King Fahd University of Petroleum & Minerals Department of Mathematics **Math 225** Introduction to Linear Algebra Final Exam - Term 221 (Duration = **2 h 30 min** | Number of Questions = **20 |** CODE 1)

Exercise 1 Given the linear systems

 (**i**) $x_1 + 2x_2 + x_3 = 2$ $-x_1 - x_2 + 2x_3 = 3$ $2x_1 + 3x_2 = 1$ and (**ii**) $x_1 + 2x_2 + x_3 = 0$ $-x_1 - x_2 + 2x_3 = 2$ $2x_1 + 3x_2 = -2$ If [α \boldsymbol{b} \mathcal{C} \vert is the solution of (i) and \vert a^{\prime} b^{\prime} c' is the solution of (ii), then $aa' + bb' + cc' =$ (**a**) 11 (**b**) −7 (**c**) 5 (**d**) −10 (**e**) −3

Exercise 3 In the vector space $\mathbb{R}^{2\times 2}$, let *A* be a fixed matrix. Then:

(**a**) The set of all nonsingular matrices is NOT a subspace

(**b**) The set of all singular matrices is a subspace

(**c**) The set of all triangular matrices is a subspace

(**d**) The set of all symmetric matrices is NOT a subspace

(e) The set of all matrices that commute with A is NOT a subspace

Exercise 5 The polynomials $1 + x + x^2$; $3 + x + 4x^2$; $a + bx^2$ form a basis for P_3 if and only if (**a**) $2a - 3b = 0$ (**b**) $3a - 2b \neq 0$ (**c**) $3a - 2b = 0$ (**d**) $3a + 2b \neq 0$ (**e**) $2a - 3b \neq 0$

Exercise 6 Consider the ordered bases $E = \{v_1, v_2, v_3\}$ and $F = \{u_1, u_2, u_3\}$ of \mathbb{R}^3 , where

$$
\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; \, \boldsymbol{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}; \, \boldsymbol{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \text{ and } \, \boldsymbol{u}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}; \, \boldsymbol{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}; \, \boldsymbol{u}_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}.
$$

Let $S = |$ $a \quad a' \quad a"$ b b' b'' c c' $c"$ denote the transition matrix from E to F. Then, $aa'a'' + bb'b'' + cc'c'' =$

(**a**) 18 (**b**) 28 (**c**) −14 (**d**) −9 (**e**) 35

Exercise 7 Let D be the differentiation operator on P_3 and consider the subspace $S = \{p \in P_3 \mid p(0) = 0\}$. Then:

(**a**) $D : S \longrightarrow P_3$ is one-to-one **(b)** $D : S \longrightarrow P_3$ is onto (c) $D: P_3 \longrightarrow P_2$ is one-to-one (**d**) $D : P_3 \longrightarrow P_2$ is NOT onto (**e**) None of the above statements is true

Exercise 8 Let $E = \{u_1, u_2, u_3\}$ and $F = \{b_1, b_2\}$, where $u_1 = |$ 1 0 −1 $|$; $u_2 = |$ 1 2 1 $|$; $u_3 = |$ −1 1 1 and $b_1 = \begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$; $b_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$. Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^2 defined by $L(\mathbf{x}) = \begin{bmatrix} x_1 + x_2 \\ x_2 + x_3 \end{bmatrix}$ $\left[\begin{matrix} x_1 + x_2 \\ x_1 - x_3 \end{matrix}\right]$. The matrix representing L with respect to the ordered bases E and F is

(a)
$$
\begin{pmatrix} -5 & 3 & 4 \\ 3 & 3 & -2 \end{pmatrix}
$$
 (b) $\begin{pmatrix} 5 & -3 & 4 \\ 3 & 3 & -2 \end{pmatrix}$ (c) $\begin{pmatrix} -5 & -3 & 4 \\ 3 & 3 & 2 \end{pmatrix}$ (d) $\begin{pmatrix} -5 & -3 & 4 \\ 3 & 3 & -2 \end{pmatrix}$ (e) $\begin{pmatrix} 5 & -3 & 4 \\ -3 & 3 & -2 \end{pmatrix}$

Exercise 9 Let L be the linear operator on \mathbb{R}^3 defined by $L(x) = Ax$, where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 1 0 1 −1 −2 1 1 1 −1) and let

2 7 −4

2 7 −4

 $u_1 =$ 1 2 0 $|$; $u_2 =$ 0 3 −1 $|$; $u_3 = |$ 1 0 1 The matrix representing L with respect to $\{u_1, u_2, u_3\}$ is (**a**) (−1 8 −6 −1 3 −4) (**b**) (−1 −8 6 −1 −3 4) (**c**) (−1 −8 6 −1 3 −4) (**d**) (1 −8 6 1 3 −4) (**e**) (−1 −8 6 −1 3 −4)

