Name:

Serial #:

1. [10pts] Let P, Q, R be statements. Are the statements

$$P \lor Q \longrightarrow P \lor R$$
 and $P \land Q \longrightarrow P \land R$

logically equivalent? Justify your answer.

- 2. [6pts] Mark each of the following statements as TRUE or FALSE and justify your choice.
- (a) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{N}, x + y > 1.$
- (b) $\exists x \in \mathbb{N}, \forall y \in \mathbb{Z}, x + y > 1.$
- (c) $\exists x \in \mathbb{Z}, \forall y \in \mathbb{N}, x + y > 1$.
- 3. [8pts] (a) For each $i \in \mathbb{N}$, let A_i be the open interval (i-1,2i+1) and let $B_i = A_i \cap \mathbb{Z}$.
 - (i) Find $\bigcup_{i \in \{1,2,3\}} A_i$ and $\bigcap_{i \in \mathbb{N}} A_i$.
 - (ii) Determine i if $|B_i \times \mathcal{P}(B_3 \cap B_4)| = 40$.
- (b) Let A, B, C be sets.
 - (i) Prove that if $B \subseteq C$, then $B A \subseteq C A$.
 - (ii) Is it true that if $B A \subseteq C A$ then $B \subseteq C$? Justify your answer.
- 4. [8pts] Let x, y be nonzero real numbers.
- (a) Prove that if $(x^2 y^2) \left(\frac{1}{x^2} \frac{1}{y^2} \right) \ge 4$, then x + y > 100.
- (b) Prove that
 - (i) $|x^2 xy| + |xy y^2| \ge |x^2 y^2|$.
 - (ii) $|x^2 xy| + |xy y^2| \ge (x y)^2$.
- 5. [8pts] (a) Let $a_1, a_2, \ldots, a_{100}$ be integers of the same parity. Prove that $a_1 + (a_2 \times \cdots \times a_{100})$ is even.
- (b) Let m, a, b be integers such that m > 1, $a \equiv b + 1 \pmod{m}$ and $b \equiv a + 2 \pmod{m}$. Find m.