Math 225-231 Second Major Exam Oct 26, 2023

Name:
ID \#:

Q1) Let \boldsymbol{V} be the set of ordered pairs (a, b) of real numbers with addition and scalar multiplication on \boldsymbol{V} defined by

$$
(a, b)+(c, d)=(a+c, b+d) \text { and } k(a, b)=(k a, 0)
$$

Is \boldsymbol{V} a vector space? Justify your answer.

Q2) Determine whether the subset \boldsymbol{S} of \boldsymbol{V} is a subspace of \boldsymbol{V} if:

1. $\boldsymbol{V}=\boldsymbol{P}_{4}$ and \boldsymbol{S} is the set of all polynomials in \boldsymbol{P}_{4} having at least one real root.
2. $\boldsymbol{V}=\mathbb{R}^{2 \times 2}$ and $\boldsymbol{S}=\left\{B \in \mathbb{R}^{2 \times 2} \mid A B \neq B A\right\}$ where A is a particular matrix in $\mathbb{R}^{2 \times 2}$.

Q3) Let X_{1}, X_{2} and X_{3} be linearly independent vectors in \mathbb{R}^{n} and let

$$
Y_{1}=X_{1}+X_{2}, \quad Y_{2}=X_{2}+X_{3} \quad \text { and } \quad Y_{3}=X_{3}+X_{1}
$$

Are Y_{1}, Y_{2} and Y_{3} linearly independent? Justify your answer.

Q4) Consider the vector space $\mathbb{R}^{2 \times 2}$, determine whether $B=\{A, B, C, D\}$ where

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right), \quad B=\left(\begin{array}{cc}
2 & 5 \\
1 & -1
\end{array}\right), \quad C=\left(\begin{array}{cc}
5 & 12 \\
1 & 1
\end{array}\right) \text { and } D=\left(\begin{array}{cc}
3 & 4 \\
-2 & 5
\end{array}\right)
$$

form a basis for $\mathbb{R}^{2 \times 2}$. Find the dimension of $\boldsymbol{\operatorname { s p a n }}(A, B, C, D)$.

Q5) Let $B_{1}=\left\{1,1+x, 1+x+x^{2}\right\}$ and $B_{2}=\left\{1,2 x, 4 x^{2}-2\right\}$ be two ordered bases of $\boldsymbol{P}_{\mathbf{3}}$ and let v be a vector in $\boldsymbol{P}_{\mathbf{3}}$ such that $[v]_{B_{1}}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$. Find $[v]_{B_{2}}$.

Q6) Show that the mapping $L: \mathbb{R}^{3 \times 3} \rightarrow \mathbb{R}^{3 \times 3}$ defined by $L(A)=A-A^{T}$ is a linear operator on $\mathbb{R}^{3 \times 3}$. Find dim $(\operatorname{ker}(L))$.

