Name:	ID #:	Serial $#:$

- 1. [12pts] (a) Let $a, b \in \mathbb{N}$ where a is even. Prove that either $a \nmid (b-11)$ or $a \nmid (b+22)$.
- (b) (i) Let $r \in \mathbb{R}$. Prove that either $\sqrt{2} r$ or $\sqrt{2} + r$ is irrational.
- (ii) Prove that $\sqrt{2} + \sqrt{k}$ is irrational for every $k \in \mathbb{N}$.
- 2. [12pts] (a) Prove that $1 + 3 + 5 + \cdots + (2n 1) = n^2$ for each $n \in \mathbb{N}$

(b) A sequence $\{a_n\}_{n\in\mathbb{N}}$ is defined recursively by

$$a_1 = 1$$
, $a_2 = 2$, $a_n = 3a_{n-1} - 2a_{n-2}$ for $n \ge 3$.

Make a conjecture about a_n and use strong induction to prove your conjecture.

3. [12pts]. (a) Let R be the relation on $\mathbb{Q} - \{0\}$ given by

$$aRb$$
 iff $\frac{a-b}{ab} \in \mathbb{Z}$.

Is R reflexive? symmetric? transitive? Justify your answers.

(b) Find an integer r such that $-8 \le r \le 8$ and $[19^{22}] = [r]$ in \mathbb{Z}_{17} .

4. [12pts] (a) Let b be a nonzero real number and let $f : \mathbb{R} - \{b\} \longrightarrow \mathbb{R}$ be the function given by $f(x) = \frac{x}{x-b}$. Is f one-to-one? Is it onto? Justify your answers.

(b) Let $g : \mathbb{Z}_9 \longrightarrow \mathbb{Z}_9$ be the function given by g([x]) = [5x+2] for each $[x] \in \mathbb{Z}_9$. Prove that g is a bijection.

(c) Let $h : \mathbb{Q} \longrightarrow \mathbb{Q}$ be a function such that $h \circ h = i_{\mathbb{Q}}$, the identity map on \mathbb{Q} . Prove that h is a bijection.