King Fahd University of Petroleum & Minerals Department of Mathematics **Math 225** Introduction to Linear Algebra Final Exam - Term 221 (Duration = **2 h 30 min** | Number of Questions = **20** | CODE 1)

Exercise 1 Given the linear systems

Exercise 2 Let A be a nonsingular $4 imes 4$ matrix. Then, the determinant of the adjoint of A is equal to										
(a)	4 det (<i>A</i>)	(b)	$(\det(A))^4$	(C)	$(\det(A))^2$	(d)	det (A)	(e)	$(\det(A))^3$	

Exercise 3 In the vector space $\mathbb{R}^{2\times 2}$, let *A* be a fixed matrix. Then:

(a) The set of all nonsingular matrices is NOT a subspace

(**b**) The set of all singular matrices is a subspace

 (\mathbf{c}) The set of all triangular matrices is a subspace

 (\boldsymbol{d}) The set of all symmetric matrices is NOT a subspace

(e) The set of all matrices that commute with A is NOT a subspace

Exercise 4 In the vector space $C[0, 1]$, the Wronskian $W[x, \cos \pi x, \sin \pi x] =$										
(a)	π^3	(b) $\pi^3 x$	(c) x	(d) 0	(e) $\pi^2 x$					

Exercise 5 The polynomials $1 + x + x^2$; $3 + x + 4x^2$; $a + bx^2$ form a basis for P_3 if and only if (a) 2a - 3b = 0 (b) $3a - 2b \neq 0$ (c) 3a - 2b = 0 (d) $3a + 2b \neq 0$ (e) $2a - 3b \neq 0$

Exercise 6 Consider the ordered bases $E = \{v_1, v_2, v_3\}$ and $F = \{u_1, u_2, u_3\}$ of \mathbb{R}^3 , where

$$\boldsymbol{v}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}; \, \boldsymbol{v}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}; \, \boldsymbol{v}_3 = \begin{bmatrix} 1\\0\\1 \end{bmatrix} \text{ and } \boldsymbol{u}_1 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}; \, \boldsymbol{u}_2 = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}; \, \boldsymbol{u}_3 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}.$$

Let $S = \begin{pmatrix} a & a' & a'' \\ b & b' & b'' \\ c & c' & c'' \end{pmatrix}$ denote the transition matrix from E to F. Then, aa'a'' + bb'b'' + cc'c'' =

Exercise 7 Let *D* be the differentiation operator on P_3 and consider the subspace $S = \{p \in P_3 \mid p(0) = 0\}$. Then:

(a) $D : S \rightarrow P_3$ is one-to-one (b) $D : S \rightarrow P_3$ is onto (c) $D : P_3 \rightarrow P_2$ is one-to-one (d) $D : P_3 \rightarrow P_2$ is NOT onto (e) None of the above statements is true

Exercise 8 Let $E = \{u_1, u_2, u_3\}$ and $F = \{b_1, b_2\}$, where $u_1 = \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$; $u_2 = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$; $u_3 = \begin{bmatrix} -1\\ 1\\ 1 \end{bmatrix}$ and $b_1 = \begin{bmatrix} 1\\ -1 \end{bmatrix}$; $b_2 = \begin{bmatrix} 2\\ -1 \end{bmatrix}$. Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^2 defined by $L(\mathbf{x}) = \begin{bmatrix} x_1 + x_2\\ x_1 - x_3 \end{bmatrix}$. The matrix representing L with respect to the ordered bases E and F is

$$(a) \quad \begin{pmatrix} -5 & 3 & 4 \\ 3 & 3 & -2 \end{pmatrix} \quad (b) \quad \begin{pmatrix} 5 & -3 & 4 \\ 3 & 3 & -2 \end{pmatrix} \quad (c) \quad \begin{pmatrix} -5 & -3 & 4 \\ 3 & 3 & 2 \end{pmatrix} \quad (d) \quad \begin{pmatrix} -5 & -3 & 4 \\ 3 & 3 & -2 \end{pmatrix} \quad (e) \quad \begin{pmatrix} 5 & -3 & 4 \\ -3 & 3 & -2 \end{pmatrix}$$

Exercise 9 Let *L* be the linear operator on \mathbb{R}^3 defined by L(x) = Ax, where $A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & -2 & 1 \\ 1 & 1 & -1 \end{pmatrix}$ and let

 $u_{1} = \begin{bmatrix} 1\\2\\0 \end{bmatrix}; u_{2} = \begin{bmatrix} 0\\3\\-1 \end{bmatrix}; u_{3} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}.$ The matrix representing *L* with respect to $\{u_{1}, u_{2}, u_{3}\}$ is (a) $\begin{pmatrix} -1 & 8 & -6\\-1 & 3 & -4\\2 & -7 & -4 \end{pmatrix}$ (b) $\begin{pmatrix} -1 & -8 & 6\\-1 & -3 & 4\\2 & -7 & -4 \end{pmatrix}$ (c) $\begin{pmatrix} -1 & -8 & 6\\-1 & 3 & -4\\2 & -7 & -4 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & -8 & 6\\1 & 3 & -4\\2 & -7 & -4 \end{pmatrix}$ (e) $\begin{pmatrix} -1 & -8 & 6\\-1 & 3 & -4\\2 & -7 & -4 \end{pmatrix}$

