KFUPM/ Department of Mathematics/T221/MATH 210/Exam 1

Name:

ID#:

1. [8pts] Let P, Q, R be statements. Are the statements $(P \longrightarrow R) \lor Q$ and $(\sim P \land Q) \longrightarrow R$ logically equivalent? Justify.

2. [6pts] Mark each of the following statements as TRUE or FALSE and justify your choice.

(a) $\forall x \in \mathbb{Q}, \exists y \in \mathbb{N}, xy \ge 0.$

(b) $\exists x \in \mathbb{Q}, \forall y \in \mathbb{N}, xy \ge x + 7.$

- (c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{N}, xy = x.$
- 3. [6pts] Let $S_i = \{i, 2i+1\} \ (i \in \mathbb{N})$. (a) Find $\bigcup_{i=1}^4 S_i$.
- (b) Find $|\mathcal{P}(S_{10} \times S_{21})|$.
- (c) Find all positive integers *i* such that $|S_5 \cup S_i| = 3$.

4. [10pts] (a) Let A, B be subsets of some universal set U. Prove that $\overline{A} \subseteq \overline{B}$ if and only if $B \subseteq A$.

(b) Prove that if A and B are nonempty sets such that $A \times B \subseteq B \times A$, then A = B.

5. [5pts] Let $x, y \in \mathbb{R}$. Prove that $x^2 + y^2 \ge 2|xy|$.

- 6. [10pts] (a) Let $a, m \in \mathbb{Z}$, where m|a. Prove that if a is odd, then m is odd.
- (b) Let $b \in \mathbb{Z}$. Prove that $b^3 \equiv b \pmod{3}$. Is it true that $b^5 \equiv b \pmod{3}$? Justify.