KFUPM/ Department of Mathematics/T231/MATH 210/ Exam 2

Name:
Please write clearly and justify all your answers.

1. [10pts] Use contradiction to prove that:
(a) For all positive real numbers a, b, we have $\frac{1}{a}+\frac{2}{b} \neq \frac{4}{2 a+b}$.
(b) $\sqrt[10]{2}$ is irrational.
2. [10pts] (a) Use induction to prove that $n!>\left(\frac{3}{2}\right)^{n}$ for all integers $n \geq 3$.
(b) A sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is defined recursively by

$$
a_{1}=2, a_{2}=4, a_{n}=2 a_{n-1}-a_{n-2} \text { for } n \geq 3 .
$$

- Conjecture a formula for a_{n}.
- Use strong induction to verify that your conjecture is true.

3. [10pts] (a) Let R be the relation defined on $\mathbb{R}-\{0\}$ by $x R y$ iff $\frac{y^{3}}{x}>0$. Is R reflexive? symmetric? transitive?
(b) Find the smallest nonnegative integers a, b, c such that in \mathbb{Z}_{7}

- $[a]=[-355]+[55]$
- $[b]=[-355][55]$
- $[c]=\left[(-355)^{55}\right]$

4. [10pts] (a) Let $f: \mathbb{Z}_{8} \longrightarrow \mathbb{Z}_{8}$ be the function given by $f([x])=[3 x-6]$. Prove that f is a bijection.
(b) Let $g: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{Q}$ be the function given by $g(x, y)=\frac{2 x}{y}$.

- Is g one-to-one?
- Determine $g(\mathbb{N} \times\{1\})$.