Exercise 11 Let u_1 and u_2 be an *orthonormal* basis for \mathbb{R}^2 and let u be a vector in \mathbb{R}^2 such that ||u|| = 5 and $|u^T u_1| = 3$, then $|u^T u_2| =$

(a)
$$\frac{\sqrt{2}}{3}$$
 (b) $\frac{\sqrt{3}}{2}$ (c) 2 (d) 4 (e) $\frac{3}{\sqrt{5}}$

Exercise 12 Let
$$A = \begin{pmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$
. An *orthonormal* basis for the column space of A is given by $\frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $\frac{1}{2} \begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$ and
(a) $\begin{bmatrix} 2 \\ -2 \\ 2 \\ -2 \end{bmatrix}$ (b) $\frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$ (c) $\frac{1}{2} \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ (d) $\frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$ (e) $\begin{bmatrix} 2 \\ 2 \\ -2 \\ -2 \\ -2 \end{bmatrix}$

Exercise 13 Let $p_0, p_1, ...$ be a sequence of orthogonal polynomials and let α_n denote the lead coefficient of p_n . Then, $||p_n||^2 =$

(a) $|\alpha_n| ||x_n||^2$ (b) $|\alpha_n|^2$ (c) $\alpha_n \langle p_n, x^n \rangle$ (d) 1 (e) $\frac{1}{|\alpha_n|^2}$

Exercise 14 Let
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 0 & 1 & -2 \\ 0 & 1 & 4 \end{pmatrix}$$
. Then:

(a) A has three distinct eigenvalues and each has an eigenspace of dimension 1

(**b**) A has only two distinct eigenvalues λ_1 and λ_2 with dim(Eigenspace(λ_1)) = 1 and dim(Eigenspace(λ_2)) = 2

(c) A has only two distinct eigenvalues λ_1 and λ_2 with dim(Eigenspace(λ_1)) = 2 and dim(Eigenspace(λ_2)) = 2

(d) A has only one eigenvalue λ with multiplicity 3 and dim(Eigenspace(λ)) = 3

(e) A has only two distinct eigenvalues λ_1 and λ_2 with dim(Eigenspace(λ_1)) = 1 and dim(Eigenspace(λ_2)) = 1

Exercise 15 Let A be an 3×3 matrix with *real* entries. If A has a complex eigenvalue λ_1 , then

(a) The eigenspace of λ_1 has dimension 2

- (**b**) *A* has only two distinct eigenvalues
- (c) A has no real eigenvalue
- (d) A has three distinct eigenvalues
- (e) λ_1 has multiplicity 2

Exercise 16 Let A and B be two $n \times n$ matrices and let λ be a nonzero eigenvalue of AB. Then:

- (**a**) λ is an eigenvalue of *B*
- **(b)**) $\frac{1}{\lambda}$ is an eigenvalue of A
- (c) λ is an eigenvalue of $A^T B^T$
- (**d**) $\frac{1}{\lambda}$ is an eigenvalue of $B^T A^T$
- (e)) $\frac{1}{\lambda}$ is an eigenvalue of *BA*

Exerci	se 17	Let A	$=\begin{pmatrix}2\\0\\0\end{pmatrix}$	2 1 1 2 0 -). If	we fa	ctor A i	into a p	orodu	ct XD	<i>X</i> ^{−1} , w	here <i>D</i>) is dia	agona	l, then	X =			
(a)	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	2 -1 0	$\begin{pmatrix} 1\\ -3\\ 3 \end{pmatrix}$	(b)	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	2 -1 0	$\begin{pmatrix} 1\\ -3\\ 3 \end{pmatrix}$	(C)	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	2 0 -1	$\begin{pmatrix} 1\\ -3\\ 3 \end{pmatrix}$	(d)	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	2 -1 0	$\begin{pmatrix} 0\\ -3\\ 3 \end{pmatrix}$	(e)	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	2 -1 0	$\begin{pmatrix} 1\\ -3\\ 0 \end{pmatrix}$

Exercise 18 Let A be a <i>diagonalizable</i> 6×6 matrix. If A has only two distinct eigenvalues λ and μ such that $\lambda I - A$ has
rank 2, then the <i>multiplicity of</i> μ is equal to

(a)	5	(b) 1	(c)	3 (d	l) 4	(e)	2
--------------	---	----------------	--------------	--------------	------	--------------	---

Exercis	se 19 Let <i>A</i> be a <i>di</i>	agonalizable matrix wh	nose ei	igenvalues are all ei	ther 1	or -1 and let B =	$= A + I$. Then, $B^3 =$
(a)	4 <i>B</i>	(b) $A^3 + 3I$	(C)	В	(d)	$A^3 + A + I$	(e) <i>I</i>

Exercise 20 Consider the conic section $3x^2 - 2xy + 3y^2 + 8\sqrt{2}x - 2 = 0$. If a standard form for this quadratic equation is given by $ax'^2 + by'^2 = c$, then (a, b, c) =

(a) (4, 2, 8) (b) (2, 4, 2) (c) (4, 2, 14) (d) (2, 4, 16) (e) (2, 1, 8)