Math 225 - 231 Second Major Exam Oct 26, 2023

Name:

ID #:

Q1) Let V be the set of ordered pairs (a, b) of real numbers with addition and scalar multiplication on V defined by

(a,b) + (c,d) = (a + c, b + d) and k(a,b) = (ka,0)Is **V** a vector space? Justify your answer.

Q2) Determine whether the subset *S* of *V* is a subspace of *V* if:

- 1. $V = P_4$ and **S** is the set of all polynomials in P_4 having at least one real root.
- 2. $V = \mathbb{R}^{2 \times 2}$ and $S = \{B \in \mathbb{R}^{2 \times 2} | AB \neq BA\}$ where *A* is a particular matrix in $\mathbb{R}^{2 \times 2}$.

Q3) Let X_1 , X_2 and X_3 be linearly independent vectors in \mathbb{R}^n and let $Y_1 = X_1 + X_2$, $Y_2 = X_2 + X_3$ and $Y_3 = X_3 + X_1$ Are Y_1, Y_2 and Y_3 linearly independent? Justify your answer.

Q4) Consider the vector space $\mathbb{R}^{2\times 2}$, determine whether $B = \{A, B, C, D\}$ where $A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 5 \\ 1 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 5 & 12 \\ 1 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} 3 & 4 \\ -2 & 5 \end{pmatrix}$ form a basis for $\mathbb{R}^{2\times 2}$. Find the dimension of **span**(*A*, *B*, *C*, *D*).

Q5) Let $B_1 = \{1, 1 + x, 1 + x + x^2\}$ and $B_2 = \{1, 2x, 4x^2 - 2\}$ be two ordered bases of P_3 and let v be a vector in P_3 such that $[v]_{B_1} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$. Find $[v]_{B_2}$.

Q6) Show that the mapping $L: \mathbb{R}^{3\times 3} \to \mathbb{R}^{3\times 3}$ defined by $L(A) = A - A^T$ is a linear operator on $\mathbb{R}^{3\times 3}$. Find dim (ker(L)).