- 1. [8pts] Mark each of the following statements as True or False and justify all your answers.
- (a) Span {(1, 2, 0, 1), (2, 3, 5, 1), (3, 4, -1, 7)} = \mathbb{R}^4 .
- (b) $\{(x, y, z) \in \mathbb{R}^3 : x = 2y\}$ is a subspace of \mathbb{R}^3 .
- (c) $\{3+x, 2+x, x\}$ is a basis of \mathbb{P}_2 .
- (d) The function $L: \mathbb{R}^2 \longrightarrow \mathbb{R}$ given by L(x, y) = xy is a linear transformation.
- 2. [8pts] The sets $B = \{(-6, -1), (2, 0)\}$ and $B' = \{(2, -1), (6, -2)\}$ are ordered bases of \mathbb{R}^2 .
- (a) Let $u = \begin{bmatrix} 0\\2 \end{bmatrix}$. Find the coordinate vector $[u]_B$.
- (b) Find the transition matrix from B to B'.

3. [8pts] Let
$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 2 & 0 & 1 & 0 \end{bmatrix}$$

- (a) Find a basis for the nullspace of A.
- (b) Find a basis for
 - (i) The row space of A
 - (ii) The column space of A.

4. [8pts] Let $L : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be the linear transformation given by L(x, y) = (x + y, y, x) and consider the ordered bases $B = \{(0, 1), (1, 0)\}$ and $B' = \{(1, 0, 0), (1, 1, 0), (0, 0, 1)\}$ of \mathbb{R}^2 and \mathbb{R}^3 respectively.

- (a) Find the matrix A of L relative to B and B'.
- (b) Let v = (2, 1). Compute the vector $[L(v)]_{B'}$.
- 5. [8pts] Let $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear operator given by L(x, y, z) = (0, x + y, y + z).
- (a) Find a basis for
 - (i) $\ker(L)$
 - (ii) $\operatorname{Im}(L)$.
- (b) Let S be the subspace of \mathbb{R}^3 spanned by $\{(1,2,3)\}$. Find a basis for L(S).