King Fahd University of Petroleum & Minerals Department of Mathematics

Math 225 Introduction to Linear Algebra (Term 221) Midterm Exam (Duration = 100 minutes)

Exercise 1

Given the linear systems

Solve both systems by computing the reduced row echelon form of an augmented matrix (A|B)

Exercise 2 Let $A = \begin{pmatrix} 2 & 1 & 2 \\ 0 & 3 & 4 \\ 1 & 1 & 2 \end{pmatrix}$ and set $A^{-1} = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$.

Compute x_{22} , x_{21} , x_{13} by using *Cramer's rule*.

Exercise 3

Consider the linear operator on P_3 defined by L(p) = p - p'.

- (a) Find the kernel of L
- (b) Find the range of L
- (c) Is *L* one-to-one and why?
- (d) Is *L* onto and why?

Exercise 4

Let S be the subspace of P_3 consisting of all polynomials p(x) such that p(2) = 0, and let T be the subspace of all polynomials q(x) such that q(-1) = 0. Find bases for:

(a) <i>S</i>	(b) <i>T</i>	(c) $S \cap T$	(d) $S + T$
· ·	、 <i>)</i>		· · /

Exercise 5

The linear transformation defined by L(p) = p'(x) + p(1) maps P_3 into P_2 .

(a) Find the matrix representation of L with respect to the ordered bases $\{x^2, x, 1\}$ and $\{2, 1 + x\}$.

(b) Use this matrix to find the coordinates of $L(x^2 - 1)$ with respect to the ordered basis $\{2, 1 + x\}$.

Exercise 6

Let *A* and *B* be two similar matrices and let *c* be a real number.

(a) Show that det(A) = det(B).

(b) Show that det(A - cI) = det (B - cI).

Exercise 7

Let $x = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} 2 \\ 1 \\ 4 \\ 5 \end{bmatrix}$. (a) Determine the angle θ between x and y.

(b) Determine the distance between *x* and *y*.

Exercise 8

Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathbb{R}^{2 \times 2}$. The vectors a_1 and a_2 of A are used to form a parallelogram with altitude h, and α as shown in the figure:

Determine α and use a relation between α and h to show that $|\det(A)|$ is equal to the area of the parallelogram.

Exercise 9

The vectors $\mathbf{x}_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix}$, $\mathbf{x}_2 = \frac{1}{\sqrt{15}} \begin{bmatrix} 1\\1\\2\\3 \end{bmatrix}$ form an orthonormal set in \mathbb{R}^4 .

Extend this set to an orthonormal basis for \mathbb{R}^4 .

Exercise 10

Let *K* be an $n \times n$ matrix of the form

$$K = \begin{cases} 1 & -c & -c & \cdots & -c & -c \\ 0 & s & -sc & \cdots & -sc & -sc \\ 0 & 0 & s^2 & \cdots & -s^2c & -s^2c \\ \vdots & & & & \\ 0 & 0 & 0 & \cdots & s^{n-2} & -s^{n-2}c \\ 0 & 0 & 0 & \cdots & 0 & s^{n-1} \end{cases}$$

where $c = \cos\theta$ and $s = \sin\theta$, for some angle $\theta \in [-\pi, \pi]$.
(a) If k_j denotes the *j*th column of *K*, find $||k_j||^2$

(b) If n = 100, find $||K||_F$