King Fahd University of Petroleum and Minerals Department of Mathematics

MATH 225, Final Exam, Term 231
Duration: 150 minutes
02 January, 2024

Name: \qquad ID Number: \qquad

Instructions:

1. Calculators and Mobiles are not allowed.
2. Write legibly.
3. Show all your work. No points for answers without justification.
4. Make sure that you have 9 pages of problems (Total of 9 Problems)

Question \# Number	Points	Maximum Points
$\mathbf{1}$		7
$\mathbf{2}$		6
$\mathbf{3}$		8
$\mathbf{4}$		10
$\mathbf{5}$		6
$\mathbf{6}$		6
$\mathbf{7}$		8
$\mathbf{8}$		10
$\mathbf{9}$		11
Total		72

1. [7 points] For what values of m and n, the system

$$
\begin{aligned}
& \quad x_{1}+2 x_{2}+x_{3}=2 \\
& -x_{1}-x_{2}+2 x_{3}=3 \\
& 2 x_{1}+3 x_{2}+m x_{3}=n \\
& \text { has: }
\end{aligned}
$$

(i) a unique solution
(ii) no solution
(iii) infinitely many solutions.
2. [$\mathbf{6}$ points] Use Crammer's rule to find the value of x_{3} in the solution of the linear system

$$
\begin{gathered}
x_{1}+2 x_{2}+x_{3}=5 \\
2 x_{1}+2 x_{2}+x_{3}=6 \\
x_{1}+2 x_{2}+3 x_{3}=9
\end{gathered}
$$

3. [8 points] (i) Determine whether the vectors $\vec{v}_{1}=(4,2,3)^{T}, \vec{v}_{2}=(2,3,1)^{T}$ and $\vec{v}_{3}=(1,1,-1)^{T}$ are linearly independent.
(ii) Find a basis for the subspace $S=\operatorname{Span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$.
4. [10 points] Consider the mapping $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $L\left(x_{1}, x_{2}, x_{3}\right)^{T}=\left(x_{1}-x_{2}+x_{3}, x_{2}-x_{3}+x_{1}\right)^{T}$.
(i) Show that L is a linear transformation.
(ii) Find a basis for ker (L).
(iii) Find the matrix that represents L with respect to the ordered bases
$E=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ and $F=\left\{\binom{1}{2},\binom{3}{1}\right\}$ of \mathbb{R}^{3} and \mathbb{R}^{2} respectively.
(iv) Find the coordinate vector $\left[L\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right]_{F}$.
5. [6 points] Find the projection of the vector $f(x)=x^{2}$ on the subspace of P_{3} spaned by the two vectors $g(x)=1$ and $h(x)=x$ if the inner product on P_{3} is defined by $<p, q\rangle=\sum_{i=1}^{3} p\left(x_{i}\right) q\left(x_{i}\right)$, where $x_{1}=-1, x_{2}=0$ and $x_{3}=1$.
6. [6 points] Let $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 6\end{array}\right]$.

Find an orthonormal basis for the column space of A.
7. [8 points] Let A be a 2×2 matrix.
(i) If $\operatorname{tr}(A)=8$ and $|A|=12$, find the eigenvalues of A.
(ii) If $\vec{v}_{1}=\binom{1}{1}$ and $\vec{v}_{2}=\binom{1}{-1}$ are eigenvectors belonging to the eigenvalue λ_{1} and λ_{2} respectively, where $\lambda_{1} \geq \lambda_{2}$, then find the matrix A.
8. $[\mathbf{1 0}$ points $]$ Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 3 \\ 1 & 1 & -1\end{array}\right]$
(i) Find all the eigenvalues of A and the corresponding eigenvectors.
(ii) Is A diagonalizable? (Justify your answer)
(iii) Find the eigenvalues of A^{10} and the corresponding eigenvectors.
9. [11 points] For the quadratic equation $-3 x^{2}+6 x y+5 y^{2}-24=0$ find:
(i) The matrix form for this equation.
(ii) A suitable change of coordinates so that the resulting equation represents a conic section in standard form.
(iii) Identify the graph
(iv) Find the coordinates of the vertices of the graph.

