KFUPM/ Department of Mathematics/T231/MATH 210/ Exam 1/
Name:
ID \#:
Serial \#:

1. [8pts] Let P, Q, R be statements. Is $R \longrightarrow((P \wedge Q) \longrightarrow R)$ logically equivalent to $P \longrightarrow(Q \longrightarrow R)$? Justify.
2. [6pts] Mark each of the following statements as TRUE or FALSE and justify your choice.
(a) $\forall x \in \mathbb{Q}, \exists y \in \mathbb{R},(x+y)^{2}=1$.
(b) $\exists x \in \mathbb{R}, \forall y \in \mathbb{Q}, x^{2}=3 x y$.
(c) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{N}, x^{2}+y=x+1$.
3. [10pts] (a) For every $n \in \mathbb{Z}$, let $A_{n}=\left\{n+1, n^{2}\right\}$.
(i) Find $\left|\mathcal{P}\left(\mathcal{P}\left(A_{n} \times\{\emptyset\}\right)\right)\right|$.
(ii) Find, if they exist, distinct integers m, n such that $\left|A_{m} \cap A_{n}\right|=2$.
(b) Let A, B be subsets of some universal set U.
(i) Prove that $A \subseteq(A-B) \cup B$.
(ii) Is it true that $(A-B) \cup B \subseteq A$? Justify your answer.
4. [8pts] Let x, y, z be real numbers.
(a) Prove that if $x^{2}+y^{2}<1$, then $x y \leq\left(\frac{x+y}{2}\right)^{2}$.
(b) Prove that $|x-y|+|z-y|+|z-x| \geq 2|y-z|$.
5. [8pts] (a) Is it possible to find ten integers whose sum and product are both odd? Justify.
(b) Let m, k be integers such that $m \geq 2,3 k \equiv 1(\bmod m)$ and $k^{2} \equiv 2(\bmod m)$. Determine m.
