x \sin x$
- (d)  $y(x) = c_1 + c_2 x + c_3 \cos x + c_4 \sin x + c_5 \cos(2x) + c_6 \sin(2x)$
- (e)  $y(x) = c_1 + c_2 x + (c_3 + c_4 x) \cos x + (c_5 + c_6 x) \sin x$

10. The general solution of the system  $X' = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} X$  is given by

- (a)  $X(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ t \end{bmatrix} e^{2t}$
- (b)  $X(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 2+t \\ t \end{bmatrix} e^{2t}$
- (c)  $X(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ t \end{bmatrix} e^{2t}$
- (d)  $X(t) = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1+t \\ 2t \end{bmatrix} e^{2t}$
- (e)  $X(t) = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} -1+t \\ t \end{bmatrix} e^{2t}$

11. Consider the system  $X' = AX$ , and  $X(0) = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$ , where  $A$  is a  $2 \times 2$  matrix with real entries. If  $A$  has an eigenvalue  $\lambda = 2 + 2i$  with corresponding eigenvector  $K = \begin{bmatrix} -5 \\ 1 + 2i \end{bmatrix}$ , then  $X\left(\frac{\pi}{2}\right) =$

- (a)  $\begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{\pi}$
- (b)  $\begin{bmatrix} 5 \\ -3 \end{bmatrix} e^{\pi}$
- (c)  $\begin{bmatrix} -1 \\ 2 \end{bmatrix} e^{\pi}$
- (d)  $\begin{bmatrix} 0 \\ 3 \end{bmatrix} e^{\pi}$
- (e)  $\begin{bmatrix} 3 \\ 0 \end{bmatrix} e^{\pi}$

12. A possible fundamental matrix  $\Phi(t)$  of the system  $X' = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix} X$  is

- (a)  $\begin{bmatrix} e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$
- (b)  $\begin{bmatrix} e^t & e^{-t} \\ 3e^t & e^{-t} \end{bmatrix}$
- (c)  $\begin{bmatrix} 2e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$
- (d)  $\begin{bmatrix} e^t & e^{-t} \\ e^t & 2e^{-t} \end{bmatrix}$
- (e)  $\begin{bmatrix} 3e^t & e^{-t} \\ e^t & 3e^{-t} \end{bmatrix}$

13. The minimum radius of convergence of a power series solution of the differential equation  $(x^2 - 2x + 5) y'' + xy' - y = 0$  about the ordinary point  $x = -2$  is equal to

- (a)  $\sqrt{13}$
- (b) 0
- (c)  $\infty$
- (d)  $\sqrt{11}$
- (e)  $2\sqrt{2}$

14. Consider the non-homogeneous system  $X' = AX + \begin{bmatrix} 4 \\ -1 \end{bmatrix}$ . If the general solution of the associated homogeneous system is

$$X_c = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 2 \end{bmatrix} e^t,$$

then the value of the particular solution  $X_p(-1) =$

- (a)  $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$
- (b)  $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$
- (c)  $\begin{bmatrix} -4 \\ 1 \end{bmatrix}$
- (d)  $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$
- (e)  $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$

15. The general solution of  $X' = \begin{bmatrix} 0 & 3 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 0 \end{bmatrix} X$  can be written as

$$X = c_1 \begin{bmatrix} 1 \\ 1 \\ \alpha \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} 3 \\ \beta \\ 0 \end{bmatrix} e^{-t} + c_3 \begin{bmatrix} \gamma \\ 0 \\ -1 \end{bmatrix} e^{-t},$$

then  $\alpha + \beta + \gamma =$

- (a) 3
- (b) 0
- (c) -1
- (d) 4
- (e) 1

16. If  $X = \begin{bmatrix} a \\ 2 \end{bmatrix} e^{-3t/2}$  is a solution of the system  $X' = \begin{bmatrix} -1 & \frac{1}{4} \\ 1 & -1 \end{bmatrix} X$ , then  $a =$