2 −7 4

2 7 −4

2 7 −4

Exercise 10 Let
$$
\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \\ -1 \\ 0 \end{bmatrix}$. Let θ be the angle between **u** and **v** and $p = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ be the projection of **u** onto **v**.
\nThen:
\n
$$
a + b + c + d + \cos \theta =
$$
\n(a)\n
$$
\frac{4 + \sqrt{3}}{2}
$$
\n(b)\n
$$
\frac{2 + \sqrt{3}}{2}
$$
\n(c)\n
$$
\frac{2 + \sqrt{2}}{2}
$$
\n(d)\n
$$
\frac{5}{2}
$$
\n(e)\n
$$
\frac{3}{2}
$$

Exercise 11 Let u_1 and u_2 be an *orthonormal* basis for \mathbb{R}^2 and let u be a vector in \mathbb{R}^2 such that $||u|| = 5$ and $||u^T u_1|| = 3$, then $|u^T u_2| =$

(a)
$$
\frac{\sqrt{2}}{3}
$$
 (b) $\frac{\sqrt{3}}{2}$ (c) 2 (d) 4 (e) $\frac{3}{\sqrt{5}}$

Exercise 12 Let
$$
A = \begin{pmatrix} 1 & -1 & 4 \ 1 & 4 & -2 \ 1 & 4 & 2 \end{pmatrix}
$$
. An **orthonormal** basis for the column space of A is given by $\frac{1}{2} \begin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix}$, $\frac{1}{2} \begin{bmatrix} -1 \ 1 \ 1 \ -1 \end{bmatrix}$ and
\n(a) $\begin{bmatrix} 2 \ -2 \ 2 \ -2 \end{bmatrix}$ (b) $\frac{1}{2} \begin{bmatrix} 1 \ 1 \ -1 \ -1 \end{bmatrix}$ (c) $\frac{1}{2} \begin{bmatrix} -1 \ -1 \ 1 \ 1 \end{bmatrix}$ (d) $\frac{1}{2} \begin{bmatrix} 1 \ -1 \ -1 \ -1 \end{bmatrix}$ (e) $\begin{bmatrix} 2 \ 2 \ -2 \ -2 \end{bmatrix}$

Exercise 13 Let $p_0, p_1, ...$ be a sequence of orthogonal polynomials and let α_n denote the lead coefficient of p_n . Then, $||p_n||^2 =$

(**a**) $|\alpha_n| ||x_n||^2$ (**b**) $|\alpha_n|^2$ **(c)** $\alpha_n \langle p_n , x^n \rangle$ 〉 (**d**) 1 (**e**) 1 $|\alpha_n|^2$

Exercise 14 Let
$$
A = \begin{pmatrix} 3 & 1 & 2 \\ 0 & 1 & -2 \\ 0 & 1 & 4 \end{pmatrix}
$$
. Then:

(a) A has three distinct eigenvalues and each has an eigenspace of dimension 1

(**b**) A has only two distinct eigenvalues λ_1 and λ_2 with dim(Eigenspace(λ_1)) = 1 and dim(Eigenspace(λ_2)) = 2

(c) A has only two distinct eigenvalues λ_1 and λ_2 with dim(Eigenspace(λ_1)) = 2 and dim(Eigenspace(λ_2)) = 2

(d) A has only one eigenvalue λ with multiplicity 3 and dim(Eigenspace(λ)) = 3

(e) A has only two distinct eigenvalues λ_1 and λ_2 with dim(Eigenspace(λ_1)) = 1 and dim(Eigenspace(λ_2)) = 1

Exercise 15 Let *A* be an 3 \times 3 matrix with *real* entries. If *A* has a complex eigenvalue λ_1 , then

(a) The eigenspace of λ_1 has dimension 2

 (b) A has only two distinct eigenvalues

(c) A has no real eigenvalue

(d) A has three distinct eigenvalues

(e) λ_1 has multiplicity 2

Exercise 16 Let A and B be two $n \times n$ matrices and let λ be a nonzero eigenvalue of AB. Then:

(a) λ is an eigenvalue of B

(b)) $\frac{1}{\lambda}$ is an eigenvalue of A

(c) λ is an eigenvalue of $A^T B^T$

(d) $\frac{1}{\lambda}$ is an eigenvalue of $B^T A^T$

(e)) $\frac{1}{\lambda}$ is an eigenvalue of BA

Exercise 20 Consider the conic section $3x^2 - 2xy + 3y^2 + 8\sqrt{2}x - 2 = 0$. If a standard form for this quadratic equation is given by $ax'^2 + by'^2 = c$, then $(a, b, c) =$

(**a**) (4, 2, 8) (**b**) (2, 4, 2) (**c**) (4, 2, 14) (**d**) (2, 4, 16) (**e**) (2, 1, 8)