KFUPM/ Department of Mathematics/T222/MATH 225/Exam 1

Name:	ID#:							Serial $\#$:
1. [8pts] The augmented matrix of a system of linear	equations is	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	$2 \\ 0 \\ 2$	$ \begin{array}{c} 3 \\ 1 \\ 2 \end{array} $	$\begin{array}{c} 4\\ 4\\ 0\end{array}$	$\begin{array}{c} 0 \\ -2 \\ m \end{array}$	1 1 1	

(a) For which values of m is the system consistent?

(b) Let m = 3.

- (i) Using Gaussian elimination and assuming that the unknowns of the system are x_1, x_2, x_3, x_4, x_5 , which of them are the free variables?
- (ii) Find the solution set of the system.

2. [8pts] (a) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} c+7a & d+7b \\ ma & mb \end{bmatrix}$, where *m* is a nonzero scalar. Describe the elementary row operations that transform *A* into *B* and find elementary matrices E_1, E_2, E_3 such that $B = E_3 E_2 E_1 A$.

(b) Find all possible values of h for which $\begin{bmatrix} 1 & 2 & h \\ -2 & h & 1 \\ 1 & 5 & 6 \end{bmatrix}$ is singular.

3. [12pts] (a) Let A, B, C be 4×4 matrices such that det (A) = 3, det (B) = 16, and det $(C) \neq 0$. Compute det $(2A^2B^{-1})$ and det $((CB^{-1})^{-1}C)$.

(b) Let D be an $n \times n$ matrix with real entries such that $D^T = -D$ and suppose n is odd. Compute det (D).

(c) Let $F = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ 0 & 0 & x \end{bmatrix}$. Determine x if $\operatorname{adj}(\operatorname{adj}(F)) = 7F$.

4. [8pts] (a) Compute in terms of p the inverse of $\begin{bmatrix} 1 & 1 & p \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

(b) In coding a text message, the following system was used:

The coded message was represented (column-wise) as a 2×2 matrix C and then transformed into the matrix AC where $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. If the transformed message was sent as

3, 9, 9, 5

what was the original message?