King Fahd University of Petroleum & Minerals Department of Mathematics

Math 210 Introduction to Sets and Structures (Term 212)

FINAL EXAM (Duration = 150 minutes | Number of Exercises = 15)

Exercise 1

Which of the following are partitions of $A = \{a, b, c, d, e, f, g\}$? For each collection of subsets that is not a partition of A, explain your answer.

- (a) $S_1 = \{\{a, c, e, g\}, \{b, f\}, \{d\}\}$ (b) $S_2 = \{\{a, b, c, d\}, \{e, f\}\}$
- (c) $S_3 = \{A\}$ (d) $S_4 = \{\{a\}, \emptyset, \{b, c, d\}, \{e, f, g\}\}$
- (e) $S_5 = \{\{a, c, d\}, \{b, g\}, \{e\}, \{b, f\}\}.$

Exercise 2

In each of the following, two open sentences P(x) and Q(x) over a domain *S* are given. Determine all $x \in S$ for which $P(x) \Rightarrow Q(x)$ is a true statement.

- (a) $P(x): x 3 = 4; Q(x): x \ge 8; S = \mathbf{R}.$
- (b) $P(x): x^2 \ge 1; Q(x): x \ge 1; S = \mathbf{R}.$
- (c) $P(x): x^2 \ge 1; Q(x): x \ge 1; S = \mathbf{N}.$
- (d) $P(x): x \in [-1, 2]; Q(x): x^2 \le 2; S = [-1, 1].$

Exercise 3

Let *P* and *Q* be statements. Show that $[(P \lor Q) \land \sim (P \land Q)] \equiv \sim (P \Leftrightarrow Q)$.

Exercise 4

Given below is a proof of a result. What is the result?

Proof Assume, without loss of generality, that x and y are even. Then x = 2a and y = 2b for integers a and b. Therefore,

$$xy + xz + yz = (2a)(2b) + (2a)z + (2b)z = 2(2ab + az + bz).$$

Since 2ab + az + bz is an integer, xy + xz + yz is even.

Exercise 5

Let A and B be sets. Show, in general, that $\overline{A \times B} \neq \overline{A} \times \overline{B}$.

Exercise 6

- (a) Prove that there exist two distinct primes p and q such that the four integers $pq \pm 2$ and $pq \pm 4$ are all primes.
- (b) Disprove the statement: There exist two distinct primes p and q such that the six integers $pq \pm 2$, $pq \pm 4$ and $pq \pm 6$ are all primes.

Exercise 7

Consider the sequence F_1, F_2, F_3, \ldots , where

$$F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5$$
 and $F_6 = 8$.

The terms of this sequence are called **Fibonacci numbers**.

- (a) Define the sequence of Fibonacci numbers by means of a recurrence relation.
- (b) Prove that $2 | F_n$ if and only if 3 | n.

Exercise 8

Determine the maximum number of elements in a relation R on a 3-element set such that R has none of the properties reflexive, symmetric and transitive.

Exercise 9

The composition $g \circ f : (0, 1) \to \mathbf{R}$ of two functions f and g is given by $(g \circ f)(x) = \frac{4x-1}{2\sqrt{x-x^2}}$, where $f : (0, 1) \to (-1, 1)$ is defined by f(x) = 2x - 1 for $x \in (0, 1)$. Determine the function g.

Exercise 10

Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 4 & 1 & 5 & 3 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 6 & 2 & 1 & 4 \end{pmatrix}$ be elements of \mathcal{S}_6 . (a) Determine α^{-1} and β^{-1} . (b) Determine $\alpha \circ \beta$ and $\beta \circ \alpha$.

Exercise 11

A function $f : \mathbf{N} \times \mathbf{N} \to \mathbf{N}$ is defined by $f(m, n) = 2^{m-1}(2n-1)$.

- (a) Prove that f is one-to-one and onto.
- (b) Show that $\mathbf{N} \times \mathbf{N}$ is denumerable.

Exercise 12

True or False? Explain.

- (a) If *A* is an uncountable set, then $|A| = |\mathbf{R}|$.
- (b) There exists a bijective function $f : \mathbf{Q} \to \mathbf{R}$.
- (c) If A, B and C are sets such that $A \subseteq B \subseteq C$ and A and C are denumerable, then B is denumerable.
- (d) The set $S = \left\{ \frac{\sqrt{2}}{n} : n \in \mathbf{N} \right\}$ is denumerable.
- (e) There exists a denumerable subset of the set of irrational numbers.
- (f) Every infinite set is a subset of some denumerable set.
- (g) If A and B are sets with the property that there exists an injective function $f : A \to B$, then |A| = |B|.

Exercise 13

- (a) Prove for every pair p, q of distinct primes that \sqrt{pq} is irrational.
- (b) Prove for every pair p, q of distinct primes that $\sqrt{p} + \sqrt{q}$ is irrational.

Exercise 14

Let (G, *) be a group with $G = \{a, b, c, d\}$, where a partially completed table for (G, *) is given in Figure 15.6. Complete the table.

Exercise 15

Let S_3 denote the symmetric group of degree 3.

- (a) Show that S_3 is NOT abelian.
- (b) Consider the subgroup $H = \{\varepsilon, \sigma_1\}$ of S_3 , where $\varepsilon = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ and $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. Determine the distinct left cosets of H in S_3 .