Name:ID #:Serial #:

1. [10pts] Let P, Q, R be statements. Are $P \longrightarrow (Q \longrightarrow R)$ and $Q \longrightarrow (P \lor R)$ logically equivalent? Justify.

- 2. [6pts] Mark each of the following statements as TRUE or FALSE and justify your choice.
- (a) $\forall x \in \mathbb{Q}, \forall y \in \mathbb{N}, xy \ge x.$
- (b) $\forall x \in \mathbb{N}, \exists y \in \mathbb{Q}, xy \ge -x.$
- (c) $\exists x \in \mathbb{N}, \forall y \in \mathbb{Q}, xy \ge x^2$.

- 3. [8pts]. For each $i \in \mathbb{N}$, let $A_i = \{i + 1, i + 2, i + 3, \dots, 2i\}$.
- (a) Find $|\mathcal{P}(A_4 \cup A_5) \times A_6|$.
- (b) Find an integer $k \ge 4$ such that $\bigcap_{i=4}^{k} A_i$ contains exactly two elements.

- 4. [8pts] Let A, B be sets. Prove that
- (a) $A = (A \cap B) \cup (A B)$.
- (b) If $A \subseteq B$, then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

- 5. [8pts] Let x, y, z be integers. Prove that
- (a) If xyz is odd, then x + 2y + 3z is even.
- (b) If $x^2 + y^2 \equiv 2 \pmod{3}$, then $x \not\equiv 0 \pmod{3}$.

- 6. [8pts] Let x, y be real numbers. Prove that
- (a) If $x^2 2x + y^2 + 2 = 0$, then x = y.
- (b) $|x^2 y| |y| \le x^2$.