King Fahd University of Petroleum and Minerals **Department of Mathematics**

MATH 225, Final Exam, Term 231

Duration: 150 minutes 02 January, 2024

Name:_____ ID Number:_____

Instructions:

- 1. Calculators and Mobiles are not allowed.
- 2. Write legibly.
- 3. Show all your work. No points for answers without justification.
- 4. Make sure that you have 9 pages of problems (Total of 9 Problems)

Question #	Points	Maximum
Number		Points
1		7
2		6
3		8
4		10
5		6
6		6
7		8
8		10
9		11
Total		72

1. [7 points] For what values of m and n, the system

1/9

 $x_1 + 2x_2 + x_3 = 2$ $-x_1 - x_2 + 2x_3 = 3$ $2x_1 + 3x_2 + mx_3 = n$ has: (i) a unique solution (ii) no solution (iii) no solution

(iii) infinitely many solutions.

2. [6 points] Use Crammer's rule to find the value of x_3 in the solution of the linear system

 $\begin{array}{l} x_1 + 2x_2 + x_3 = 5 \\ 2x_1 + 2x_2 + x_3 = 6 \\ x_1 + 2x_2 + 3x_3 = 9 \end{array}$

3. [8 points] (i) Determine whether the vectors $\vec{v}_1 = (4, 2, 3)^T$, $\vec{v}_2 = (2, 3, 1)^T$ and $\vec{v}_3 = (1, 1, -1)^T$ are linearly independent.

3/9

(ii) Find a basis for the subspace $S = \text{Span}(\vec{v}_1, \vec{v}_2, \vec{v}_3)$.

- 4. **[10 points]** Consider the mapping $L : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $L(x_1, x_2, x_3)^T = (x_1 x_2 + x_3, x_2 x_3 + x_1)^T$.
 - (i) Show that L is a linear transformation.
 - (ii) Find a basis for ker (L).
 - (iii) Find the matrix that represents L with respect to the ordered bases $\begin{pmatrix} & 1 \\ & & \\ \end{pmatrix}$

4/9

$$E = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\} \text{ and } F = \left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 3\\1 \end{pmatrix} \right\} \text{ of } \mathbb{R}^3 \text{ and } \mathbb{R}^2$$
respectively.

(iv) Find the coordinate vector $\begin{bmatrix} L \begin{pmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix}_F$.

5. [6 points] Find the projection of the vector $f(x) = x^2$ on the subspace of P_3 spaned by the two vectors g(x) = 1 and h(x) = x if the inner product on P_3 is defined by $\langle p, q \rangle = \sum_{i=1}^{3} p(x_i)q(x_i)$, where $x_1 = -1$, $x_2 = 0$ and $x_3 = 1$.

6. [6 points] Let
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 6 \end{bmatrix}$$
.

Find an orthonormal basis for the column space of A.

- 7. [8 points] Let A be a 2×2 matrix.
 - (i) If tr (A) = 8 and |A| = 12, find the eigenvalues of A.

(ii) If $\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\vec{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ are eigenvectors belonging to the eigenvalue λ_1 and λ_2 respectively, where $\lambda_1 \ge \lambda_2$, then find the matrix A.

8. **[10 points]** Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 3 \\ 1 & 1 & -1 \end{bmatrix}$$

(i) Find all the eigenvalues of A and the corresponding eigenvectors.

- (ii) Is A diagonalizable? (Justify your answer)
- (iii) Find the eigenvalues of A^{10} and the corresponding eigenvectors.

9. [11 points] For the quadratic equation $-3x^2 + 6xy + 5y^2 - 24 = 0$ find:

9/9

(i) The matrix form for this equation.

(ii) A suitable change of coordinates so that the resulting equation represents a conic section in standard form.

- (iii) Identify the graph
- (iv) Find the coordinates of the vertices of the graph.