- (a) -1
- (b) 1
- (c) 0
- (d) 2
- (e) -2

17. If  $K = \begin{bmatrix} 1 \\ a \\ -13 \end{bmatrix}$  is an eigenvector with eigenvalue  $\lambda = 0$  of  $A = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix}$ , then  $a =$

- (a) 6
- (b) 3
- (c) 7
- (d) 5
- (e) 4

18. If  $A = \begin{bmatrix} 3 & 4 \\ 0 & 3 \end{bmatrix}$ , then  $e^{At} =$

- (a)  $\begin{bmatrix} e^{3t} & e^{4t} \\ 0 & e^{3t} \end{bmatrix}$
- (b)  $\begin{bmatrix} e^{3t} & 4te^{3t} \\ 0 & e^{3t} \end{bmatrix}$
- (c)  $\begin{bmatrix} e^{3t} & 4e^{3t} \\ 0 & e^{3t} \end{bmatrix}$
- (d)  $\begin{bmatrix} e^{3t} & 3te^{3t} \\ 0 & e^{3t} \end{bmatrix}$
- (e)  $\begin{bmatrix} 3e^{3t} & 4te^t \\ 0 & 3e^{3t} \end{bmatrix}$

19. If  $y = \sum_{n=0}^{\infty} c_n x^{n+r}$  is a series solution for the differential equation  $2xy'' - y' + 2y = 0$  about  $x = 0$ , then the non-integer indicial root is equal to

- (a)  $\frac{3}{4}$
- (b)  $\frac{2}{3}$
- (c)  $\frac{3}{2}$
- (d)  $\frac{1}{2}$
- (e)  $\frac{4}{3}$

20. If  $c_0 \neq 0$ ,  $c_k = \frac{(k - \frac{5}{2})(k + \frac{3}{2})}{2k(2k + 1)} c_{k-1}$ ,  $k \geq 1$ , is the recurrence relation corresponding to the indicial root  $r = \frac{1}{2}$  in the series solution of the differential equation  $x(4 - x)y'' + (2 - x)y' + 4y = 0$  about  $x = 0$ , then the solution is given by

- (a)  $y = x^{\frac{1}{2}} \left[ 1 + \frac{5}{8}x + \frac{7}{128}x^2 + \dots \right]$
- (b)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{5}{8}x + \frac{7}{128}x^2 + \dots \right]$
- (c)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{3}{8}x + \frac{7}{64}x^2 + \dots \right]$
- (d)  $y = x^{\frac{1}{2}} \left[ 1 + \frac{3}{8}x + \frac{7}{128}x^2 + \dots \right]$
- (e)  $y = x^{\frac{1}{2}} \left[ 1 - \frac{5}{8}x - \frac{7}{128}x^2 + \dots \right]$

21. If  $y = \sum_{n=0}^{\infty} c_n x^n$  is a power series solution of the differential equation  $(2x+1)y''+y' = 0$  about the ordinary point  $x = 0$ , then the constants  $c_n$  are given according to the recurrence relation:

- (a)  $c_n = -\frac{3n-2}{n} c_{n-1}, n \geq 1$
- (b)  $c_n = -\frac{2n-3}{n} c_{n-1}, n \geq 2$
- (c)  $c_n = -\frac{3n-2}{n} c_{n-1}, n \geq 2$
- (d)  $c_n = \frac{3n-1}{n} c_{n-1}, n \geq 2$
- (e)  $c_n = \frac{2n+3}{n} c_{n-1}, n \geq 1$

| Q  | MASTER | 1               | 2               | 3               | 4               |
|----|--------|-----------------|-----------------|-----------------|-----------------|
| 1  | A      | C <sub>5</sub>  | D <sub>4</sub>  | A <sub>8</sub>  | C <sub>5</sub>  |
| 2  | A      | C <sub>4</sub>  | B <sub>5</sub>  | B <sub>9</sub>  | B <sub>3</sub>  |
| 3  | A      | A <sub>8</sub>  | B <sub>2</sub>  | B <sub>2</sub>  | A <sub>4</sub>  |
| 4  | A      | C <sub>3</sub>  | D <sub>8</sub>  | C <sub>6</sub>  | C <sub>2</sub>  |
| 5  | A      | B <sub>9</sub>  | D <sub>6</sub>  | C <sub>4</sub>  | A <sub>8</sub>  |
| 6  | A      | C <sub>1</sub>  | D <sub>3</sub>  | E <sub>5</sub>  | A <sub>1</sub>  |
| 7  | A      | E <sub>7</sub>  | D <sub>7</sub>  | A <sub>7</sub>  | C <sub>7</sub>  |
| 8  | A      | E <sub>6</sub>  | B <sub>9</sub>  | B <sub>3</sub>  | A <sub>6</sub>  |
| 9  | A      | D <sub>2</sub>  | A <sub>1</sub>  | B <sub>1</sub>  | E <sub>9</sub>  |
| 10 | A      | D <sub>10</sub> | B <sub>10</sub> | A <sub>10</sub> | C <sub>10</sub> |
| 11 | A      | B <sub>11</sub> | B <sub>14</sub> | D <sub>11</sub> | B <sub>11</sub> |
| 12 | A      | B <sub>15</sub> | D <sub>13</sub> | E <sub>13</sub> | A <sub>12</sub> |
| 13 | A      | C <sub>14</sub> | C <sub>12</sub> | B <sub>12</sub> | A <sub>15</sub> |
| 14 | A      | A <sub>12</sub> | A <sub>15</sub> | D <sub>14</sub> | C <sub>14</sub> |
| 15 | A      | E <sub>13</sub> | A <sub>11</sub> | C <sub>15</sub> | E <sub>13</sub> |
| 16 | A      | C <sub>19</sub> | A <sub>20</sub> | A <sub>21</sub> | A <sub>21</sub> |
| 17 | A      | B <sub>20</sub> | D <sub>19</sub> | A <sub>17</sub> | A <sub>20</sub> |
| 18 | A      | E <sub>18</sub> | A <sub>17</sub> | C <sub>18</sub> | B <sub>19</sub> |
| 19 | A      | B <sub>21</sub> | E <sub>21</sub> | C <sub>16</sub> | C <sub>17</sub> |
| 20 | A      | C <sub>17</sub> | E <sub>16</sub> | A <sub>19</sub> | B <sub>18</sub> |
| 21 | A      | E <sub>16</sub> | B <sub>18</sub> | C <sub>20</sub> | B <sub>16</sub> |

## Answer Counts

| V | A | B | C | D | E |
|---|---|---|---|---|---|
| 1 | 2 | 5 | 7 | 2 | 5 |
| 2 | 5 | 6 | 1 | 7 | 2 |
| 3 | 6 | 5 | 6 | 2 | 2 |
| 4 | 8 | 5 | 6 | 0 | 2 |

## Answer Option Frequency Across Versions

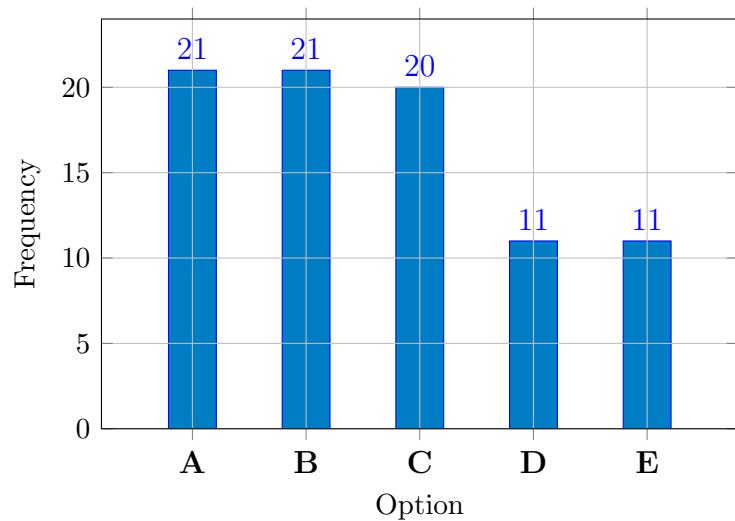


Figure 1: Frequency of Each Answer Option (Excluding MASTER)